
FOCUSED FEASIBILITY STUDY Thomson Reservoir

SR#1373 Carlton, Minnesota MPCA Work Order #3000026021

Prepared for:

Minnesota Pollution Control Agency 525 South Lake Avenue Suite 400 Duluth, Minnesota 55802

Prepared by:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103

> June 2020 Revision 00 BWJ200100

FOCUSED FEASIBILITY STUDY Thomson Reservoir

SR#1373 Carlton, Minnesota MPCA Work Order #3000026021

> June 2020 Revision 00 BWJ200100

Prepared for:

Minnesota Pollution Control Agency 525 South Lake Avenue Suite 400 Duluth, Minnesota 55802

Prepared by:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103 (651) 291-0456

Executive Summary

This Focused Feasibility Study (FFS) for the Thomson Reservoir (Site) presents: a summary of current Site conditions; a discussion of remedial action objectives (RAOs); the identification, screening, evaluation, and comparison of potential alternatives; and identifies pre-design data gaps still needed to characterize the site before final remedy selection. This report has been prepared by Bay West LLC (Bay West) in accordance with the Minnesota Pollution Control Agency (MPCA) Contract Work Order No. 3000026021.

The Site has been studied as a part of the St. Louis River (SLR) area of concern (AOC). Funding to perform additional studies to determine the nature and extent of contaminated sediments, and complete an FFS, was obtained through the United States Environmental Protection Agency (USEPA), Great Lakes Legacy Act (GLLA) and state funding through the Minnesota Legacy Fund . Detailed investigations previously completed for the Site have identified sediments contaminated with polychlorinated dibenzo-p-dioxins/dibenzofurans (dioxins) and mercury (EA Engineering, Science, and Technology, Inc., PBC [EA], 2015).

In 2016, data was collected to support previous investigations by addressing data gaps identified by the MPCA to investigate the extent and volume of contaminated sediment within Thomson Reservoir, and to evaluate risks to human health and the environment due to potential impacts by the benthic community. Sediment samples were collected and analyzed for Site contaminants of concern (COCs) to gather additional chemical data for delineation of extent and depth of contamination at the Site. Sediment sampling results confirm that mercury in sediment generally did not exceed Midpoint Sediment Quality Targets (SQTs), and dioxin/furan sediment concentrations exceeded Level II SQTs in 21 percent (%) of the samples, primarily in both the 0.0- to 0.15- and 0.15- to 0.50-meter intervals. Benthic macroinvertebrates do not appear to bioaccumulate mercury; however, dioxins appear to bioaccumulate due to exposure to Site sediments significantly more compared to reference samples. Fish tissue collection and testing of six fish species indicate that mercury concentrations appear to be comparable to the reference sample; however, dioxins concentrations in fish tissue is greater than the reference sample and has a statistically significant difference between fish collected from the Site and the reference site. Based on the sediment and tissue testing results, dioxins/furans should be retained as a COC for the Site.

As identified in the SLR Remedial Action Plans (RAPs): RAP Stage I, MPCA and Wisconsin Department of Natural Resources (WDNR), 1992; and RAP Stage II, and MPCA and WDNR, 1995; and later proven with testing, the Site is potentially contributing to two impairments in the SLR AOC:

- Restrictions on dredging; and
- Degradation of the benthos.

•

As recommended by the RAPs, areas that are contributing to river sediment impairments should be addressed through remedial activities. In addition, addressing the contaminated sediments within the Site would also help in the reduction of impaired water resulting from bioaccumulative toxins in the SLR.

Remedial Action Objectives Developed by the MPCA for the Site

RAOs for the Site were developed based on the requirements of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP; 40 Code of Federal Regulations [CFR] §300.430[e][2][i]), which defines RAOs as a listing of the COCs) and media of concern, potential

i

exposure pathways, and remediation goals. Specific RAOs were developed from a review of the results of site characterization activities, site-specific risk and fate and transport evaluations, and an initial review of Applicable or Relevant and Appropriate Requirements (ARARs). The following RAOs for the Site include goals for the protection of ecological receptors:

- Minimize or remove exposure to sediment contaminants that bioaccumulate in the food chain.
- Minimize or remove exposure of the benthic organisms to contaminated sediments above sediment cleanup goals.
- Maintain current reservoir operating capacity and functionality.

Alternatives Developed for the Site

Alternatives were identified and screened to determine if they could meet these RAOs. The following alternatives were evaluated in this FFS:

Alternative 1: No Action. The NCP at Title 40 CFR provides that a No Action Alternative should be considered at every site. The No Action Alternative should reflect the site conditions described in the baseline risk assessment and remedial investigation (RI). The No Action Alternative included within this FFS does not include any treatment or engineering controls, institutional controls (ICs), or monitoring. There are no costs associated with the No Action Alternative.

Alternative 2: Monitored Natural Recovery. This alternative includes collection of data commencing with the Baseline Characterization but continuing for an additional period of five years. The baseline characterization consists of hydrological investigation; bathymetric survey data collection; SLR-specific data review to determine background concentrations of COCs; and physical, chemical, and biological testing of Site sediments and biota. The Baseline Characterization alternative is necessary for determining current impacts to biota arising from contaminated sediments and to identify potential natural recovery processes within the Site. During this five-year period, natural recovery processes and their trends will be monitored to quantify changes in Site sediment concentrations, extent of sediment deposition (i.e., isolation of contaminated sediments with clean deposits), observed toxicity to benthos, and/or observed bioaccumulative effects in benthos and fish. The approximate present value cost associated with Alternative 2 is \$640,000.

Alternative 3A: Enhanced Monitored Natural Recovery. The Enhanced Monitored Natural Recovery (EMNR) Alternative includes construction of a 0.15-meter (0.5-foot) thin-layer sand cover over contaminated sediments (i.e., sediments with COC concentrations exceeding the cleanup level [CUL; Section 2.2.1]) to expedite natural recovery processes occurring within the Site (primarily isolation) and to provide some immediate improved benthic habitat. The thin-layer cover would be placed over 146 acres of contaminated sediments and would require approximately 147,000 cubic yards of sand (including a 4-centimeter [1.5-inch] over-placement). Monitored Natural Recovery (MNR), as presented for Alternative 2, will be conducted following thin-layer cover construction to monitor natural recovery processes and cover integrity. The approximate present value cost for Alternative 3A is \$10,000,000.

Alternative 3B: Enhanced Monitored Natural Recovery with Reactive Cover Amendment. This alternative includes construction of a thin-layer sand cover as presented for Alternative 3A, but also incorporates a reactive reagent, such as carbon-based sorbent, mixed into the cover. Addition of reagent would reduce availability of Site COCs in sediments and sediment pore water to aquatic organisms (primarily through contaminant sequestration) and thereby limit transfer of chemical contaminants to higher trophic organisms. The reactive cover would be placed over the same 146 acres of contaminated sediment as Alternative 3A, and would require approximately

147,000 cubic yards of sand and reagent materials. MNR, as presented for Alternative 2, will be conducted following reactive cover construction to monitor natural recovery processes and cover integrity. The approximate present value cost for Alternative 3B is \$33,000,000.

Alternative 4: Potentially Bioactive Zone (PBAZ) Cap. This alternative includes construction of a 0.5- to 1.2-meter-thick sand cap over 146 acres of contaminated sediments. The constructed cap thickness will be equal in thickness to the PBAZ, which is determined by the varying habitat areas at the Site, and therefore provide contaminant isolation from aquatic plant and animal life. Construction of a cap will also mitigate exposure to human receptors, although human health criteria are not being used as cleanup criteria at this time. MNR, as presented for Alternative 2, will be conducted following cap construction to monitor natural recovery processes and cap integrity. The estimated volume of sand required to construct the cap is 560,000 cubic yards. The approximate present value cost for Alternative 4 is \$29,000,000.

Alternative 5: Dredging with Thin-Layer Cover. This alternative consists of hydraulically dredging approximately 350,000 cubic yards of contaminated sediments over 146 acres of the Site and subsequent construction of a thin-layer sand cover over dredged locations. This alternative would significantly reduce the volume of contaminated sediments within the Site while providing isolation from dredge residuals and/or other contamination remaining after dredging completion. MNR, as presented for Alternative 2, will be conducted following dredging and subsequent thin-layer cover construction to monitor natural recovery processes and cover integrity. The approximate present value cost for Alternative 5 is \$54,000,000.

Alternative 6: Enhanced Monitored Natural Recover with Broadcast Amendment. This EMNR with broadcast amendment alternative would consist of applying a thin 0.01-meter layer of amendment material directly on top of the sediment surface in areas with sediment concentrations of COCs exceeding the preliminary clean up levels (CULs; i.e., areas of the Site with exceedances of the Midpoint SQT for dioxins), hereafter referred to as remedial areas. Amendment material would be mixed into the sediments over time through bioturbation. The chosen amendment would reduce exposure of aquatic life to COCs through sequestration of sediment contaminants. Monitoring of sediment chemical concentrations, sediment toxicity, and bioaccumulation of COCs in aquatic life would be conducted until sufficient contaminant sequestration, degradation, transformation, or other natural recovery processes reduce risks to acceptable levels. A monitoring period and implementation of ICs would be conducted following the construction phase as detailed for Alternative 6. Monitoring and enforcement of ICs would continue indefinitely until RAOs are achieved for the Site, but a period of 30 years was used for incorporation into each alternative's cost analysis. The approximate present value cost associated with Alternative 6 is \$20,000,000.

Comparative Analysis Summary

The comparative analysis of alternatives narrative discussion and quantitation table did not clearly identify a superior alternative to address the contamination at the Site; however, Alternatives 3B and 6 received the highest overall numerical scores in the alternative analysis and should be evaluated further for remedy selection.

Bench-scale treatability testing was completed on sediments collected from Scanlon Reservoir (which are assumed to be similar in composition and COCs to Site sediments) to evaluate the effectiveness of different AC amendments and doses to reduce the bioavailability of dioxins/furans in Site sediments using two AC particle size ranges; a silt-sized powdered activated carbon (PAC) and a fine sand-sized granular activated carbon (GAC). The results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments. Application methods will be retained for further engineering and cost evaluations.

In order to evaluate how a remedial alternative involving AC might affect mercury, which is present in sediment at the Site but determined not to be a COC, a literature review was completed by the United States Army Research and Development Center. The review focused on how a remedy involving AC will impact the potential for mercury toxicity and bioaccumulation. Review of available research indicated either AC is a useful sorbent for reducing the potential for mercury bioaccumulation, or that AC is not effective at sorbing mercury; however, AC does not appear to increase the potential for mercury toxicity and bioaccumulation in water or sediments (U.S. Army Research and Development Center, 2020).

No significant difference in the balancing criteria score was found between these alternatives other than cost. All alternatives, with the exception of Alternative 1, involve relatively high degrees of uncertainty due to limited knowledge and understanding of contaminant distribution, risks to receptors, and hydrodynamics.

The modifying criteria, State/support agency acceptance, and community acceptance are assessed formally after the public comment period. Stakeholder and community input will provide valuable insight as the MPCA considers information for the selection of a preferred alternative. The MPCA will conduct outreach activities to resource managers, current Site users, the public and local units of government prior to the public comment period.

Further studies are recommended during the design phase of the selected alternative. These recommended studies, depending on the alternative selected, may include:

- Further delineation and determination of extent, thickness, and volume of contaminated sediment;
- Hydrodynamic study to understand natural processes such as depositional and scouring forces to inform design and placement of cover materials, and effectiveness of MNR;
- Updated bathymetric survey and mapping of substrate types:
- Investigation into the potential for ongoing sources related to upstream industries.

TABLE OF CONTENTS

1.0		RODUCTION AND BACKGROUND	
1.		Report Organization	
1.	.2	Site Location and Current Use	1-2
	.3	Site History (From Schubauer-Berigan and Crane, 1996)	1-3
1.	.4	Site Characterization	
	1.4.1	Site Geology	1-4
	1.4.1	3	
	1.4.1		1-4
	1.4.2	Site Hydrology	
	1.4.3	Nature and Extent of Contamination	
	1.4.3	l l	
	1.4.3	3	
	1.4.3		
	1.4.3	· ·	
		Exposure Pathways	
	1.4.4	•	
	1.4.4	I.2 Ecological Exposure Pathways	
	1.4.5	Conceptual Site Model	1-12
2.0	APP	PLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT	S AND
		MEDIAL ACTION OBJECTIVES	
2.		Applicable or Relevant and Appropriate Requirements	
	2.1.1	Chemical-Specific ARARs and TBCs	2-3
	2.1.2	Location-Specific ARARs and TBCs	
	2.1.3	Action-Specific ARARs and TBCs	
	2.1.4	Other Considerations	
2.	.2	Remedial Action Objectives	2-12
	2.2.1	Preliminary Sediment Cleanup Levels	
3.0	DEV	ELOPMENT AND SCREENING OF ALTERNATIVES	3-1
3.		Remedial Technology Identification and Screening Process	
0.	3.1.1	Institutional Controls	
	3.1.2	Monitoring	
	3.1.3	Monitored Natural Recovery	
	3.1.4	Enhanced Monitored Natural Recovery	
	3.1.5	Capping	
	3.1.6	Dredging and Excavation	
	3.1.7	Dewatering	
	3.1.8	Disposal	
	3.1.9	In Situ Treatment	
	3.1.10	Remedial Technology Screening Results	
3.	.2	Development of Alternatives	
	3.2.1	Alternative 1: No Action with Baseline Characterization	
	3.2.2	Alternative 2: Monitored Natural Recovery	
	3.2.2	· · · · · · · · · · · · · · · · · · ·	
	3.2.2		
	3.2.2		
	3.2.2		
	3.2.3	Alternative 3A: Enhanced Monitored Natural Recovery	
		•	

3.2.3	3.1 Pre-Design Investigation	3-9
3.2.3		
3.2.3	3.3 Institutional Controls	3-10
3.2.3	3.4 Monitoring and Evaluation Period	3-10
3.2.3		
3.2.3		
3.2.4	Alternative 3B: Enhanced Monitored Natural Recovery with Cover Amenda	nent3-11
3.2.4	4.1 Estimated Cost	3-11
3.2.5	Alternative 4: Potentially Bioactive Zone Cap	3-12
3.2.		
3.2.	5.2 Cost	3-12
3.2.	5.3 Other Logistical Issues	3-13
3.2.6	Alternative 5: Dredging with Thin-Layer Cover	3-13
3.2.6		
3.2.6		
3.2.6	6.3 Other Logistical Issues	3-15
3.2.7	Alternative 6: Enhanced Monitored Natural Recovery with Broadcast Amer	ndment3-
	15	
3.2.7	7.1 Amendment Selection and Application Rate	3-15
3.2.7		
3.2.7	7.3 Monitoring and Evaluation Period	3-16
3.2.7	7.4 Cost	3-16
3.2.7	7.5 Other Logistical Issues	3-17
4.0 RE	MEDY SELECTION CRITERIA	4-1
4.1	Threshold Criteria	
4.1.1	Overall Protection of Human Health and Ecological Receptors	
4.1.2	Compliance with Applicable or Relevant and Appropriate Requirements	
4.2	Primary Balancing Criteria	
4.2.1	Long-Term Effectiveness and Permanence	
4.2.2	Reduction of Toxicity, Mobility, or Volume Through Treatment	
4.2.3	Short-Term Effectiveness	
4.2.4	Implementability	
4.2.5	Costs	
4.3	Modifying Criteria	
4.3.1	State/Support Agency Acceptance	
4.3.2	Community Acceptance	
4.4	Green Sustainable Remediation	
5.0 COI	MPARATIVE ANALYSIS OF ALTERNATIVES	
5.1	Threshold Criteria	
5.2	Balancing Criteria	
5.2.1	Long-Term Effectiveness and Permanence	
5.2.2	Reduction of Toxicity, Mobility, or Volume Through Treatment	
5.2.3	Short-Term Effectiveness	
5.2.4	Implementability	
5.2.5	Cost	
5.2.5	Modifying Criteria	
5.3 5.4	Green Sustainable Remediation Criteria	5-0
5.4 5.4.1	Green House Gas Emissions	
5.4.1	Toxic Chemical Usage and Disposal	5-6
5.4.2	Energy Consumption	
J. 4 .J	Lifergy Consumption	5-0

5	.4.4	Use of Alternative Fuels	5-7
5	.4.5	Water Consumption	5-7
5	.4.6	Waste Generation	
5.5		Comparative Analysis Summary	5-7
6.0	RE	FERENCES	6-1
List of	f Fig	ures	
Figure	_	Site Location Map	
Figure		Site Map	
Figure	3	Bathymetry Map	
Figure		Dioxins Results Map	
Figure		Remedial Footprint Map	
Figure		Habitat Areas Map	
Figure		Conceptual Site Model	
Figure		Alternative 2: Monitored Natural Recovery	
Figure		Alternatives 3A/3B: Enhanced Monitored Natural Recovery	
Figure Figure		Alternative 4: Potentially Bioactive Zone Cap	
Figure		Alternative 5: Dredging with Thin-Layer Cover Alternative 6: Enhanced Monitored Natural Recovery with Broadcast Amendmen	ıt
List of	f Tab	les	
Table	1	Statistics for Select Sediment Sample Parameters	
Table		Contaminants of Concern Summary	
Table		Technologies Screening Summary	
Table		Alternatives Summary	
Table		Cost Estimate – Alternative 2: Monitored Natural Recovery	
Table		Cost Estimate – Alternatives 3A/3B: Enhanced Monitored Natural Recovery	
Table		Cost Estimate – Alternative 4: Potentially Bioactive Zone Cap	
Table		Cost Estimate – Alternative 5: Dredging with Thin-Layer Cover	
Table		Cost Estimate – Alternative 6: Enhanced Monitored Natural Recovery with Broad	cast
Table		Amendment Present Worth Calculations	
Table		Comparative Analysis Summary – Threshold, Balancing, and Modifying Criteria	
Table		Comparative Analysis Summary – Green Sustainable Remediation Criteria	
		Numerical Comparative Analysis Summary	
List of	f App	pendices	
Appen	dix A		
Appen		•	
Appen			
Appen			
Appen			
Appen	aix F	Draft Benchscale Treatability Testing Report, February 2020	

Acronyms and Abbreviations

%	percent	mg/kg	milligrams per kilogram
	micrograms per kilogram	MNR	Monitored Natural Recovery
	2,3,7,8-tetrachlorodi-benzo-p-	MPCA	Minnesota Pollution Control
	dioxin		Agency
AC	activated carbon	NCP	National Oil and Hazardous
amsl	above mean sea level		Substances Pollution
AOC	area of concern	TEO/1	Contingency Plan
ARAR	Applicable or Relevant and	ng TEQ/kg	nanograms toxic equivalency per kilogram
	Appropriate Requirement	na/ka	nanograms per kilogram
Bay West	Bay West LLC		National Pollutant Discharge
BUI	beneficial use impairment	NEDES	Elimination System
CAD	confined aquatic disposal	O&M	operation and maintenance
CDF	confined disposal facility		Outstanding International
CERCLA	Comprehensive Environmental	011111	Resource Water
	Response, Compensation, and	PAH	polycyclic aromatic hydrocarbon
055	Liability Act		potentially bioactive zone
	Code of Federal Regulations		polychlorinated biphenyl
	chapter or chapters		Remedial Action Objective
	contaminant of concern		Remedial Action Plan
	construction quality assurance		Risk-Based Site Evaluation
	conceptual site model		Resource Conservation and
CUL			Recovery Act
	Data Gap Investigation	RI	remedial investigation
dioxins	polychlorinated dibenzo-p-		reasonable maximal exposure
DD 0	dioxins/dibenzofurans		Record of Decision
	diesel range organics	ROM	rough order of magnitude
EA	EA Engineering, Science, and Technology, Inc., PBC		residual range organics
EMNID	Enhanced Monitored Natural		Sediment Assessment Area
CIVINK	Recovery		State Disposal System
FERC:	Federal Energy Regulatory		St. Louis River
1 LIVO	Commission		St. Louis River/Interlake/Duluth
FFS	Focused Feasibility Study		Tar
	granular activated carbon	SOW	Statement of Work/Cost Estimate
	Greenhouse Gas	SQT	sediment quality target
	Great Lakes Initiative	SSHP	Site Safety and Health Plan
	Great Lakes Legacy Act		Sediment Screening Value
	Green Sustainable Remediation		to be considered
	institutional control	TEF	toxicity equivalence factor
	Interstate Technology and		toxic equivalency
	Regulatory Council		total organic carbon
IZ	=		treatment, storage, and disposal
	Minnesota Department of Health	U.S	•
	Minnesota Department of Natural		Uniform Environmental
	Resources		Covenants Act
MERLA	Minnesota Environmental	UMD	University of Minnesota Duluth
	Response and Liability Act		-

Focused Feasibility Study Thomson Reservoir, Carlton, Minnesota

USACE	United States Army Corps of	WCA	Wetland Conservation Act
	Engineers	WDNR	Wisconsin Department of Natural
USC	United States Code		Resources
USEPA	United States Environmental	WLSSD	Western Lake Superior Sanitary
	Protection Agency		District

1.0 INTRODUCTION AND BACKGROUND

The St. Louis River (SLR), located on the border between Minnesota and Wisconsin, is the second-largest United States (U.S.) tributary to Lake Superior and has a special significance in the region. The lower estuary empties into the Duluth-Superior Harbor, the largest freshwater seaport in North America. It serves as a geographic boundary for Wisconsin and Minnesota, and provides regional shipping access to Lake Superior.

Development along the SLR over the past 130 years has contributed to contaminated sediments. In 1987, concerns over environmental quality conditions prompted the designation of 73 miles of the lower SLR, which includes the segment from Cloquet, Minnesota, to the Duluth/Superior Harbor, as 1 of 43 Great Lakes Areas of Concern (AOCs). The Minnesota Pollution Control Agency (MPCA) and Wisconsin Department of Natural Resources (WDNR) worked together to divide the SLR AOC into Sediment Assessment Areas (SAAs) for the purposes of evaluation and prioritization of remediation and restoration activities. Contaminated sediments have been identified and characterized through several studies that included the collection and analysis of sediments and biota samples throughout the AOC.

Historical sediment contamination in the SLR AOC has resulted in impaired uses, including degradation of bottom-dwelling invertebrate communities, increased incidence of fish tumors and other abnormalities, fish consumption advisories, and restrictions on dredging, resulting in nine beneficial use impairments (BUIs; MPCA, 2008). BUIs are a change in the chemical, physical or biological integrity of the Great Lakes system sufficient to cause any 1 of the 14 established use impairments, or other related uses, such as the microbial objective for waters used for body contact recreational activities (joint commission). The MPCA and WDNR are currently working together to implement a comprehensive long-term plan to restore beneficial use and delist BUIs in the SLR AOC. Many of the BUIs in the AOC are linked to the presence of sediment contaminants. Some sediment-derived contaminants also appear suspended in the water column and are carried by the SLR to Lake Superior.

As identified in the SLR Remedial Action Plans (RAPs): RAP Stage I, MPCA and WDNR, 1992; and RAP Stage II, MPCA and WDNR, 1995; and later proven with testing, the Thomson Reservoir (Site), SAA #99, located northeast of Carlton, Minnesota (**Figure 1**), is potentially contributing to several impairments in the SLR AOC:

- Restrictions on dredging; and,
- Degradation of the benthos environment.

As recommended by the RAPs, areas that are contributing to river sediment impairments should be addressed through remedial activities. According to the MPCA, it is recommended by many programs that toxic substances be reduced within the SLR AOC. Removing or isolating the contaminated sediments from the surface water/sediment interface will help in the reduction of the impaired water resulting from bioaccumulative toxins in the SLR AOC. Removing or isolating contaminated sediments includes the SLR estuary and harbor, and upstream sources identified as possible contributors.

This FFS has been prepared to evaluate remedial alternatives for contaminated sediment at the Site. The scope of this FFS does not consider alternatives for any other matrix such as soil, surface water, or groundwater that may be impacted at the Site.

This report has been developed pursuant to the Bay West LLC (Bay West) Master Contract No. 63186 and MPCA Contract Work Order No. 3000026021, dated February 25, 2020, and accompanying the Scope of Work/budget (SOW) for the Site. Funding to complete the FFS for

the Site comes from the U.S. Environmental Protection Agency (USEPA), Great Lakes Legacy Act (GLLA) and state funding through the Minnesota Legacy Fund.

This FFS has been written in general accordance with the MPCA Site Response Section Guidance Document "Draft Guidelines on Remedy Selection" (MPCA, 1998), the Minnesota Environmental Response and Liability Act (MERLA), the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations (CFR) Part 300, along with other Minnesota and federal rules, statutes, and guidance.

1.1 Report Organization

Section 1.0 presents general background information including the Site history and a summary of current Site conditions. **Section 2.0** discusses Applicable or Relevant and Appropriate Requirements (ARARs) and summarizes Remedial Action Objectives (RAOs) to provide the framework for alternative evaluations for the Site. **Section 3.0** and **Section 4.0** present alternatives descriptions and the NCP remedy selection criteria used in this FFS. **Section 5.0** presents an evaluation of alternatives against standards and criteria. References are presented in **Section 6.0**.

1.2 Site Location and Current Use

The Thomson Reservoir was constructed in 1908 and consists of multiple earthen or concrete dams used to control water flow through the south portion of the Site. Water enters the Site from the northwest and the northeast, from the SLR and the Midway River, respectively. Water discharges from the Site primarily through sluiceways to the Forbay Channel for power generation and is also routed through Dams #3 and #4, which empty to the SLR immediately upstream of the Highway 210 Bridge (Schubauer-Berigan, M., and J.L. Crane (Schubauer-Berigan and Crane), 1996). **Figure 2** displays the Site, current Site conditions, historical sampling locations, and historic stream paths pre-reservoir construction (provided by Minnesota Power in an email dated February 25, 2016).

The Site dams function as hydroelectric and water level control dams and are operated by Minnesota Power. Minnesota Power stated in an email, February 23, 2016, that the normal operating water level range for the Site is 1059.38 to 1069.38 feet above mean sea level (amsl). Water level range varies due to multiple water uses on Site. Uses include storing water for electricity generation during periods of peak demand, maintaining Minnesota Department of Natural Resources (MDNR) minimum flow requirements from Dams #3 and #4 to the SLR to protect aquatic habitat (Schubauer-Berigan and Crane, 1996), and to enhance whitewater recreation during periods of low water flow.

Under normal operations, the Site has an average surface area of approximately 330 acres (excluding the islands). The Site is the second slow water reservoir downstream from Cloquet, Scanlon Reservoir is the first. As the SLR and Midway River discharge to the Site, flow slows due to channel expansion, resulting in the deposition of sediments. Since its construction, fine sediment buildup has occurred behind the dams and depositional areas within the reservoir basin. The City of Carlton and Town of Thomson are located adjacent to the Site. Carlton is located southwest and Thomson is located south of the Site. North and east of the Site are predominantly forested lands (**Figure 2**).

The Site is immediately downstream of historical industrial waste water discharges associated primarily with the municipal discharges, building materials manufacturing, and paper manufacturing. These waste streams were removed from the SLR in 1979 when they were rerouted to Western Lake Superior Sanitary District (WLSSD). Possible non-point sources

contributing to Site contamination include landfills, runoff, and atmospheric sources (Schubauer-Berigan and Crane, 1996).

All the property directly bordering the Site is owned by Minnesota Power. Minnesota Power, in cooperation with the University of Minnesota Duluth (UMD) Outdoor Program, provides a carry down access point at UMD Outpost Pier, for paddlers at the Site. The UMD Outpost Pier is located east of Dams #3 and #4, approximately 500 feet north of Highway 210.

The City of Carlton and Town of Thomson merged in 2015. They are currently in the process of creating figures that map the storm sewer for the entire area. After verbally discussing the location of storm sewer discharges in both cities with Derek Wolf (City of Carlton, Public Works Superintendent) on January 13, 2016, it was determined that neither city discharges to the Site (**Appendix A**). Both cities are located at elevations below the Site and discharge to the SLR below the dam.

1.3 Site History (From Schubauer-Berigan and Crane, 1996)

Since 1908 to the present, the Site has been used for hydroelectric generation. Historical discharge directly to the SLR, upriver of the Site, includes the following: municipalities, building materials manufacturing, paper manufacturing, and match manufacturing. There is little detail available on the chemical constituents of the waste streams of the abovementioned discharges; available data for two facilities (the building materials manufacturer and the paper manufacturer) are discussed below.

The building materials facility manufactured acoustical tile and a cushioning material in automobile dashboards, shoes, and other items. Select analytical data was available from the waste stream for 1975 and 1977. The 1975 effluent data showed elevated metals and phenols (sample was not analyzed for mercury) and 1977 effluent data showed elevated mercury (sample was not analyzed for polychlorinated biphenyls [PCBs] and polychlorinated dibenzo-p-dioxins/dibenzofurans [dioxins]), when compared to current water quality data.

The paper manufacturer began operation in 1928, located half a mile downstream of Cloquet. Wastewater was discharged from this facility for approximately 50 years. Wastewater over the course of the plants operation went through various forms of treatment, some more protective than others. Effluent from the paper manufacturer was analyzed from two outfalls in 1975 and 1977 for heavy metals and phenols. For the 1975 and 1977 effluent analytical data, mercury and phenols were elevated when compared to current water quality standards. Mercury levels in the effluent from 1950 to 1960 were likely higher than levels observed in the 1975 and 1977 effluent based on the widespread use of mercury as a fungicide in the paper industry at the time.

Dioxins and PCBs were not measured in the paper manufacturer effluent during the 1975 and 1977 sampling events. In 1987, due to increased concern over dioxins contamination, effluent from the paper manufacturer (which had begun discharging to WLSSD in 1979) and WLSSD influent were analyzed for dioxins. Dioxins refer to a broad class of compounds that vary in toxicity, to minimize sampling completed for the effluent and influent 2,3,7,8-tetrachlorodi-benzo-p-dioxin (2,3,7,8-TCDD), the most toxic dioxin congener, was analyzed. From the results of these analyzes pre-1979 dioxins discharges to the SLR can be inferred. The concentration of 2,3,7,8-TCDD in suspended solids from WLSSD influent was 260 nanograms/kilogram and effluent concentrations were 620 nanograms/kilogram, corresponding with estimates that the paper manufacturer contributes to nearly half of WLSSDs influent stream.

Potential nonpoint sources upgradient of the Site may include the following: landfills/hazardous waste sites, agricultural/forestry runoff, stormwater discharge, unsewered community discharge, recreation and commercial activity, spills, and atmospheric deposition.

Based on available analytical information and known contributor processes potential contaminates in the Site may include mercury, heavy metals, phenols, and dioxins.

1.4 Site Characterization

1.4.1 Site Geology

1.4.1.1 Regional Geology

Regional geology in the Duluth area consists primarily of materials deposited during the last glaciation, and more recently as river sediment, overlying Precambrian igneous and sedimentary bedrock. These materials consist of silts, sands, and gravels that were deposited as the glaciers retreated northward. Fine grained sediment, primarily red silt and clay, was deposited in the ancestral glacial Lake Duluth. This red silt and clay occurs over much of the lower elevations in the Duluth area.

Bedrock units underlying the region consist of olivine gabbro and anorthositic gabbro members of the Duluth Complex, and the sedimentary units of the Fond du Lac Formation. The Duluth Complex is lower Precambrian, and the Fond du Lac Formation is upper Precambrian in age. The gabbroic members of the Duluth Complex form the hills to the west of the SLR and Lake Superior shore (MPCA, 1995).

1.4.1.2 Site Specific Geology (Boerboom, 2009)

Surficial geology identified at the Site consists of Bedrock outcrop, Terrace deposits (sand and gravelly sand), and floodplain alluvium (unbedded or thinly interbedded silt, clay, sand and organic-rich material). Terrace deposits at the Site are further described as areas where the historic path of the SLR, intensified due to significant glacial discharge contributions, eroded the landscape exposing bedrock. When river discharges decreased thin deposits of sand and gravel accumulated at the Site, peat developed over top of these deposits.

Bedrock geology at the Site is described as Thomson Formation, graphitic slate and metagraywacke. Bedrock is gray with rhythmically interbedded argillite, siltstone, and greywacke metamorphosed under lower greenschist facies conditions. Strata are folded by nearly upright, open, regional F2 folds; folding has produced a single, subvertical axial-planar slatey cleavage (Boerboom, 2009). Bedrock outcrops are identified throughout the Site. Depth to bedrock in the area is between 0 to 50 feet below grade.

Bedrock geology strongly shapes the topography and bathymetry of the Site. Bedrock outcrops on Site have contributed to the formation of multiple islands and have influenced hydrodynamic flow through the Site. These influences impact sediment distributions and therefore bathymetry on Site.

1.4.2 Site Hydrology

The regional groundwater flow system in the area generally flows from the Minnesota and Wisconsin uplands and discharges to Lake Superior and the SLR estuary.

The Site is located in the SLR Watershed. Although a site-specific groundwater study has not been performed, local groundwater flow in surficial sediments and bedrock is generally depicted in the County Atlas Series (Berg, 2011), Atlas C-19, Part B, Plate 7 and Plate 9, respectively. Generally groundwater in surficial sediments and bedrock north of the Site flows towards the SLR and Midway River, emptying into the Site. Groundwater in surficial sediments and bedrock

southwest of the Site flows towards the Site. Groundwater in surficial sediments and bedrock southeast of the Site flows southeast away from the Site and towards the SLR.

Historic sediment cores and contaminant profiles within the Site, in comparison to those at the Forbay and Fond du Lac Reservoirs (located downstream), indicate that the Site serves as a primary catchment basin for sediment and associated contaminates (Schubauer-Berigan and Crane, 1996). As the St. Louis and Midway Rivers enter the reservoir and expand, flow rates decrease allowing sediment and any associated contaminants to drop out, accumulating in the Site.

Two historic flooding events, which occurred in 1990 and 2012, likely impacted sediment depth and distribution within the Site. The 1990 flooding event as described by Schubauer-Berigan and Crane (1996) impacted sediment contamination in the Site by dilution. Contaminate dilution would have occurred when nearby clean subsurface soils were eroded by the flood and subsequently deposited into the Site. The 2012 event likely would have had similar impacts.

Another potential impact of flooding would be basin floor scouring. As flood waters enter the Site from the SLR and Midway River, abnormally high flow rates could cause the resuspension of contaminated sediments. These sediments could either be moved or deposited elsewhere in the Site or could be pushed out of the Site entirely, discharging through the SLR and Forbay outfalls.

Both sediment deposition and scouring play a role in the hydrodynamics of the Site, particularly during large scale flood events. Sediment deposition is likely the dominant hydrodynamic force acting at the Site based on Site characteristics including sediment drop out previously described and the suppression of flow path due to damming. Sediment deposition and scouring act together during high-flow events to produce a mixing effect, resulting in sediment dilution.

1.4.3 Nature and Extent of Contamination

Several studies have been conducted at the Site over the past 21 years and have included analysis of chemical compounds in sediments and fish. These studies are identified in **Section 1.4.3.1** and the results of the 2014 sample event summarized in **Table 1**. Sample results by sample location are presented in **Appendix B**. This section also presents a discussion of the contaminants of concern (COCs) and the known extent of sediment contamination within the Site.

1.4.3.1 Previous Reports

The following is a list of previous reports and associated studies conducted at the Site that included the collection and analysis of sediments and biota:

- MPCA and WDNR, 1995, "The St. Louis River System Remedial Action Plan, Progress Report Stage I." The report summarizes sediment and fish sampling completed in the Thomson Reservoir. One bedrock sediment sample, several short sediment cores and fish were collected from the Site. Mercury, PCBs, and 2,3,7,8-TCDD levels were analyzed.
- Schubauer-Berigan and Crane, 1996, "Preliminary Contaminant Assessment of the Thomson, Forbay, and Fond Du Lac Reservoirs"; USEPA, Region V, Great Lakes National Program Office; Chicago, Illinois. Three Site sediment cores and 17 fish tissue samples were analyzed. Analysis performed includes dioxins, PCBs, mercury, and Cesium 137 (to determine sediment deposition rates) for sediments and PCBs and Mercury for fish tissue.
- Minnesota Power, 2011, "2011 Thomson Reservoir Sediment Sampling." Six Site sediment cores were collected. Mercury analysis was completed on the samples.
- EA Engineering, Science, and Technology, Inc., PBC (EA), 2015, "Site Characterization Report, Assessment of Contaminated Sediment, St. Louis River Site Characterization, St.

Louis River and Bay area of concern (AOC), Duluth, Minnesota"; USEPA, Great Lakes National Program Office, Chicago, Illinois, EP-R5-11-10. One sediment core and one surface sediment sample were collected from 24 Site locations. Analytical completed includes: polycyclic aromatic hydrocarbons (PAHs), diesel-range organics (DRO)/residual range organics (RRO), PCB Aroclor, dioxins, pesticides, and metals.

Thomson Reservoir Technical Memorandum, Thomson Reservoir, Carlton, Minnesota, June 2017 (2017 Technical Memorandum) - In 2016, data was collected to support previous investigations by addressing data gaps identified by the MPCA to investigate the extent and volume of contaminated sediment within Thomson Reservoir, and to evaluate risks to human health and the environment due to potential impacts by the benthic community (2016 Data Gap Investigation [DGI]). Sediment samples were collected and analyzed for Site COCs to gather additional chemical data for delineation of extent and depth of contamination at the Site. Mercury sediment concentrations exceeded Midpoint and Level 2 SQTs in 3 samples (10 percent [%]), indicating that mercury contamination appears to be occurring throughout the Site. Dioxin/furan sediment concentrations exceeded Midpoint and Level II SQTs in 10 samples (32%) focused within the northeastern portion and western half of Thomson Reservoir. Mercury exceedances were observed at depth in the 0.15-0.5 and 0.5-1.0 meter intervals and dioxin/furan exceedances were observed in the 0.0-0.15, 0.15-0.50, and 0.5-1.0 meter intervals indicating that deposition of contaminated sediment occurred historically and may still be occurring, or that sediment deposition in this area is minimal.

In situ macroinvertebrate tissue samples (macrobenthos and crayfish) and ex situ laboratory bioaccumulation testing was completed. Benthic macroinvertebrates do not appear to bioaccumulate mercury due to exposure to Site sediments significantly more compared to reference samples, and it appears that mercury would not migrate up the food chain to higher trophic levels significantly more than reference sites. Benthic macroinvertebrates may bioaccumulate methylmercury due to exposure to Site sediments significantly more compared to reference samples; however, there is limited data for methylmercury concentrations in sediment at the Site and additional evaluation of methylmercury is required to determining if methylmercury is a COC. Benthic macroinvertebrates appear to bioaccumulate dioxins/furans due to exposure to Site sediments significantly more compared to reference samples, indicating that dioxins/furans may migrate up the food chain to higher trophic levels significantly more than reference sites.

Fish tissue collection and testing of eight fish species within trophic Level 2 through 4, was completed by the MCPA, at the Site and reference site. Bioconcentration of mercury and methylmercury appear to increase as trophic level increases, however, only methylmercury appears to be doing so more at the Site compared to the reference site. Bioconcentration of dioxins/furans appear to increase as trophic level increases and dioxins/furans are bioconcentrating significantly more at the Site compared to the reference site.

Based on the sediment and tissue testing results, dioxins/furans should be retained as a COC for the Site. Methylmercury may be bioconcentrating in tissue at the Site, however, information gathered to-date has not been adequate to indicate methylmercury should be considered a COC. The 2017 Technical Memorandum is included in **Appendix C**.

 Minnesota Power and Fond du Lac Natural Resources collected water quality and fish tissue data from 2010 through 2015 at multiple SLR reservoirs and flowages to better understand the relationship between water quality and the mercury methylation rates of game fish in SLR water bodies. Young-of-year perch were sampled in Thomson Reservoir in 2010 and 2015, which had mercury tissue concentrations slightly higher than the media for all sites in the study. Thomson Reservoir water samples also had the highest total mercury, color, nitrogen, dissolved organic carbon, total organic carbon, and sulfate compared to all sites in the study (Minnesota Power, 2018).

 A literature review was completed by the United States Army Research and Development Center. The review focused on how a remedy involving AC will impact the potential for mercury toxicity and bioaccumulation. Review of available research indicated either AC is a useful sorbent for reducing the potential for mercury bioaccumulation, or that AC is not effective at sorbing mercury; however, AC does not appear to increase the potential for mercury toxicity and bioaccumulation in water or sediments (U.S. Army Research and Development Center, 2020).

As described in the following subsections, results of these investigations indicated the presence of sediment impacts throughout the Site. Chemical compounds found within Site sediments include PAHs, PCBs, mercury, and dioxins. As no official remedial investigation (RI) was conducted for the Site, these chemical compounds and their concentrations in sediments were evaluated as part of this FFS and COCs for the Site determined as detailed in **Section 1.4.3.3**.

1.4.3.2 Screening Criteria

Numerical sediment quality targets (SQTs), adopted for use in the SLR AOC to protect benthic invertebrates, can be used throughout Minnesota as benchmark values for making comparisons to surficial sediment chemistry measurements. Level I and Level II SQTs for the protection of sediment-dwelling organisms are available for 8 trace metals, 13 individual PAHs, total PAHs (all 13 priority PAHs), total PCBs, and 10 organochlorine pesticides. In addition, Level I and Level II SQTs for dioxins were adopted for the protection of fish, as insufficient information is available for sediment-dwelling organisms. The dioxins SQT is based on the dioxin toxic equivalency (TEQ) value, which incorporates results of individual dioxin and furan congeners and toxicity equivalence factors (TEFs) for the protection of fish, denoted as TEQ Fish. SQTs are highly useful when evaluating risk for a specific compound or a group of compounds (i.e., total PCBs and total PAHs).

Contaminant concentrations below the Level I SQTs are unlikely to have harmful effects on sediment-dwelling organisms (i.e., benthic invertebrates). Contaminant concentrations above the Level II SQTS are more likely to result in harmful effects to benthic invertebrates (MPCA, 2007). Based on conversations with the MPCA, a qualitative comparison value midway between the Level I SQTs and Level II SQTs (i.e., Midpoint SQT) were used as criteria to identify, rank, and prioritize sediment-associated COCs within the Site.

Sediment Screening Values (SSVs) were developed to provide a human health-based toxicity value specifically related to sediment for the U.S. Steel Superfund site in the SLR (Minnesota Department of Health [MDH], 2013). The SSVs were developed using reasonable maximal exposures (RMEs) specific to the U.S. Steel site and the Lower SLR. The Updated Human Health Screening Values for St. Louis River Sediments: U.S. Steel Site, dated April, 2013, describes the updated SSVs utilized in this report. SSVs were compared to select PAHs, eight trace metals, and total dioxins (as TEQs for human health). Chemical concentrations in water-covered sediments at or below the SSVs are considered safe for the general public; however, chemical concentrations in sediments exceeding the SSVs should not be considered unsafe because the SSVs were developed using conservative measures of exposure, bioavailability, and toxicity. Based on ongoing ambient concentration studies, some SSVs likely approach, or are less than ambient concentrations in sediment, including SSVs for mercury, benzo(a)pyrene equivalents, PCBs, and dioxins. Further, the SSVs do not include RMEs specific to the Site and are not intended to be used as sediment cleanup values; therefore, SSVs will not be used to identify,

rank, and prioritize sediment-associated COCs within the Site. Instead, the respective Midpoint SQT will be used to identify, evaluate, and prioritize sediment-associated COCs within the Site.

1.4.3.3 Contaminants of Concern

Previous studies conducted within the Site found varying levels of PAHs, PCBs, mercury, and dioxins within sediments. In order to assess the most current conditions at the Site, PAH, PCB, mercury, and dioxins results from the 2014 EA investigation (EA, 2015) and mercury/methylmercury and dioxins data from the 2016 DGI were assessed.

Sediment samples were collected from varying depths within the sediment cores in the 2014 EA Investigation. Because of varying core lengths and recovery, sediment sample collection depth was not consistent between sample locations. In order to spatially evaluate analytical results and sediment screening criteria comparisons between sample locations sediment samples were categorized into two depth intervals. The selected intervals allow for relatively easy assessment of sediment quality. The various selected intervals are as follows:

- 0.0 to 0.15 meters
- 0.15 to 0.50 meters
- 0.50 to 1.00 meters
- >1.00 meter

Each sediment sample was categorized into one of the two intervals if at least 25% of the sample length was within an interval. For example, if a sample was collected from 0.30 to 0.55 meters below the sediment surface, the sample would be categorized in the 0.15- to 0.50-meter category. Occasionally, at least 25% of a sample was collected within two intervals. For example, if a sample was collected from 0.10 to 0.30 meters, 25% of the upper portion of the sample is within the 0.0- to 0.15-meter interval, and 75% of the lower portion of the sample is within the 0.15- to 0.50-meter interval. In these cases, the sample was considered in the discussion and evaluation of both the 0.0- to 0.15-meter interval and the 0.15- to 0.50-meter interval. The 2014 data for PAH, PCB, mercury, and dioxins was used to develop statistical summaries for specific depth intervals sampled at the site.

In order to examine all data in a single data set, data from each of the four intervals were combined into a single group called "All Intervals". Statistical summaries of the 2014 data are presented in **Table 1**.

PAH compounds were detected at all sampled intervals and had a mean total concentration of 602 micrograms per kilogram (μ g/kg), well below the Level I SQT of 1,600 μ g/kg. Four of the 28 samples had PAH concentrations exceeding the Level I SQT; no samples exceeded the PAH Midpoint or Level II SQTs. PCB compounds were also detected at all sampled intervals and had a mean total concentration of 27.8 μ g/kg, less than the Level I SQT of 60 μ g/kg. Eight of the 57 PCB samples collected exceeded the Level I SQT; no samples exceeded the PCB Midpoint or Level II SQTs. These compounds were infrequently detected in surface sediments (e.g., 0.0-to 0.15-meter interval) and concentrations generally increased with depth. Due to the low percentage of Level I exceedances (14% for both PAHs and PCBs) and no exceedances of the Midpoint or Level II SQTs in the samples, PAH and PCB compounds will not be considered COCs for the Site.

Mercury was detected at all sampled intervals and had a mean concentration of 0.25 milligrams per kilogram (mg/kg), greater than the Level I SQT of 0.18 mg/kg. The Level 1 SQT was exceeded in 59 of the 165 mercury samples collected, and 16 samples exceeded the Midpoint SQT; only 7 mercury samples exceeded the Level II SQT. Similar to PAHs and PCBs, mercury concentrations

increased with sample depth. Mercury data generated during the 2014 and 2016 investigations is unsupportive of historic data and investigative conclusions for the Site that identified mercury as a contaminant of interest; however, results of the 2014 and 2016 investigations indicate that mercury concentrations at the Site have changed. Due to a low percentage of SQT exceedances within the upper 0.15 meters of sediment (+6% Midpoint SQT) and because the apparent primary source of mercury within the Site is likely atmospheric/environmental deposition within the watershed, mercury is not a COC for the Site. Methylmercury at the Site was evaluated and has been determined to not be considered a COC for the Site. This is further discussed in **Section 1.4.3.1**.

Dioxins were primarily sampled over the 0.0- to 0.15-meter and 0.15- to 0.50-meter intervals. The average concentration of dioxins over these intervals was 33.59 nanograms per kilogram (ng/kg), well above the Level I SQT of 0.85 ng/kg, the Midpoint SQT of 11.20 ng/kg, and the Level II SQT of 21.50 ng/kg. Exceedances of the SQTs occurred for both sampled intervals. Due to the large percentage of SQT exceedances within both intervals and numerous exceedances of the Midpoint SQT, Level II SQTs, dioxins are a COC for the Site. Spatially, dioxins Midpoint SQT exceedances appear to be deposited in four areas within the Site, primarily in low energy areas of the western and eastern extents of the reservoir, as well as low energy areas between islands located just south of the SLR entry point into the Site. A comprehensive assessment of the spatial distribution of dioxins, both vertical and horizontal, is limited due to available sample size. Additional dioxins sediment sampling and correlative studies would provide a more complete assessment of dioxins distribution on Site; however dioxins are considered a COC for the Site.

Table 1 presents a summary of historical analytical data by sample interval evaluated against the SQTs and also presents the Level I SQTs, Midpoint SQTs, Level II SQTs, and general statistics for PAHs, PCBs, mercury, and dioxins. **Table 2** presents a summary of COCs. **Figure 5** presents the estimated areas of COC contaminated sediment that may exceed the Midpoint SQT and Level II SQT.

1.4.3.4 Depth and Volume of Contaminated Sediment

The depth and volume calculations and assumptions discussed below are based on a bathymetric survey of the Site completed in in 2016 by Minnesota Power (**Appendix D**; **Figure 3**) and analytical data collected in 2014 and 2016 for the Site Characterization Report (EA, 2015). As previously described, a flooding event occurred in 2012, which may have impacted sediment distributions, as can sediment deposition over time. Bay West used only the 2014 Site Characterization Report (EA, 2015) (**Appendix B**) and 2017 Technical Memorandum (**Appendix C**) to ensure that data reflects recent impacts to sediments from flooding and deposition.

Analytical data from the Site Characterization Report indicates that COC (dioxin)-contaminated sediment is present between 0 to 0.50 meters below the sediment surface, but that concentrations are generally substantially greater in the 0.15- to 0.50-meter interval when compared to the 0.0- to 0.15-meter interval. Lower concentrations in surface sediments indicate that sources contributing COCs to the Site are no longer present. This statement agrees with the conceptual site model (CSM) in which the primary contributor to historical COC impacts to the Site—building materials and paper manufacturers upstream—stopped discharging to the SLR in 1979 and began discharging to WLSSD. **Figure 4** presents the results of the most recent sample event conducted in 2014 compared to established SQTs for COCs. **Figure 5** identifies specific areas of concern within the Site based on action level exceedances at any of the sampled depth intervals and kriging of sample results. It is estimated that approximately 290,000 to 380,000 cubic yards of sediment exceeding the Midpoint SQT are present within the Site, assuming contaminated sediment thickness ranging from 0.35 to 0.50 meters, respectively. One data point was collected

during the 2016 DGI in the 0.50- to 1.0-meter interval. Dioxin results in this sample exceeded the Level II SQT, which indicated that dioxin concentrations may be elevated deeper than 0.50 meters; therefore, the vertical extent of contamination may be significantly greater than anticipated. The 1996 preliminary assessment report (Schubauer-Berigan and Crane, 1996) also indicated that dioxins were present at depth greater 0.5 meters; however, it is unknown how these deposits were affected by the 2012 flood event. Additional sampling would be required to refine the vertical extent of current COC impacts within Site sediments.

1.4.4 Exposure Pathways

Exposure pathways represent the linkages among contaminant sources, release mechanisms, exposure pathways and routes, and receptors to summarize the current understanding of the risks to human health and ecological receptors due to contamination. A "complete" exposure pathway means that evidence exists that a COC may be released from a source and may be transported into and through the environment to an exposure point where a receptor is assumed to be present.

The following sections provide greater detail on the human health and ecological exposure pathways.

1.4.4.1 Human Health Exposure Pathways

The Site is in a rural area adjacent to the City of Carlton and the Town of Thomson. Access to the reservoir is limited with much of the surrounding land under ownership by Minnesota Power. No official public swimming beaches are located on the Site, although swimming, and/or wading are not prohibited by the State or Minnesota Power. The portion of the SLR directly upstream of Thomson Reservoir is a popular kayaking route with a carry-down access point at the UMD Outpost Pier and a Kayak and Canoe Center (UMD Kayak and Canoe Center Institute Outpost) located on the southern shore of the Site slightly east of Dams #3 and #4. Kayaking, canoeing, rafting, boating, and fishing occur at the Site. Residential homes are located adjacent, but with no direct access to the Site in and around the City of Carlton and the Town of Thomson. Exposure from contaminated sediments to the public is possible but limited given the depth and location of contaminated sediments the Site. All information to date indicates that the proposed future use of the Site is consistent with the current use.

Fish consumption advisories are in effect for selected fish species in the SLR AOC due to elevated concentrations of PCBs and mercury found in fish tissue (Minnesota Department of Health [MDH], 2000). The State of Minnesota does not have guidance for a dioxins-specific fish consumption advisory; however, current fish consumption advisories for PCBs and mercury are expected to also be protective of potential dioxin concentrations found in fish at the Site.

Dioxins are generally non-volatile and not emitted from the waters of the Site; therefore, the inhalation exposure pathway is considered incomplete for human receptors.

Based on the Site conditions, accessibility, and current advisories discuss above, human health exposure pathways are considered incomplete.

1.4.4.2 Ecological Exposure Pathways

Contaminated sediments within the Site are located within the Potentially Bioactive Zone (PBAZ). The PBAZ is the area within the sediment where significant biological activity may be present. There is no definitive scientific consensus on the maximum depth to which flora and fauna penetrate sediment, but the MPCA's selection of an appropriate PBAZ thickness is based on a weight-of-available-evidence approach and professional opinion. Due to the large uncertainty in

this type of analysis, the PBAZ incorporates an element of conservatism (i.e., greater depth) to provide an additional safety factor.

Three designated PBAZ thicknesses are applicable in the habitat, water depth, and substrate types, as described as follows (Bay West 2015):

Backshore/Foreshore Habitat Zone (Shoreline, Riparian and Wet Transition Areas) (Minimum PBAZ thickness = 1.20 meters)

Applicable in:

- Shoreline/beach areas
- Sediment flats that are exposed due to periodic low water levels or seiche
- Open water/wet transition areas
- Areas potentially available to deep burrowing mammals
- Areas potentially available for deep rooted herbaceous and/or woody plants

2. Emergent Aquatic Vegetation Habitat Zone (off the Shoreline)

(Minimum PBAZ thickness = 1.00 meter)

Applicable in:

- Emergent aquatic vegetation areas
- Areas with potential for transitioning to emergent aquatic vegetation habitat (i.e., areas with substrates and water depths conducive to establishment of emergent vegetation now or in the future)
- Areas potentially susceptible to deep burrowing amphibians, reptiles or crustaceans

3. Submerged Aquatic Vegetation and Deep Water Habitat Zone

(Minimum PBAZ thickness = 0.50 meters)

Applicable in:

- Areas that support submerged aquatic vegetation habitat with no potential to transition to emergent aquatic vegetation or wetland habitat.
- Areas with water depths too deep to support emergent vegetation but may support benthic organisms
- Areas with a substrate not conducive to deeply rooted aquatic vegetation, wetland herbaceous or woody vegetation, or deep burrowing mammals, amphibians, or crustaceans (i.e., areas with natural rock substrate, or areas armored for erosion control or areas with root barriers or other engineering controls)

The various habitat zones found within the Site, which correspond to estimated PBAZ thicknesses for each habitat, are presented in **Figure 6**. These habitat zones indicate that, while each habitat zone exists at the Site, the submerged aquatic vegetation and deep water habitat zone accounts for a vast majority of the habitat at the Site.

Fish and other aquatic organisms accumulate some chemicals, which, based on the 2016 DGI fish tissue results, include dioxins from food and sediment that they ingest or through direct partitioning from water to biological tissues.

Complete ecological exposure pathways include the following:

- Dermal contact and incidental ingestion of contaminated sediments; and,
- Ingestion of biota that have consumed contaminated sediments.

Dioxins are generally non-volatile and not emitted from the waters of the Site; therefore, the inhalation exposure pathway is considered incomplete for ecological receptors.

Based on a comparison of the complete ecological exposure pathways and available analytical data summarized in **Section 1.4.4**, sediments with concentrations of COCs that exceed the Midpoint SQT value are considered a risk to the benthic community and the larger ecological environment, where they are found.

In summary, the analysis of the 2014 sediment data and available exposure pathways indicated that COCs are present at the Site and exposure pathways are complete; therefore, a potential risk to both human and ecological health from contaminated sediments exists at the Site.

1.4.5 Conceptual Site Model

The development of a CSM allows data obtained during ongoing investigations to be integrated in an iterative approach that increases the understanding of the physical and environmental setting of the Site and the fate and transport of COCs. This section incorporates the site history, regional hydrologic and geologic settings discussed in **Sections 1.3**, **1.4.1** and **1.4.2** with site-specific data and observations that have been collected through Site investigations, site reconnaissance, and conversations with the MPCA and Minnesota Power. The CSM provides a baseline for consideration of how remedy alternatives could be implemented to protect human and environmental health at the Site. The CSM is illustrated in **Figure 7**.

Industrial sources up river from the Scanlon and Thomson reservoir likely began contributing contaminants to the SLR as early as 1900s, as previously discussed in **Section 1.3**. These waste streams, specifically the paper manufacturing effluent discharge water, were removed from the SLR in 1979 when they were rerouted to WLSSD.

Based on the previous SLR and Site investigations, the current site conceptual model is that the Site has retained significant levels of COCs and associated sediment that washed into the Site from upstream sources. Industrial sources of COCs have been significantly reduced, if not eliminated, beginning in the 1970s with only ambient COC concentrations now entering the river and Site systems. Sediment washed in the SLR system and accumulated by the Site has gradually covered the highest levels of COCs.

Spatially, COCs appear to be concentrated in areas anticipated to be low energy environments at the Site, areas that would be subject to sediment drop out from daily flow or drop out during flood events. Impacts due to flooding as previously described likely would have increased sediment deposition to the Site, burying contaminated sediment. Lesser impacts from scouring may have played a role in sediment distribution possibly pushing sediment from the primary flow pathways in the reservoir to lower energy areas and/or out of the system back into the SLR. Receptors that are potentially exposed to COCs include the following ecological receptors:

- Emergent and submerged vegetation;
- Benthic and aquatic invertebrates:
- Mammals and birds consuming fish, benthic and aquatic invertebrates, and vegetation; and
- Undetermined receptors if future maintenance dredging is needed.

Reducing surface sediment concentrations or chemical bioavailability is the primary goal of sediment remediation processes. The deposition of cleaner sediment that buries and isolates COCs below the upper bioturbation layer reduces risk of chemical exposure to benthic receptors. A model developed by Beak Consultants (Beak, 1992) predicted that sediment deposition rates in Thomson Reservoir would be on the order of less than 1 millimeter per year. Sediment deposit rates calculated from one core from the 1996 preliminary assessment report estimated Thomson Reservoir sedimentation rates from 1954 to 1964 and 1964 to 1992 as 28 ± 8 and 50 ± 2 millimeters per year. An attempt was made to corroborate the higher core based deposition rates estimated for the Site by setting out sediment traps during the summer of 1993. However, many of the traps were found to contain nesting organisms, such as fish and crayfish and therefore, sediment accumulation in the traps could not be quantified. Therefore the sedimentation rate from the 1996 preliminary assessment report is considered a rough estimation as it is based only on one data point.

Based on estimated sedimentation rates Monitored Natural Recovery (MNR) may be a viable component of the selected remedy. Baseline characterization and predesign investigations will evaluate a wider distribution of sediment cores to further evaluate the resuspension effects of the major flood events that occurred in 1999 and 2012 and the robustness of future sediment and COC stability.

2.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS AND REMEDIAL ACTION OBJECTIVES

Remedial actions for releases and threatened releases of hazardous substances, pollutants, or contaminants must be selected and carried out in accordance with state and federal requirements. These requirements are referred to as ARARs. RAOs specify COCs, media of concern, potential exposure pathways, and remediation goals. Initially, Site remediation goals for the COCs are developed based on readily available information such as chemical-specific ARARs or other reliable information. The Site RAOs are modified, as necessary, as more information becomes available during the FFS process.

This section presents the preliminary ARARs, RAOs, and COCs to be used in the development of this FFS. The final ARARs, RAOs, and COCs will be developed by the MPCA for the Site.

2.1 Applicable or Relevant and Appropriate Requirements

This preliminary ARAR section summarizes the MPCA, MDNR, and MDH ARARs, and to be considered (TBC) criteria for aquatic sediment associated with the Site. Local and federal ARARs have also been included; however, the list may not include all applicable local and federal ARARs.

The NCP (40 CFR 300.5) defines "applicable" requirements as: "those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility citing laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site." Only those promulgated state standards identified by a state in a timely manner that are substantive and equally or more stringent than federal requirements may be applicable.

The NCP (40 CFR 300.5) further defines "relevant and appropriate" requirements as: "those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility citing laws that, while not 'applicable' to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstances at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site." Like "applicable" requirements, the NCP also provides that only those promulgated state requirements that are identified in a timely manner and are more stringent than corresponding federal requirements may be relevant and appropriate.

ARARs generally fall into one of the following three classifications:

- Chemical-specific: These ARARs are usually health- or risk-based numerical values or methodologies that, when applied to site-specific conditions, result in numerical values. These values establish an acceptable amount or concentration of a chemical that may be found in, or discharged to, the ambient environment. These requirements provide the basis for protective Site remediation levels for the COCs in the designated media.
- Location-specific: These ARARs generally restrict certain activities or limit concentrations of hazardous substances solely because of geographical or land use concerns. Requirements addressing wetlands, historic places, floodplains, or sensitive ecosystems and habitats are potential location-specific ARARs.
- Action-specific: These ARARs are restrictions on the conduct of certain activities or the
 operation of certain technologies at a particular site. Examples of action-specific ARARs
 would be regulations dictating the design, construction, and/or operating procedures for
 dredging, on-site landfilling, or capping. Action-specific requirements do not themselves

determine the cleanup alternative, but define how the chosen cleanup alternative should be achieved.

In addition, criteria, advisories, guidance, and proposed standards developed by federal and state environmental and public health agencies that are not legally enforceable, but contain helpful information, are collectively referred to as TBCs. TBCs can be helpful in carrying out selected remedies or in determining the level of protectiveness of selected remedies. TBCs are meant to complement the use of ARARs, not compete with or replace them. TBCs are included, where appropriate, in the chemical-, location-, and action-specific discussions.

Several federal and state laws govern or provide the framework for remedial actions. Remedial actions must comply with substantive portions of these laws or acts, which were also reviewed during the ARAR development process. The following provides a summary of laws and acts that do not readily fall into one of the chemical-, location-, or action-specific classifications, but are applicable to the Site:

ARAR/TBC	Citation	Description/Potential Application
CERCLA	42 United States Code (USC) §§9601 et seq.	Federal Superfund Law.
NCP	40 CFR Part 300	Provides organizational structure and procedures for preparing for and responding to discharges of oil and releases of hazardous substances, pollutants, and contaminants.
MERLA	Minn. Stat. §§115B.01 to 115B.20	State Superfund Law.
Water Pollution Control Act	Minn. Stat. chapter (ch.) 115	Administration and enforcement of all laws relating to the pollution of any waters of the state.
Duty to Notify and Avoid Water Pollution	Minn. Stat. §115.061	Requires notification and recovery of discharge pollutants to minimize or abate pollution of the waters of the state.
Pollution Control Agency	Minn. Stat. ch. 116	Provides organizational structure and procedures for responding to problems relating to water, air, and land pollution.
Water Law	Minn. Stat. ch. 103A, 103B, 103C, 103D, 103E; 103F, and 103G	Provides regulations pertaining to any waters of the state, including surface water, wetlands and groundwater.
Safe Drinking Water Act	42 USC §§300f et seq.	Established to protect the quality of drinking water (above or underground).
Clean Water Act	33 USC §§1251 et seq.	Establishes structure for regulating discharges of pollutants and regulating quality standards for surface waters.
Resource Conservation and Recovery Act (RCRA)	42 USC §§6901 et seq.	Establishes RCRA Program and Regulations.
Clean Air Act	42 USC §§7401 et seq.	Regulates air remissions from stationary and mobile sources.
Federal Energy Regulatory Commission (FERC)	FERC was established by congress through various laws.	An independent agency that regulates transmission and wholesale sale of electricity and natural gas in interstate commerce. FERC authorizes and regulates non-federal hydropower projects.

2.1.1 Chemical-Specific ARARs and TBCs

The COCs associated with the sediments include dioxins. The following are the chemical-specific ARARs and TBCs associated with the sediments and shall be used to develop site-specific cleanup levels (CULs):

ARAR/TBC Citation/Source		Description/Application				
Sediment						
SSVs	MDH, 2013. Public Health Consultation, Updated Human Health Screening Values for SLR Sediments: U.S. Steel Site. April.	To be used as benchmark values for making comparisons to surficial sediment chemistry measurements				
SQTs Guidance for the Use and Application of SQTs for the Protection of Sediment-dwelling Organisms in Minnesota		To be used as benchmark values for making comparisons to surficial sediment chemistry measurements				
All Media						
Contaminated Sediments Remediation	Contaminated Sediments Remediation. http://www.itrcweb.org/contseds_remedy-selection/	Guidance to assist in selecting remedial technology most appropriate for a specific site.				
Contaminated Sediment Remediation	Contaminated Sediment Remediation Guidance for Hazardous Waste Sites, USEPA. December 2005.	Guidance to assist in selecting remedial technology most appropriate for a specific site.				
Contaminated Sediment Remediation	Use of Amendments for In Situ Remediation at Superfund Sediment Sites, USEPA. April 2013.	Guidance to assist in situ remediation.				
Site screening guidelines	Working Draft Site Screening Evaluation Guidelines. MPCA Risk-Based Site Evaluation (RBSE) Manual (09/98).	Guidelines and criteria for screening human health and ecological risks.				

Sediment

Human Health Risk

As discussed in **Section 1.4.4.1**, based on the Site conditions, accessibility, and current advisories discuss above, human health exposure pathways are considered incomplete

Ecological Risk

To achieve protection and restoration of habitat, minimize exposure of the benthic organisms to contaminated sediments and movement of contaminants up the food chain, Preliminary Sediment Remediation Goals were developed for use in this FFS. The MPCA does not have sediment quality standards in rule. SQTs, developed for use in the SLR AOC, can be used throughout the state as benchmark values for making comparisons to surficial sediment chemistry measurements and to guide remedial decisions. For more information about the SQTs, refer to the report *Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota (MPCA, 2007)*.

All Media

This guidance document assists in selecting remedial technology most appropriate for a specific site based on contaminated sediment and site specific characteristics (http://www.itrcweb.org/contseds_remedy-selection/).

The USEPA document, Contaminated Sediment Remediation Guidance for Hazardous Waste Sites, presents remedial options available for contaminated sediments discussing advantages and limitations associated with the options.

The USEPA document, Use of Amendments for In Situ Remediation at Superfund Sediment Sites, presents remedial options using amendments available for contaminated sediments discussing advantages and limitations associated with the options.

The MPCA Site Screening and Evaluation Document presents an overall process for conducting a Tier 1 evaluation of the various exposure pathways at a site. The screening criteria worksheet can be found at the MPCA website (https://www.pca.state.mn.us/waste/risk-based-site-evaluation-guidance).

2.1.2 Location-Specific ARARs and TBCs

The Location-Specific ARARs and TBCs for the Site are as follows:

ARAR/TBC	Citation/Source	Description/Application
Waters of the State and Groundwater Protection	Minn. Stat. 103G and 103H	Groundwater protection, non- degradation, and best management practices.
Floodplain Management and Wetlands Protection	40 CFR Part 6, Appendix A, §6.a.(1)	Requires agencies to evaluate potential effects of actions in a floodplain to avoid adverse impacts.
Shoreland and Floodplain Management	Minn. Rules ch. 6120	Conserves economic and natural environmental values (MDNR).
Carlton County Land Use Ordinances	Carlton County Zoning Ordinances #27	Floodplain management, Manages on-site waste disposal and other site activities.
Shoreland Management	Carlton County Zoning Ordinance #27	Carlton County requires a permit for any excavation or grading within 1000 feet of lake or 300 feet of a stream/river.
Endangered Species Act	16 USC §§1531 et seq. 50 CFR §17.11-12	Conservation of threatened and endangered plants and animals and their habitats.
Endangered, Threatened, Special Concern Species	Minn. Rules ch. 6134 Minn. Statute, §84.0895	Protection of endangered, threatened, special concern species (MDNR).
Migratory Bird Treaty Act	16 USC Chapter 7, Subchapter II §§703 and 712.2	Protects migratory birds and their ecosystems.
MDH Advisory for St. Louis River	MDH	Provides fish consumption advisories.

The Site is located within the Lake Superior Drainage Basin. Surface water quality standards and provisions for Class 2B and 3B waters apply. In addition, USEPA and the Great Lakes states agreed in 1995 to a comprehensive plan to restore the health of the Great Lakes. The Final Water Quality Guidance for the Great Lakes System, also known as the Great Lakes Initiative (GLI), includes criteria for states to use when setting water quality standards for 29 pollutants, including bioaccumulative chemicals of concern, and prohibits the use of mixing zones for these toxic chemicals. Because the surface water at the Site is within the drainage basin of Lake Superior,

the ARARs specified in the GLI, Minn. Rules ch. 7052 are applicable to the Site. Requirements of the Great Lakes Water Quality Agreement of 2012 apply to the Site. In addition, the surface waters adjacent to the Site are identified as an Outstanding International Resource Water (OIRW). The objective for OIRW is to maintain water quality at existing conditions when the quality is better than the water quality standards. Generally, OIRWs are considered surface water quality standards applicable to the SLR for Class 2B and OIRWs, as set forth in Minn. Rules, chs. 7050 and 7052, and to the additional surface water quality standards for the SLR, as set forth in Minn. Rules ch. 7065. The OIRW was established after the ROD was issued.

As stated in Minn. Rules ch. 7050.0210 Subp. 2:

Nuisance conditions prohibited. No sewage, industrial waste, or other wastes shall be discharged from either point or nonpoint sources into any waters of the state so as to cause any nuisance conditions, such as the presence of significant amounts of floating solids, scum, visible oil film, excessive suspended solids, material discoloration, obnoxious odors, gas ebullition, deleterious sludge deposits, undesirable slimes or fungus growths, aquatic habitat degradation, excessive growths of aquatic plants, or other offensive or harmful effects.

Title 40 CFR Part 6, Appendix A, Section 6 Requirements: Requires federal agencies to evaluate the potential effects of actions taken within a floodplain to avoid adversely impacting floodplains wherever possible.

Title 40 CFR Part 6, Appendix A, Section 6.a.(1) Floodplain/Wetlands Determination: Before undertaking an Agency action, each program office must determine whether or not the action will be located in or affect a floodplain or wetlands. The Agency shall utilize maps prepared by the Federal Insurance Administration of the Federal Emergency Management Agency (Flood Insurance Rate Maps or Flood Hazard Boundary Maps), Fish and Wildlife Service (National Wetlands Inventory Maps), and other appropriate agencies to determine whether a proposed action is located in or will likely affect a floodplain or wetlands. If there is no floodplain/wetlands impact identified, the action may proceed without further consideration of the remaining procedures set in this section. If floodplain/wetlands impact is identified, this section presents procedures that must be taken.

Shoreland and Floodplain Management (Minn. Rules ch. 6120): Provides standards and criteria intended to preserve and enhance the quality of surface waters, conserve the economic and natural environmental values of shorelands, and provide for the wise use of water and related land resources of the state. Carlton County Zoning Ordinances, ch. 1003, establish additional floodplain management and manage site activities such as on-site waste disposal.

Shoreland Management Permit (Carlton County Zoning Ordinance #27), as defined by Carlton County: Requires a permit for any excavation or grading above the Ordinary High Water Mark within 300 feet of a river. Each alternative will involve some of these activities. The substantive requirements of this permit are found in the ordinance and may govern removal of natural vegetation, grading and filling, placement of roads, sewage and waste disposal, and setbacks.

The Endangered Species Act (16 USC §§1531 et seq.) and the Minnesota Endangered, Threatened, Special Concern Species Act (Minn. Rules ch. 6134): Protect threatened and endangered plants and animals and their habitats.

Title 16 USC Chapter 7, Subchapter II §§703 and 712.2., The Migratory Bird Treaty Act: Protects migratory birds and their ecosystems by specifying the taking, killing, or possessing migratory birds unlawful. Public Law 95-616, an amendment to this act, provides measures to protect identified ecosystems of special importance to migratory birds such as bald eagles against pollution, detrimental alterations, and other environmental degradations.

The MDH has established various fish consumption advisories for the SLR due to the presence of PAHs, PCBs, and Resource Conservation and Recovery Act (RCRA) metals in water and sediments; however, there is no fish consumption advisory for the COC for the Site.

2.1.3 Action-Specific ARARs and TBCs

The following summarizes the action-specific ARARs for the Site. In addition, Occupational Safety and Health Standards (Minn. Rules ch. 5205) for worker health, safety, and training are applicable to remedial actions performed at the Site.

ARAR/TBC	Citation/Source	Description/Application
Waters of the State (both surface and underground)	Minn. Rules ch. 7050 and 7052	Surface water quality during remedy construction.
Wetland Conservation Act (WCA)	Minn. Stat. §§103G.2212373	Protection of wetlands.
Wetlands Conservation	Minn. Rules 8420	Protection of wetlands, wetland functions for determining public values.
Floodplain Management Order	Executive Order 11988 and 40 CFR Part 6, Appendix A,	Regulates remedial action implementation in floodplains.
Section 404 Permit and Section 401 Certification (Clean Water Act)	33 CFR Parts 320 and 323; 33 USC §1341	Applies to discharge of dredged or fill material into waters of the U.S.
National Pollutant Discharge Elimination System (NPDES)/ State Disposal System (SDS) permits	Clean Water Act 33 USC §1342	Surface water quality requirements for discharges of pollutants to waters of the state.
Section 10 (Rivers and Harbors Act of 1899)	33 USC 403	Applies to activities that will obstruct or alter any navigable water of the U.S.
Work in Public Waters	Minn. Stat. §103G.245	Permit requirements applicable to work in public waters that will change or diminish its course, current, or cross-section.
Public Water Resources	Minn. Rules ch. 6115	Water appropriation permitting, standards and criteria for alterations to structure of public water (MDNR).
Minnesota Sediment Quality Targets	Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-dwelling Organisms in Minnesota, MPCA Document Number: tdr-gl-04	Establishes procedures for PBAZ caps and covers.
WLSSD	WLSSD Industrial Pre- Treatment Ordinance	Requirements for any dredge water discharged into public sanitary sewers.
Construction and Use of Public Sewers	Minn. Rules ch. 4715	Governs the use of sewers and public water systems if any dredge water is disposed of in public sewers.

ARAR/TBC	Citation/Source	Description/Application
MDNR Invasive Species Management	Minn. Statutes 84D.02	Requirements for sediment transportation if invasive species are present.
Solid Waste	Minn. Rules ch. 7035	Requirements and standards for solid waste facilities.
Hazardous Waste	Minn. Rules ch. 7045	Hazardous waste listing, and generator, transport, and facility standards.
Air Pollution Emissions and Abatement	Minn. Stat. §116.061	Duty to notify and abate excessive or abnormal unpermitted air emissions.
Ambient Air Quality Standards	Minn. Rules ch. 7009	Provides air quality standards.
Preventing Particulate Matter From Becoming Airborne and Emission Standards	Minn. Rule Parts. 7011.0150 and 7011.8010	Provides measures to control dust and emission standards for hazardous air pollutants.
Noise Pollution Control	Minn. Rules ch. 7030	Noise standards applicable to remedy construction.

Water Quality

If any activity associated with the remedial actions results in an unregulated release, in accordance with the Water Pollution Control Act and Minn. Stat. 115.061, Duty to Notify, a notification and recovery of any pollutants discharged to minimize or abate pollution of the waters of the state is required.

In accordance with Minn. Rules ch. 7050, surface water quality standards for the maintenance and preservation of surface water quality during remedy construction, including discharges from treatment/work and stormwater runoff zones, shall be based on surface water quality standards that currently apply to Class 2B and OIRWs, as set forth in Minn. Rules, chs. 7050 and 7052, and to the additional surface water quality standards for the SLR set forth in Minn. Rules ch. 7065. Therefore, if water is discharged directly to the waters on or adjacent to the Site, it shall be treated to a level that meets applicable surface water discharge standards. Groundwater non-degradation and standards for the protection of groundwater during remedy construction are presented in Minn. Rules 7060.

During remediation, the MPCA would consider the areas in which work is performed as "treatment/work zones," to which the surface water quality standards normally applicable to the SLR would temporarily not apply. These treatment/work zones would be physically separated from adjacent waters through the use of engineering controls such as single or multiple silt curtains, inflatable dams, sheet piling, or other measures. During construction of the remedy, any discharges occurring within those controlled treatment/work zones, such as the discharge of capping material during capping operations, the release of contaminants during dredging operations, or runoff from activities on shore, would not be subject to water quality standards. Rather, water quality standards would apply outside of the treatment/work zone, beyond the outermost engineering control structure where the water from the treatment/work zone is discharged. Other discharges occurring during remedy construction that are not included in a treatment/work zone, including discharges of treated dredge water, and discharges of stormwater

runoff from shoreland modifications outside of the treatment/work zones, would also be subject to regulation.

If water is discharged, it would be treated to a level that meets applicable surface water discharge standards. The MPCA water quality standards may apply to these discharges. Final standards would be determined by the MPCA prior to implementation of the remedial actions. In the event that a standard is exceeded, further management practices would likely be required during remedy construction to reduce the amount of suspended contaminants escaping the treatment/work zone.

Wetlands, Shoreland, and Floodplain Management

In accordance with Minn. Rules ch. 7050, wetlands at the Site are classified as unlisted wetlands, Class 2B and 3B waters. In accordance with Minn. Rules ch. 8420, compliance with wetland ARARs will involve consultation with the MDNR to determine the category of wetlands present at the Site and any avoidance, mitigation, and replacement that may be necessary. Water quality standards for the maintenance and preservation of surface water quality during remedy construction including discharges from treatment/work and stormwater runoff zones shall be based on surface water quality standards that currently apply to Class 2B and 3B waters and shall comply with Minn. Stat. §§103G.221-.2373. Standards and specifications applicable to shoreland and floodplain management can be found in Executive Order 11988 and 40 CFR Part 6, Appendix A, Minn. Rules ch. 6120.

Minn. Stat. §103G.222 provides that a wetland replacement plan must be approved by the Local Governmental Unit before any Wetland Conservation Act (WCA) wetlands may be drained or filled, unless draining or filling falls within the "De Minimis" exemption or another exemption of Minn. Stat. §103G.2241. WCA wetlands are those wetlands that are not public water wetlands regulated by the MDNR and United States Army Corps of Engineers (USACE). WCA wetlands would be located above the Ordinary High Water Mark.

Carlton County provides additional guidance regarding WCA requirements for the Site at the following website:

http://www.co.carlton.mn.us/vertical/Sites/%7B315ADE76-21A3-4241-B977-F94AEE8A7F04%7D/uploads/Carlton_County_and_the_Wetland_Conservation_Act.pdf

Permits and Certifications

Possible permits for cleanup activities include the following:

Section 404 Permit (Clean Water Act): Required for discharge of dredged or fill material into waters of the United States. The substantive requirements of this permit shall be met for alternatives that dredge or fill waters of the state. USACE evaluates applications for Section 404 permits. Substantive requirements that may be incorporated within a Section 404 permit for off-site activities can be found in 33 CFR Parts 320 and 323.

Section 401 Certification: The Clean Water Act, 33 USC §1341, requires that any application for a federal permit that may result in a discharge to a navigable water must be accompanied by a certification from the affected state indicating that the discharge will comply with all applicable water quality standards and effluent limitations of the Act. Thus, a Section 401 certification or a 401 certification waiver for remedial action at the Site would be necessary before the USACE may issue a Section 404 permit, and a certification may be necessary before the USACE may issue a Section 10 permit if that permit authorizes a "discharge."

National Pollutant Discharge Elimination System (NPDES; Clean Water Act 33 USC §1342): Discharges of pollutants to waters of the state associated with construction of the selected remedy

would be subject to the requirements applicable to a NPDES permit. Discharges could include the discharge of capping material, the discharge of contaminants released and suspended by dredging operations, the discharge of treated dredge water during dredging operations, and the discharge of stormwater runoff from shoreland modifications. These types of discharges would be subject to the same regulatory standards and controls that would apply under an MPCA permit. In addition, NPDES General Permit number MNG990000 has been required for managing dredged materials; however, this permit has expired and has not been renewed. According to Managing Dredged Materials in the State of Minnesota (MPCA, 2009), an individual NPDES/State Disposal System (SDS) Dredge Materials Management permit may be required. A NPDES Construction Permit and a Stormwater Pollution Prevention Plan are required by the MPCA if more than one acre of land is disturbed by excavation activities.

Section 10 of the Rivers and Harbors Act of 1899 (33 USC 403): A Section 10 permit is required from the USACE for any construction in or over any navigable water, or the excavation or discharge of material into such water, or the accomplishment of any other work affecting the course, location, condition, or capacity of such waters. The substantive requirements that may be incorporated within a Section 10 permit can be found in 33 CFR Parts 320 and 322.

Work in Public Waters (Minn. Stat. §103G.245): A permit from the MDNR is necessary for any work in public waters that will change or diminish its course, current, or cross-section. If an alternative under consideration involves dredging or capping, a public waters permit from the MDNR may be required. The substantive requirements that the MDNR may incorporate within its public waters permit are codified in statute and at Minn. Rules, ch. 6115. These requirements include compensation or mitigation for the detrimental aspects of any major change in the resource. The MDNR permits may require restoration of bathymetry (water depth) and habitat substrate (bottom) as part of the public waters permit. The MDNR would set the specific cover depth and composition requirements.

Additionally, if capping of contaminated sediments is conducted, requirements would include specifications for cap construction. In situ caps constructed for the containment of contaminated sediment must contain an isolation zone (IZ) and a PBAZ. The IZ is the portion of the cap that is applied directly over the contaminated sediments and is designed to isolate and attenuate the Site contaminants that could potentially be transported upward into the PBAZ at concentrations above the CULs by diffusion or advection transport mechanisms. The PBAZ is the area within the cap above the IZ where significant biological activity may potentially be present. The thickness and material specifications for the IZ and PBAZ should be determined based on pore water transport and attenuation modeling.

Air Emissions and Waste Management Permits: In accordance with Minn. Stat. §116.081, a permit is required for the construction, installation or operation of an emission facility, air contaminant treatment facility, treatment facility, potential air contaminant storage facility, storage facility, or system or facility related to the collection, transportation, storage, processing, or disposal of waste, or any part thereof, unless otherwise exempted by any agency rule now in force or hereinafter adopted, until plans have been submitted to the agency, and a written permit granted by the agency.

On-Site Disposal: The placement of dredged sediment into an on-site confined aquatic disposal (CAD) area and any subsequent seepage from the CAD, if implemented, would be regulated by the MPCA under the requirements applicable to an SDS permit. The legal requirements for an SDS are found in Minn. Stat. §115.07, Minn. Rules, Parts 7065.0100 to 7065.0160 and in other MPCA water quality rules including Minn. Rules chs. 7050 and 7052.

Discharge into Sewers: A permit from the WLSSD will be necessary if any dredge water is discharged into the public sewers. Pretreatment standards that would likely apply can be found at: http://wlssd.com/wp-content/uploads/2014/12/WLSSDPretreatmentOrdinance.pdf.

The permit will also include requirements to ensure that will be no detrimental effects to their biosolids program. A WLSSD permit would also represent compliance with Minn. Rule, Part 4715.1600 and the MPCA water rules governing indirect discharges.

Invasive Species: A prohibited/regulated invasive species permit will be required to transport sediment to a landfill, if invasive species are present near the proposed work area.

CERCLA provides for waiving of necessary permits for on-site work, provided the work is conducted in compliance with the substantial conditions of such permits. Although the permits themselves may not be required on CERLCA Sites, compliance with the substantial conditions of these identified permits shall be met.

Construction and Use of Public Sewers

Minn. Rules ch. 4715 governing the use of sewers and public water systems would apply if any water associated with remedial activities is disposed of in public sewers.

Waste Management

Solid and hazardous waste management requirements and standards can be found in Minn. Rules chs. 7035 and 7045, respectively. USEPA guidance has consistently stated that Superfund remedies involving movement of contaminated material within the area of a Site where such material is already located (sometimes referred to as an AOC) do not create a "waste" that is subject to RCRA (42 USC §6901 et seq.) or other waste management requirements. Remedy alternatives that require contaminated materials to be moved to an off-site land disposal site are considered to generate waste that must be managed under applicable waste management requirements.

Carlton County zoning ordinance subd. G, FP Flood Plain Management District, establishes additional floodplain management and manages site activities such as on-site waste disposal.

Ambient Air Quality Standards

Air quality standards applicable to releases into the air from cleanup activities include Min. Stat. 116.061, Air Pollution Emissions and Abatement. During remedy construction, activities such as transportation, storage and placement of capping material may result in particulate matter becoming airborne. Minn. Rules ch. 7009 establishes ambient air quality standards for criteria pollutants regulated under the Clean Air Act. Compliance points shall be selected in accordance with Minn. Rules ch. 7009. The ambient air quality standards for particulate matter that apply to remedial actions are found at: https://www.revisor.mn.gov/rules/?id=7009.0080.

Control of the generation of airborne particulate matter during remedy construction is regulated in Minn. Rule Part 7011.0150, *Preventing Particulate Matter from Becoming Airborne*, which includes measures to control dust that may be generated during remedy construction activities such as transportation, storage, and placement of capping material, which shall be addressed in the remedial design plan. Minn. Rules Part 7011.8010, Site Remediation, incorporates the National Emission Standards for Hazardous Air Pollutants applicable during Site remediation activities.

Noise Pollution Control

Minn. Rules ch. 7030 establishes noise standards for various land uses. Compliance points will be selected in accordance with Minn. Rules ch. 7030. The noise standards that apply to the selected remedial action can be found at: https://www.revisor.leg.state.mn.us/rules/?id=7030.0040.

2.1.4 Other Considerations

Other considerations under MERLA set forth the regulatory requirements, RAOs and CULs that must be met by a remedy to meet the legal standard for a remedy under MERLA and the threshold criterion for protection of public health and welfare and the environment. A remedy, as defined under MERLA, must also include any monitoring, maintenance and institutional controls (ICs) and other measures that the MPCA determines are reasonably necessary to assure the protectiveness of the selected remedy over the long term.

It is particularly important to consider the requirements for long-term assurance of protectiveness where the remedy alternatives involve the use of capping or containment to manage contaminated media within the Site. Some requirements may also be necessary to assure long-term protectiveness of alternatives that involve excavation or dredging and off-site disposal of contaminated soil or sediment.

In addition, MERLA requires the MPCA to consider the planned use of the property where the release of contaminants is located when determining the appropriate standards to be achieved by a remedy.

Long-Term Assurance of Protectiveness

MERLA requires that a remedy include measures that are reasonably required to assure the ongoing protectiveness of a remedy once the components of the remedy have been constructed and entered their operational phase. Such measures may include, but are not limited to, ICs and monitoring and maintenance requirements. This section discusses the measures that the MPCA determines are reasonably necessary to assure long-term protectiveness.

Institutional Controls

ICs are legally enforceable restrictions, conditions or controls on the use of property, groundwater or surface water at a property that are reasonably required to assure the protectiveness of a remedy or other response actions taken at the Site. Areas of the Site where contaminated media remains in place after remedial construction will be subject to ICs (such as easements and restrictive covenants) that are legally binding on current and future owners of the property to assure ongoing protection from disturbance of or exposure to the contamination. Restrictions on use may also be required for areas of the Site where contaminated media are treated and/or removed and where some residual contamination may remain.

Minn. Stat. §115B.16, subd. 2, requires an Affidavit Concerning Real Property Contaminated with Hazardous Substances to be recorded with the Carlton County recorder by the owner of the property. The Uniform Environmental Covenants Act (UECA) and the authority for requiring environmental covenants can be found in Minn. Stat. ch. 114E. This statute requires MPCA approval of environmental covenants (which include restrictive covenants and access) when there is an environmental response project (which includes superfund cleanups) is overseen by the MPCA. Because the Site is not platted, the UECA may not apply and other ICs such as a City Ordinance may be required to prevent anchoring, fishing, dredging, and other activities that may disturb a cap or contaminated sediments left in place.

Long-Term Operation and Maintenance, Monitoring, and Contingency Action

On-site containment facilities and capping of impacted media (sediment) or any other alternative that may leave impacted media on-site will require post-construction monitoring, operation and maintenance (O&M), and contingency action plan to assure that ARARs, RAOs, and CULs that apply to the alternative are fully achieved and maintained over time.

General details of the post-construction monitoring, O&M, and contingency action plan requirements would be set forth in the FFS, along with an estimate of the cost to carry out each activity.

Planned Use of Property

In a provision entitled "Cleanup Standards" (Minn. Stat. §115B.17, subd. 2a), MERLA provides that when the MPCA determines the standards to be achieved by response actions to protect public health and welfare and the environment from a release of hazardous substances, the agency must consider the planned use of the property where the release is located. The purpose of this provision of MERLA is to allow the MPCA to select cleanup standards that provide a level of protection that is compatible with the uses of the Site property that can be reasonably foreseen.

The specific properties directly affected by the remedies are currently part of treatment or containment facilities considered to be commercial/industrial land use (i.e., hydroelectric power generation). In addition, impacted areas include wetlands/semi-aquatic and aquatic areas and associated habitat. The cleanup standards must provide protection of public health and welfare and the environment that is consistent with any planned or potential future uses of the Site, including natural resource and habitat restoration, navigation and recreational uses. These cleanup standards are also compatible with the use of the adjacent land for residential, recreational, habitat restoration, or commercial and industrial use.

2.2 Remedial Action Objectives

The RAOs developed by the MPCA for the Site are:

- Minimize or remove exposure to sediment contaminants that bioaccumulate in the food chain.
- Minimize or remove exposure of the benthic organisms to contaminated sediments above sediment cleanup goals.
- Preserve water depth to enable the current and/or planned use of the Site.

The following subsection present preliminary sediment CULs developed to achieve these RAOs.

2.2.1 Preliminary Sediment Cleanup Levels

To minimize exposure of the benthic organisms to contaminated sediments and to stop movement of contaminants up the food chain, the remedy should meet the Preliminary Sediment CUL. The Midpoint SQT for dioxins is expected to be near the background concentration of dioxins within the upper SLR AOC; therefore, the Midpoint SQT will serve as the CUL for dioxins. Ongoing background concentration studies are currently being undertaken in the SLR, should the results of these studies identify a dioxins background concentration in sediment different from the Midpoint SQT the CUL in this FFS will be revised. The following table presents the CUL for the COCs identified in **Section 1.4.3.3**.

Contaminant	Units	Cleanup Level	Maximum Concentration Detected	Mean Concentration
Dioxins	ng TEQ/kg	11.2	392.7	32.58

ng TEQ/kg = nanograms toxic equivalency per kilogram

3.0 DEVELOPMENT AND SCREENING OF ALTERNATIVES

3.1 Remedial Technology Identification and Screening Process

Potential technologies for addressing conditions at the Site were identified through conversations with the MPCA as well as guidance developed for the remediation of contaminated sediment sites (USEPA, 2005; Interstate Technology and Regulatory Council [ITRC], 2014). Information collected during the 2014 Site characterization and the development of the CSM was used to identify feasible technologies for the Site.

A qualitative approach was used to screen technologies using a three-part ranking system where each technology was evaluated on effectiveness, implementability, and relative cost:

- Effectiveness was evaluated by the predicted ability of the technology under consideration
 to assure long-term protection of human health and the environment while minimizing
 short-term impacts during implementation, as well as the technology's ability to meet
 RAOs.
- Implementability was evaluated by considering the technical and administrative feasibility
 of the technology. Technical feasibility includes the ability to achieve RAOs and the
 avoidance of creating additional risk during implementation, including the degree of
 disruption in the project area. Administrative feasibility includes the consideration of
 permits required for technology implementation, availability of disposal facilities and
 equipment necessary for the technology, and coordination with applicable agencies and
 stakeholders.
- Relative costs used for technology screening were based on engineering judgment, rather
 than detailed estimates. The cost evaluation considered direct and indirect expenses such
 as costs for dredging and capping, transport and disposal of sediment, and monitoring
 and evaluation periods.

Table 3 presents a summary of the technology screening results. The following sections describe the technologies that were screened using the three-part ranking system.

3.1.1 Institutional Controls

ICs are legally enforceable restrictions, conditions, or controls on the use of property, groundwater, or surface water at a contaminated site that are reasonably required to assure the protectiveness of a remedy or other response actions taken at the Site. If contaminated sediments remain in place after remedial actions are taken, the Site would be subject to ICs (such as easements and restrictive covenants) that are legally binding on current and future owners of the property to assure ongoing protection from disturbance of or exposure to the contamination. ICs are necessary to minimize exposure to contaminants. ICs may include restrictions on recreational use such as beach use limitations, and restrictions on sediment disturbance.

3.1.2 Monitoring

Monitoring is the collection and analysis of data (chemical, physical, and/or biological) over a sufficient period of time and frequency to determine the status and/or trend in one or more environmental parameters or characteristics. Monitoring should not produce a "snapshot in time" measurement, but rather should involve repeated sampling over time in order to define the trends in the parameters of interest relative to clearly defined management objectives. Monitoring is recommended for all types of sediment remedies both during and after remedial action and can be classified as construction monitoring and performance monitoring (also referred to as long-term monitoring), respectively. Monitoring should be conducted for a variety of reasons, including:

1) to assess compliance with design and performance standards; 2) to assess short-term remedy performance and effectiveness in meeting sediment CULs; and/or 3) to evaluate long-term remedy effectiveness in achieving RAOs and in reducing human health and/or environmental risk. In addition, monitoring data are usually needed to complete the five-year review process where a review is conducted.

Monitoring activities applicable to the Site could include one or more of the following based on the selected remedy:

- Collection of sediment chemical data to ensure that CULs have been achieved (due to dredging, in situ treatments, or degradation);
- Measurements of cover/cap thicknesses to ensure continued isolation of contaminants;
- Measurement of COC concentrations in cover/cap material to ensure that contaminants are not migrating into or through the cover/cap; and
- Measurement of toxicity to and bioaccumulation of COCs within aquatic organisms such as benthics and fish in order to evaluate reduction trends.

Construction monitoring may also be performed to ensure that contamination or nuisance materials are not released during construction activities. Construction monitoring activities applicable to the Site include one or more of the following:

- Turbidity monitoring to ensure that the off-site release of suspended sediments containing COCs is mitigated during dredging and/or cover/cap placement;
- Air monitoring to ensure that the off-site release of nuisance and/or contaminated dusts is
 mitigated during construction activities such as the mixing of sediments and amendment
 materials, hauling over dirt or gravel roadways, and excavation or other intrusive Site work;
- Periodic sampling of treated dredge contact water to mitigate contaminant inputs to water bodies or local sewage systems and to ensure that treated water meets permit or municipality requirements;
- Periodic sampling of dredged materials to ensure that landfill requirements for acceptance are achieved;
- Periodic sampling of imported materials (e.g., cover/cap materials, shoreline restoration materials, etc.) to mitigate impacts to water bodies or upland areas as a result of placement; and
- Pre- and post-construction soil sampling to access impacts of construction activities on lands used during the construction phase.

Both construction and performance monitoring are incorporated into each of the remedial alternatives developed for this FFS.

3.1.3 Monitored Natural Recovery

MNR is defined by the National Research Council (2000) as a remediation practice that relies on natural processes to protect the environment and receptors from unacceptable exposures to contaminants. This remedial approach depends on natural processes to decrease chemical contaminants in sediment to acceptable levels within a reasonable time frame. With MNR, contaminated sediments are left in place and monitored for ongoing physical, chemical, and biological processes that transform, immobilize, isolate, or remove contaminants until they no longer pose a risk to receptors. Natural processes that contribute to MNR may include sediment burial, sediment erosion or dispersion, and contaminant sequestration or degradation (for example, precipitation, adsorption, or transformation). These natural processes, discussed in

detail below, can reduce exposure to receptors (and thus reduce risk) and contribute to the recovery of the aquatic habitat and the ecological resources that it supports. MNR can be used alone or in combination with active remediation technologies to meet RAOs (ITRC 2014).

3.1.4 Enhanced Monitored Natural Recovery

Enhanced Monitored Natural Recovery (EMNR) relies on the same natural processes as MNR to decrease chemical contaminants in sediment but includes the application of material or amendments to enhance these natural recovery processes. EMNR can use several technologies including, but not limited to, thin-layer capping and introduction of adsorptive or reactive amendments such as activated carbon (AC). Thin-layer caps (typically less than one foot) are often applied as part of an EMNR approach. For the purposes of this FFS, a thin-layer thickness of 0.15-meters was evaluated; however, the thickness of the cover will be evaluated further, should it be selected as a remedial alternative. These caps enhance ongoing natural recovery processes, while minimizing effects on the aquatic environment. Thin-layer caps are not intended to completely isolate the affected sediment, as in a conventional isolation capping remedy. This layer also accelerates the process of physical isolation, which continues over time by natural sediment deposition (ITRC, 2014).

Bench-scale treatability testing was completed on sediments collected from Scanlon Reservoir (which are assumed to be similar in composition and COCs to Site sediments) to evaluate the effectiveness of different activated carbon (AC) amendments and doses to reduce the bioavailability of dioxins/furans in Site sediments (**Appendix F**). Two AC particle size ranges were evaluated—a silt-sized powdered activated carbon (PAC) and a fine sand-sized granular activated carbon (GAC). The two different types of AC amendments (PAC at 2% and 4% dose, and GAC at 4% dose) were mixed directly into Site sediments, and continuous agitation was applied to accelerate the uptake kinetics of dioxins by the AC. The results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments. Extrapolating the results of this study to assess the short- and long-term effectiveness of different AC amendment application methods requires additional calculations to be conducted in a follow-on engineering phase. Application methods will be retained for further engineering and cost evaluations.

3.1.5 Capping

Capping is the process of placing a clean layer of sand, sediments or other material over contaminated sediments in order to mitigate risk posed by those sediments. The cap may also include geotextiles to aid in layer separation or geotechnical stability, amendments to enhance protectiveness, or additional layers to armor and maintain its integrity or enhance its habitat characteristics.

When amendments (such as AC) are mixed directly into sediments, the resulting remedy is termed "in situ treatment." When these amendments are added to cap material, the remedy is called an "amended cap," and the amendments enhance the performance of the cap material. The same amendment used in the same proportions is generally more effective at isolating contaminants when used in a cap than when placed directly into sediments. The amended cap provides the benefits of capping in addition to the benefits of the treatment amendment (ITRC, 2014).

3.1.6 Dredging and Excavation

Dredging consists of the removal of contaminated sediment from water bodies in order to reduce risks to human health and the environment. Removal is particularly effective for source control (mass removal of hot spots) but potentially less effective for overall risk reduction because of resuspension and residual contamination. The three methods of contaminated sediment removal are mechanical dredging, hydraulic dredging and excavation. As with any type of removal operation, additional technologies are required to appropriately handle the removed sediment. Dredged material handling technologies may involve transport, dewatering, treatment, and or disposal of sediment (ITRC, 2014). Mechanical dredging, hydraulic dredging, and excavation were screened independently in this evaluation.

After removal, the contaminated sediment can be treated or disposed of in a controlled setting, such as an off-site landfill or other treatment, storage, and disposal (TSD) facility, an on-site aquatic or terrestrial confined disposal facility (CDF), or a facility that converts the sediment to a reusable product. Disposal methods were evaluated independently from dredging and excavation and are described further in **Section 3.1.6**.

3.1.7 Dewatering

Dewatering may be necessary to prepare dredged materials for disposal. Dewatering reduces the water content and hence the volume and weight of the disposed sediment. If the material is to be reused or further treated, dewatering also leads to reduced transportation cost and improves handling properties. The nature and extent of dewatering needed depends on the sediment characteristics and the type of dredging, transport, and disposal methods planned for the removed material (ITRC, 2014). Dewatering technologies may rely upon gravity draining and evaporation processes (e.g., spreading and geotextile bags), mechanical processes (e.g., filter presses), and chemical conditioning (e.g., polymer additions and stabilization additives). The type of dewatering technology selected for use may depend upon the amount of space available for dewatering, the distance of the dewatering space from dredging operations, discharge options for treated dredge contact water, project scope, and cost of implementing the technology.

3.1.8 Disposal

Disposal of dredged or excavated sediment is the placement of materials into a controlled site or facility to permanently contain contaminants within the sediment. Management is achieved through the placement of materials into facilities such as sanitary landfills, hazardous material landfills, CDFs, or confined aquatic disposal (CAD) facilities. Off-site landfills are generally used for dredged material disposal when on-site disposal is not feasible or when off-site disposal is more cost effective.

Landfills have been used for sediment volumes of over 1 million cubic yards. Typically, some type of on-site or near-site disposal facility is used at sites where dredged material volumes greater than 200,000 cubic yards are generated. Landfilling is also favored at smaller or moderately sized sites, where transportation is feasible. The associated hazards and cost of transporting and landfilling large volumes of sediment, along with treating and subsequent discharging of large volumes of dredge contact water as a result of sediment dewatering, make this disposal method somewhat less desirable than other solutions. Other considerations, such as public and stakeholder acceptance, lack of access to suitable on-site land- or water-based disposal facilities, and proximity to an existing off-site landfill may support the landfilling option.

CDFs are constructed to isolate dredged sediment from the surrounding environment. CDFs can be located upland, near shore, or in the water (as an island). Material staging or a temporary CDF

may be necessary for dewatering dredged sediment. CDFs represent a common disposal method and typically are built for larger volume sites (200,000 cubic yards or more of sediment).

The CAD method deposits dredged material within a nearby body of water. A pre-existing depression within the sediment surface is preferred, though one can be created if necessary. Dredged sediment is deposited in the depression and capped with clean material. This process carries with it the same risks associated with using capping as a remedy (see **Section 3.1.5**). The goal of moving the contaminated sediment to the aquatic disposal site is to reduce the risk of exposure to contaminated materials (ITRC, 2014).

Disposal at landfills, CDFs, and CADs were screened independently in this evaluation.

3.1.9 In Situ Treatment

In situ sediment treatment involves applying or mixing of an amendment (such as AC) into sediments. Mixing may be achieved either passively, through natural biological processes such as bioturbation, or actively through mechanical means such as augers. In situ treatment technologies can achieve risk reduction in environmentally sensitive environments such as wetlands and submerged aquatic vegetation habitats, where sediment removal or containment by capping might be harmful. Treatment amendments typically reduce concentrations of freely dissolved chemicals that are available for exposure to organisms or that may be mobilized and transferred from sediment to the overlying water column. The following in situ treatment technologies were screened in this evaluation:

- Immobilization Immobilization treatments add chemicals or cements to reduce the leachability of contaminants. Mechanisms include solidification (encapsulation) or stabilization (chemical or absorptive reactions that convert contaminants to less toxic or mobile forms);
- Enhanced bioremediation Microbial degradation by bacteria or fungi is enhanced by adding materials such as oxygen, nitrate, sulfate, hydrogen, nutrients, or microorganisms to the sediment;
- Chemical reduction The addition of chemical reductants such as zero valent iron can facilitate the decomposition of organic matter;
- Chemical oxidation The addition of chemical oxidizers to sediment can cause the rapid and complete chemical destruction of many toxic organic chemicals;
- Phytoremediation Phytoremediation uses plant species to remove, transfer, stabilize, and destroy contaminants in sediment. Generally limited to sediments in shallow water zones and low concentrations; and
- Adsorption Adsorbents can be used as sediment amendments for in situ treatment of contaminants. Sorption of metals and organics can take place simultaneously with a suitable combination of sorbents.

As discussed in Section 3.1.4, the results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments.

3.1.10 Remedial Technology Screening Results

Table 3 documents the technology screening process and results. The following remedial technologies were determined to be the most effective, implementable, and cost-effective and were retained for assembling the alternatives described in **Section 3.2**:

ICs;

- Monitoring;
- MNR:
- EMNR/In Situ Treatment;
- Capping;
- Hydraulic Dredging;
- · Gravity and Chemical Conditioning Dewatering; and
- Landfill Disposal.

3.2 Development of Alternatives

This section describes the alternatives evaluated for the Site. The alternatives were developed using the selected remedial technologies discussed in **Section 3.2** and proposed in the Technical Memorandum (Remediation and Cleanup Goals of Dioxin Sediment Sites Outside of SLR AOC and Potential RAOs and Focused Feasibility Study Alternatives) included in **Appendix E**. The following alternatives represent real-world options for remedial action at the Site. The 2016 DGI address data gaps previously identified through discussions with the MPCA; however, additional data collection would be required to delineate vertical extents of contamination, which may affect remedial alternatives involving construction elements. The following sections summarize the proposed alternatives. A summary of the proposed alternatives is presented in **Table 4**.

The total present value costs for alternatives presented within this FFS should be considered to be rough order of magnitude (ROM) costs. Based on the Association for the Advancement of Cost Engineering ROM classification chart, estimates presented in this FFS are considered Class 4. Class 4 estimates are considered Schematic Designs; 15 to 20% of the level of effort required to have a complete estimate has been done. Actual cost of the project could be 50% greater or 30% less (+50/-30) than the estimates developed thus far. ROM cost estimates for the FSS were compiled using a variety of sources. These sources include the following: construction cost data from RSMeans estimating software for open shop pricing in Duluth, Minnesota; current Bay West and state contract rates for labor, equipment, and sample analysis; personal communication with vendors; historic cost data from projects similar in size and scope; other FFS documents, presentations, or technical papers that provided estimated or real construction cost data; and available online vendor pricing of materials. Present value calculations are included in **Table 10**.

3.2.1 Alternative 1: No Action with Baseline Characterization

The NCP at Title 40 CFR provides that a No Action Alternative should be considered at every site. A No Action Alternative should reflect the site conditions described in the baseline risk assessment and RI. The No Action Alternative included within this FFS does not include any treatment or engineering controls, ICs, or monitoring. There are no costs associated with the No Action Alternative.

3.2.2 Alternative 2: Monitored Natural Recovery

This alternative consists of the Baseline Characterization, implementation of ICs, and a monitoring and evaluation period of 5 years. The objective of this alternative is to provide data to determine the potential for natural recovery processes to reduce availability and concentrations of COCs in sediment and/or reducing toxic/bioaccumulative effects in marine organisms (i.e., benthics and fish) at the Site. The major components of the MNR Alternative are described in the following sections.

3.2.2.1 Baseline Characterization

The Baseline Characterization Alternative includes gathering additional physical, chemical, biological, and hydrodynamic data with an overall objective of investigating some of the existing data gaps and determining specifically if a no action approach and/or MNR is a viable alternative for the Site. The Baseline Characterization will seek to evaluate biological effects of contaminants on aquatic life and evaluate how contaminant concentrations relate to depth below the sediment surface, sediment type, depositional areas, etc. It is important to note that fully delineating contamination in the Site is not the objective of the Baseline Characterization, although the collection of additional physical and chemical sediment data will assist in further estimating the vertical and horizontal extent of dioxins contamination. Further sampling to define vertical and horizontal extents of contamination would be required prior to further development of remedial alternatives for the Site or remedy selection. The scope of this additional investigation is included within this FFS for Alternatives 3A, 3B, 4, 5, and 6 as the Pre-Design Investigation. The Baseline Characterization is a key element incorporated into each of the remedial alternatives presented in this FFS as such a characterization will need to be conducted to evaluate a no action approach and/or the MNR alternative.

The Baseline Characterization alternative includes the following elements:

- Sampling Work Plan;
- Collecting additional sediment samples from approximately 8 locations sampled in 2014 and collecting new sediment data from approximately 16 locations not previously sampled (Figure 8); samples to be analyzed for one or more of the following: dioxins as congeners, grain size, and total organic carbon (TOC);
- Conducting 10-day toxicity, 28-day toxicity, and 28-day bioaccumulation testing on sediments collected from eight 2014 sample locations with COCs exceeding Midpoint SQTs:
- Collecting approximately five composite whole body and fillet fish samples for analysis of Site COCs;
- Collecting hydrodynamic Site data to include analysis of erosion and sediment deposition rates, flow velocities, and new bathymetric survey data;
- Evaluating ambient dioxins concentrations for the upper SLR study area and the entire SLR AOC; and
- Baseline Characterization Completion/Summary Report.

The overall objective of the Baseline Characterization is to determine if a no action approach and/or MNR is a viable alternative for the Site. New data will be collected to assist in this determination and will include collection of physical, chemical, biological, and hydrodynamic parameters. Certain outcomes of the Baseline Characterization (e.g., observed toxic or bioaccumulative effects in marine organisms) could rule out a no action approach and/or MNR as a viable alternative for the Site. In addition, the Baseline Characterization will aid in filling data gaps for evaluating capping and dredging alternatives.

3.2.2.2 Institutional Controls

ICs applicable to this alternative include those that would protect future cap integrity. The MDH currently communicates fish consumption guidelines for the lakes and rivers of Minnesota. Advisories for consumption of fish within the SLR and below the Fond du Lac Dam are in place for 11 species of fish due to the presence of mercury and PCBs within fish tissue. No specific advisories are in place related to dioxins. It is currently unknown whether the meal advice provided

within the fish consumption guidelines for mercury is protective for dioxins as well; therefore, the applicability of meal guidelines to dioxins would require investigation. Postings warning of contaminated sediments would be posted near potential Site access locations, and restrictions would be placed on intrusive Site activities such as dredging, construction of docks or piers, or other invasive Site improvements or alterations. ICs would be maintained until RAOs are achieved.

3.2.2.3 Monitoring and Evaluation Period

Contaminated sediments would remain in place as part of the MNR alternative and therefore a monitoring and evaluation period would be necessary to evaluate whether COC concentrations in affected media meet RAOs, or continue to decrease and are expected to meet RAOs in an acceptable time frame. A 5-year monitoring period was used to determine monitoring and evaluation costs based on discussions with MPCA. Monitoring and evaluation events would be performed 1, 3, and 5 years following selection of the MNR remedy. It is likely that the monitoring and evaluation period will be recommended to continue after the initial 5 years.

The monitoring and evaluation period includes the following elements:

- MNR Remedy Implementation Work Plan;
- Bulk sediment physical/chemical monitoring at the 16 Baseline Characterization sample locations (Figure 8) for dioxins and mercury and for corroboration with benthic biological testing (subject to change during remedy "design"); samples to be analyzed for one or more of the following: dioxins as congeners, grain size, and TOC;
- Continued monitoring of erosion pins and sediment traps installed during the Baseline Characterization;
- Biological monitoring including benthic toxicity testing and benthic and fish bioaccumulation (i.e., tissue) testing;
- Bathymetric survey of the entire Site on Year 5; and
- MNR Remedy Implementation Completion Report to include recommendations.

3.2.2.4 Cost

The estimated total present value cost for Alternative 2 is approximately \$640,000 and includes the Baseline Characterization cost of \$215,000. **Table 5** presents a general breakdown of the estimated costs associated with Alternative 2.

3.2.3 Alternative 3A: Enhanced Monitored Natural Recovery

This alternative consists of the Baseline Characterization as detailed within **Section 3.2.2.1**, a Pre-Design Investigation to support active remedy design, construction of a thin-layer non-reactive sediment cover in areas exceeding the CUL, implementation of ICs, and a monitoring and evaluation period as detailed within **Section 3.2.2.3**. The objective of this alternative is to provide an immediate, cost-conscious improvement to the PBAZ through construction of a 0.15-meter (0.5-foot) sand cover over sediments with concentrations of dioxins exceeding the CUL of 11.2 ng/kg (i.e., the Midpoint SQT), an area of approximately 146 acres. The objective is to "assist" and accelerate naturally occurring processes within the Site, such as contaminant isolation through sedimentation, and thus reduce risks to aquatic life. The major components of the EMNR alternative are described in the following sections.

3.2.3.1 Pre-Design Investigation

A pre-design investigation would be conducted for Alternatives 3A, 3B, 4, and 5 to collect specific physical and chemical sediment data required for design of the specific remedy selected. The objectives of the pre-design investigation could include: collecting sediment chemical data to refine remedial areas, volumes, depths, etc.; collecting sediment physical data to assist in design of remedy implementation efforts such as dredging, dewatering dredged sediments, evaluating cover/cap stability, etc.; and collecting hydrodynamic data to further refine the CSM, define areas under erosive forces, assist in selection of cover/cap materials, etc. The pre-design investigation includes the following elements:

- Pre-design Investigation Work Plan;
- Bulk sediment chemical sampling at up to 50 locations and an average of three intervals per location to include dioxins (congeners);
- Bulk sediment grain size analysis at up to 50 locations and up to two intervals per location;
- Miscellaneous engineering tests such as shear strength testing, treatability studies, etc.;
- Pre-construction bathymetric survey of the entire reservoir; and
- Pre-Design Investigation Results Report.

3.2.3.2 0.15-Meter Thin-Layer Sediment Cover

The EMNR thin-layer cover (cover) in this alternative would be approximately 0.15 meter thick and placed in areas where sediments exhibit dioxins concentrations exceeding the CUL (**Figure 9**). As previously stated, the thickness of the cover will be evaluated further, should it be selected as a remedial alternative. The depth of contamination would likely impact areas in which a thin-layer cover is constructed and could be influenced by the thickness of the PBAZ in a particular habitat area. The cross sectional detail presented in **Figure 9** presents a possible scenario of how contamination could be addressed by a cover using a habitat zone approach. Final thin-layer cover construction details would be determined during the design phase. The thin-layer cover material would consist of natural materials approximating the common substrates found in the area where the thin-layer cover is placed (USEPA, 2005), such as a fine to medium-grained sand. The estimated volume of sand to be placed is 160,000 cubic yards, which includes a 4-centimeter (1.5-inch) average over placement.

Implementation of the EMNR Alternative would likely include the following:

- Remedial design services, permitting, reporting, and project and construction management;
- Mobilization/Demobilization to include assembly/breakdown of equipment;
- Construction of an upland support area;
- Purchasing of cover material, such as sand, and import to upland staging area;
- Labor and equipment to construct the thin-layer cover;
- Site operating expenses and site security;
- Construction quality assurance (CQA); and
- Site restoration.

Implementation of the EMNR Alternative or any remedy involving construction activities would require construction of an upland support area in which to stage and conduct all construction activities. The upland support area would be located in an easily accessible area that is both acceptable to the land owner (Minnesota Power) and is not disruptive to nearby residences. A

potential staging area includes the open lot adjacent to the Forbay Reservoir flow control structure, as shown on **Figure 2**. Features of the upland support area would consist of a site entrance, office trailer and parking area, cover material stockpile area, various equipment storage areas, and a hopper area.

Sand placement for construction of covers and caps has been conducted via numerous methods, including dumping from barges, washing materials overboard from barge decks, spraying of sand/water slurry, mechanical placement with buckets, and hydraulic pumping with controlled discharge (e.g., diffuser box or plate). For large expanses requiring relatively thin, even applications, hydraulic methods appear to be the preferred method of placement and can be both time and cost efficient. Additionally, certain hydraulic methods, such as hydraulic spreader barge with diffuser plate or diffuser box, are capable of applying cover/cap materials in a uniform manner and allow materials to accumulate in layers, which is often necessary to avoid displacement of or mixing with the underlying contaminated sediment (Parsons, 2004). This method of hydraulic spreader barge with diffuser plate or diffuser box was incorporated into the cost analysis.

It is estimated that construction of the thin-layer cover could be conducted in a single construction season and using a single hydraulic spreader barge based on the conceptual remedial area of 157-acres as presented in **Figure 9**. If future data collection indicates a substantial increase in the remedial area is necessary, additional spreader barges or longer working durations could be utilized to construct the remedy within a single construction season. As shown in **Table 4**, the total time to implement construction of the cover is 29 weeks.

3.2.3.3 Institutional Controls

Contaminated sediments would remain in place beneath the cover; therefore, ICs could be required to maintain the integrity of the cover. ICs may include restrictions on dredging in the reservoir as well as ICs as detailed in **Section 3.2.2.2**.

3.2.3.4 Monitoring and Evaluation Period

Contaminated sediments would remain in place as part of the EMNR Alternative and therefore a monitoring and evaluation period would be necessary. Monitoring and evaluation events would be performed 1, 3, and 5 years following construction completion. In general, monitoring and evaluation would be conducted as detailed within **Section 3.2.2.3**; however, the scope of the final monitoring and evaluation program will be determined during remedy design and will be partially based on results of the Baseline Characterization. The monitoring and evaluation period will also include periodic coring to ensure that the integrity of the cover is maintained.

3.2.3.5 Cost

The cost of the EMNR Alternative will be largely dependent on the total volume of cover material placed. Assuming that construction of the cover would be conducted within a fixed time frame (i.e., a single northern Minnesota construction season), the amount of cover material required will likely dictate the method of placement, the crew size and working periods (i.e., length of work day and work week), the daily production rate, the number of trucks required to haul material on-site each day, and ultimately reductions in project cost per cubic yard of material placed due to economies of scale.

The estimated total present value cost for Alternative 3A is approximately \$10,000,000 and includes costs for the Baseline Characterization at \$215,000, the Pre-Design Investigation at \$280,000, and the Monitoring and Evaluation Period at \$530,000 (2016 costs). The ROM cost assumes construction of a 0.15-meter sand cover, plus an average 4-centimeter (1.5-inch) over

placement, over the entire remedial area. **Table 6** presents a breakdown of the estimated costs associated with Alternative 3A.

3.2.3.6 Other Logistical Issues

Logistical issues that may affect cover placement operations include a construction window limited to spring through fall time periods. The reservoir is typically ice-covered by mid-December through mid-March.

Some areas of the Site experience erosion or deposition, especially in high-flow events. The forces responsible will need to be further studied and considered during the Baseline Characterization and Pre-Design Investigation stages, possibly leading to placement of armoring materials as part of the cover design.

Thomson Reservoir has an operating range of approximately 10 vertical feet. There must be sufficient water depth within the Site during the construction window to allow for sufficient barge draft in shallow cover construction areas.

3.2.4 Alternative 3B: Enhanced Monitored Natural Recovery with Cover Amendment

This alternative includes the same elements as Alternative 3A except that the 0.15-meter (0.5-foot) cover would consist of sand mixed with one or more amendment materials (such as GAC, PAC, pelletized AC, etc.) appropriate for sequestration of dioxins. It is anticipated that a single layer of a sand/amendment mix would be constructed rather than separate amendment and sand layers. Amendments mixed into and applied with soil or sand may provide better dispersion, uniformity, placement controls, and contact time when the required quantity of amendment is small, versus bulk placement of amendment materials (USEPA, 2013). As discussed in Section 3.1.4, the results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments. AC was incorporated into the cost analysis to address dioxins contamination for the purposes of this FFS. For the purpose of this FFS, an estimated 4,000 cubic yards of GAC is necessary for the Alternative 3B application, based on a 4% ratio of GAC to sand by weight in the upper 0.15 meters of sediment. Likewise, the application rate of amendment material would also be conducted at the design phase. The chosen application rate of amendment to be applied should be capable of sequestering COCs migrating upward through the reactive cover material for an indefinite period of time and should account for mixing of cover material into underlying sediments over time through bioturbation processes. The final amendment application rate may depend upon COC sediment concentrations, depth of contamination, and the presence or absence of groundwater upwelling. An application rate of 4 % carbon by weight was incorporated into the cost analysis for the purposes of this FFS.

3.2.4.1 Estimated Cost

The total cost for Alternative 3B will be greater than the cost for Alternative 3A as it would include costs for purchasing and shipping the reactive amendment material and would include additional labor and equipment to mix the amendment and primary cover materials. This additional cost will be highly dependent on the type of amendment material used. The estimated total present value cost for Alternative 3B assuming a carbon-based sorbent is approximately \$28,700,000 and includes costs for the Baseline Characterization at \$215,000, the Pre-Design Investigation at \$280,000, and the monitoring and evaluation period at \$530,000 (2016 costs). **Table 6** presents a breakdown of the estimated costs associated with Alternative 3B.

3.2.5 Alternative 4: Potentially Bioactive Zone Cap

This alternative consists of the Baseline Characterization as detailed within **Section 3.2.2.1**, the Pre-Design Investigation as detailed within **Section 3.2.3.1**, construction of a 0.5- to 1.2-meter (1.6- to 3.9-feet) thick PBAZ sand cap (cap), implementation of ICs as detailed within **Section 3.2.3.3**, and a Monitoring and Evaluation Period as detailed within **Section 3.2.2.3**. The constructed cap would be equal in thickness to the PBAZ, which in turn is determined based on the various habitat areas present at the Site. Construction of a cap equal to or greater in thickness than the PBAZ should provide contaminant isolation from aquatic plant and animal life. Construction of a cap would also mitigate exposure to human receptors, although human health criteria are not being used as cleanup criteria at this time. The cap would be constructed over sediments with concentrations of dioxins exceeding the CUL. The major components of the PBAZ Cap Alternative are described in the following sections.

3.2.5.1 Bio-Active Zone Cap

The cap in this alternative would be a minimum of 0.50 meters thick and constructed in areas where COCs exceed the CUL (**Figure 10**), an area of approximately 157 acres. The cap material would consist of natural materials approximating the common substrates found in the area where the cap is constructed (USEPA, 2005), such as a fine to medium-grained sand. The cap thickness would be sufficient to protect aquatic life from burrowing or rooting into contaminated sediments below and prevent against contaminated sediments mixing with cap materials due to plant or animal bioturbation. This "zone" of animal and plant activity is referred to as the PBAZ.

The three habitat zones and associated PBAZ thicknesses are presented in **Section 1.4.4.2** and on **Figures 6** and **10**. All three habitat areas exist within the Site boundary and, therefore, 0.50-meter, 1.0-meter, and 1.2-meter cap thicknesses were incorporated into the theoretical cap design for this FFS. In addition to the PBAZ zone thickness an additional 0.15 meter was incorporated into the cap design to account for mixing of sediments and capping material during construction. Approximately 620,000 cubic yards of material would be required to construct the cap.

The cross sectional detail included in **Figure 10** presents one potential method of cap construction using a habitat zone/PBAZ approach. An alternative construction method, also using a habitat/PBAZ approach, is also shown that incorporates recently deposited sediments (e.g., sediments deposited after primary sources of dioxins to the Site were removed) into the cap construction. Final cap construction details would be determined during the design phase.

Methods used to construct the cap would likely be identical to those outlined in **Section 3.2.3.2** for construction of the thin-layer cover. It was assumed for the purposes of this FFS that two spreader barges would complete construction of the PBAZ cap in approximately 50 weeks, working 12 hours per day; therefore, remedy implementation would be completed over two construction seasons. It is likely that remedy implementation could be completed within a single construction season if work is conducted 24 hours per day.

3.2.5.2 Cost

The cost of the PBAZ Cap Alternative will be largely dependent on the total volume of cap material to be placed. Assuming that cap placement would be conducted within a fixed time frame (i.e., a single northern Minnesota construction season), the amount of cap material required will likely dictate the method of placement, the crew size and working periods (i.e., length of work day and work week), the daily production rate, the number of trucks required to haul material on-site each day, and ultimately reductions in project cost per cubic yard of material placed due to economies of scale.

The estimated total present value cost for Alternative 4 is approximately \$34,000,000 and includes costs for the Baseline Characterization at \$215,000, the Pre-Design Investigation at \$280,000, and the Monitoring and Evaluation Period at \$530,000 (2016 costs). **Table 7** presents a breakdown of the estimated costs associated with Alternative 4.

3.2.5.3 Other Logistical Issues

Logistical issues that may affect thin-layer cover placement as detailed in **Section 3.2.3.6** also apply to the PBAZ Cap Alternative. Because the PBAZ Cap Alternative includes placement of a much larger volume of material, the detailed logistical issues are of greater concern.

3.2.6 Alternative 5: Dredging with Thin-Layer Cover

The Dredging Alternative consists of the Baseline Characterization as detailed within **Section 3.2.2.1**, the Pre-Design Investigation as detailed within **Section 3.2.3.1**, hydraulically dredging and disposing of contaminated sediments, post-dredge construction of a 0.15-meter thin-layer sand cover (cover), implementation of ICs as detailed within **Section 3.2.3.3**, and a Monitoring and Evaluation Period as detailed within **Section 3.2.2.3**. The objective of this alternative is to remove accessible sediments with dioxins concentrations exceeding the CUL and thus removing contaminant mass from the Site. The major components of the dredging alternative are described in the following sections.

3.2.6.1 Dredging

Dredging would be conducted to remove sediments with dioxins concentrations exceeding the CUL (**Figure 11**). Dredging will likely focus on areas with CUL exceedances within the upper 0.50 meters of sediment as the benefit of removing sediments in areas solely having deep contamination (e.g., beginning at 0.50 meters below the sediment surface) may not outweigh the high cost of also having to remove large volumes of non-impacted or less-impacted overburden. Construction of a thicker sand cover/cap may be a more desirable option in these areas.

Based on input from MPCA multiple dredging passes instituted based on exceedances of post dredge verification criteria would not be conducted. Dredging would be conducted to a defined dredge prism neat line using best management practices to control and reduce contaminated dredge residuals. A Normal Dredge Residue (NDR) verification approach may be used to ensure that best management practices are being followed and that "undredged inventory" is accounted for. A 0.15-meter (0.5-foot) thin-layer cover would be placed over all dredged areas of the Site to manage dredge residuals (**Figure 11**).

Implementation of the Dredging Alternative would likely include the following:

- Remedial design services, permitting, reporting, and project and construction management;
- Mobilization/Demobilization to include assembly/breakdown of equipment;
- Construction of an upland support area to include a sediment dewatering pad and water treatment plant;
- Labor and equipment to dredge contaminated sediments;
- Labor, equipment, and materials to treat dredge contact water;
- Purchasing of cover material, such as sand, and import to upland staging area;
- Habitat restoration and wetland plantings;
- Labor and equipment to construct the thin-layer cover;

- Labor and equipment to excavate dewatered sediments;
- Transportation to and disposal of dewatered non-hazardous sediments at a local landfill;
- · Site operating expenses and site security;
- CQA; and
- Site restoration.

Implementation of the Dredging Alternative would require construction of an upland staging area to stage and conduct all construction activities, as detailed in **Section 3.2.3.2**. The amount of land area required for the Dredging Alternative would be significantly larger than the EMNR and PBAZ Cap Alternatives as the Dredging Alternative would require a dedicated area for sediment dewatering and dredge water treatment. It was assumed for the purposes of this FFS that dredging would be conducted hydraulically. The determination to incorporate hydraulic methods into the cost analysis was made solely based on the large volume of material to be removed from the Site. Further investigation into sediment removal methods would be conducted during the design phase.

It is expected that dredging and subsequent placement of the thin-layer cover could be conducted in a single construction season using two dredges working 24 hours per day, 5 days per week. Completion of construction within a single season would also likely necessitate concurrent placement of the thin-layer cover as dredge areas are completed. This timeframe estimate is based off a total dredge volume of 380,000 cubic yards, or an average cut of 0.30 meters (1 foot) across the conceptual 157-acre remedial area plus a 0.15-meter (0.5-foot) over-dredge. Due to additional time required to construct the large upland support area, large increases in the total dredge volume could push dredging and/or placement of the thin-layer cover into a second construction season. Regardless of the final dredge volumes, however, excavation of the dewatered sediments (i.e., the "bag field") would likely be conducted during a second construction season as sediments would require several months to dewater following completion of dredging. As shown in **Table 4**, the total time to implement the Dredging Alternative is 33 weeks during the first construction season and 28 weeks during the second construction season for excavation, transportation, and disposal of dewatered sediments.

3.2.6.2 Cost

The cost of the Dredging Alternative will be largely dependent on the total volume of the designed dredge prisms. Assuming that dredging and subsequent thin-layer cover placement would be conducted within a fixed time frame (i.e., a single northern Minnesota construction season), the amount of sediments to be dredged will likely dictate the size and number of dredges required, the crew size and working periods (i.e., length of work day and work week), the daily production rate, the timeframe required for dewatered sediment excavation, and ultimately influence reductions in project cost per cubic yard of material dredged due to economies of scale. Additionally, the total dredge volume will influence cost elements typically more expensive than dredging alone, such as sediment dewatering and contact water treatment, excavation and transportation of dewatered sediments to the landfill, and landfill disposal costs.

The estimated total present value cost for Alternative 5 is approximately \$51,000,000 and includes costs for the Baseline Characterization at \$215,000, the Pre-Design Investigation at \$280,000, and the Monitoring and Evaluation Period at \$530,000 (2016 costs). **Table 8** presents a breakdown of the estimated costs associated with Alternative 5. Present worth calculations for all alternatives are included in **Table 10**.

3.2.6.3 Other Logistical Issues

Logistical issues that may affect dredging operations include high bedrock elevations within and surrounding Thomson Reservoir. These bedrock outcroppings may be encountered during dredging and could potentially make it difficult or impossible to remove all contaminated sediments on top of or within the recesses of these outcroppings. An amendment such as granular carbon may need to be added to the thin-layer cover in areas with inaccessible, highly contaminated sediments.

Bedrock outcroppings within the proposed upland support area could drastically increase the cost and complexity of grading the dewatering pad and could necessitate using a different dewatering technology altogether.

The size of the upland support area is large (estimated at 15 acres) primarily due to the large dredge volumes and sediment dewatering pad. The borders of the upland support area have the potential to encroach on residential properties to the south and could be received as a nuisance. The site entrance should be located adjacent to the spillway to minimize truck traffic through the residential area. Additionally, fence line air monitoring should be conducted to minimize off-site migration of dust during construction and/or hauling activities.

Thomson Reservoir has an operating range of approximately 10 vertical feet. There must be sufficient water depth within the Site during the construction window to allow for sufficient dredge and spreader barge draft within the shallow areas.

Some areas of the Site experience erosion or deposition, especially in high-flow events. The forces responsible will need to be further studied and considered during the Baseline Characterization and Pre-Design Investigation stages, possibly leading to placement of armoring materials as part of the thin-layer cover design.

3.2.7 Alternative 6: Enhanced Monitored Natural Recovery with Broadcast Amendment

This alternative consists of the Baseline Characterization as detailed within **Section 3.2.2.1**, the Pre-Design Investigation as detailed within **Section 3.2.3.1** and broadcasting an amendment material over sediments with COC concentrations exceeding the Midpoint SQT (i.e., the CULs). Areas of the Site exceeding the CULs are presented in **Figure 12** and equal approximately 157 acres. The objective of applying an amendment material to in situ sediments at the Site is to reduce availability of Site COCs in sediments and sediment pore water to aquatic organisms and thereby limit the exposure and affects to the organisms, and transfer of chemical contaminants to higher trophic organisms. This alternative was developed to minimize intrusive remedial action construction activities within habitats already established at the Site.

ICs would be implemented and a monitoring/evaluation period would commence following application of the selected amendment to remedial areas. The major components of Alternative 2 are described in the following sections.

3.2.7.1 Amendment Selection and Application Rate

This alternative consists of applying a thin layer of amendment material directly on top of in situ contaminated sediments. It is anticipated that the amendment material would be mixed into the underlying sediments over time through natural bioturbation processes caused by burrowing organisms, larger animal life, and rooting plants; therefore, this alternative is intended to reduce contaminant availability rather than provide isolation from contaminants as in a traditional capping scenario. The chosen amendment material would reduce exposure of aquatic life to COCs through sequestration of COCs in sediments and sediment pore water. Selection of an amendment material would be conducted during the design phase; however, as discussed in

Section 3.1.4, the results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments.. Potential amendment materials for consideration include pelletized AC, phosphate additives (e.g., apatite), bauxite, biopolymers, and zeolite (USEPA, 2013). Any potential negative effects of these amendments, such as the potential for increased levels of eutrophication for phosphate additives, should also be considered during amendment selection. For the purposes of this FFS, the selected amendment material will be pelletized AC.

The chosen application rate (i.e., thickness) of amendment to be applied should be capable of sequestering COCs in sediments and sediment pore water for an indefinite period of time, assuming that no ongoing source of contamination is present. It was assumed that a 0.01-meter layer of amendment material would be applied to in situ sediments strictly for cost analysis purposes. The final amendment application rate would be determined during the design phase and may largely depend upon COC sediment concentrations, depth of contamination, and the presence or absence of groundwater upwelling.

Implementation of this alternative assumes that approximately 8,100 cubic yards of amendment material would be broadcasted over a 157-acre area at an average thickness of 0.01 meter.

3.2.7.2 Institutional Controls

Contaminated sediments would remain in place beneath the cover; therefore, ICs could be required to maintain the integrity of the cover. ICs may include restrictions on dredging in the reservoir as well as ICs as detailed in **Section 3.2.2.2**.

3.2.7.3 Monitoring and Evaluation Period

Contaminated sediments would remain in place as part of the EMNR Alternative, and therefore, a monitoring and evaluation period would be necessary. Monitoring and evaluation events would be performed 1, 3, and 5 years following construction completion. In general, monitoring and evaluation would be conducted as detailed within **Section 3.2.2.3**; however, the scope of the final monitoring and evaluation program will be determined during remedy design and will be partially based on results of the Baseline Characterization. The monitoring and evaluation period will also include periodic coring to ensure that the integrity of the cover is maintained.

3.2.7.4 Cost

The cost of the EMNR with Broadcast Amendment Alternative will be largely dependent on the total volume of amendment material placed. Assuming that construction of the cover would be conducted within a fixed time frame (i.e., a single northern Minnesota construction season), the amount of amendment material required will likely dictate the method of placement, the crew size and working periods (i.e., length of work day and work week), the daily production rate, the number of trucks required to haul material on-site each day, and ultimately reductions in project cost per cubic yard of material placed due to economies of scale.

The estimated total present value cost for Alternative 6 is approximately \$20,000,000 and includes costs for the Baseline Characterization at \$215,000, the Pre-Design Investigation at \$280,000, and the Monitoring and Evaluation Period at \$530,000 (2016 costs). The ROM cost assumes an average 1-centimeter amendment placement over the entire remedial area. **Table 9** presents a breakdown of the estimated costs associated with Alternative 6.

3.2.7.5 Other Logistical Issues

Logistical issues that may affect cover placement operations include a construction window limited to spring through fall time periods. The reservoir is typically ice-covered by mid-December through mid-March.

Some areas of the Site experience erosion or deposition, especially in high-flow events. The forces responsible will need to be further studied and considered during the Baseline Characterization and Pre-Design Investigation stages, possibly leading to placement of armoring materials as part of the cover design.

Thomson Reservoir has an operating range of approximately 10 vertical feet. There must be sufficient water depth within the Site during the construction window to allow for sufficient barge draft in shallow cover construction areas.

4.0 REMEDY SELECTION CRITERIA

The alternatives were evaluated and compared using the NCP remedy selection criteria outlined below and in general accordance with USEPA guidelines for feasibility studies (USEPA, 1990). The NCP remedy selection criteria are divided into three groups based on the function of the criteria in remedy selection. The NCP definitions of each criterion are included below. Green Sustainable Remediation (GSR) criteria were also evaluated during this FFS and are included as a fourth group of criteria. Additional detail may be added from MPCA and/or USEPA guidance where appropriate.

4.1 Threshold Criteria

The Threshold Criteria relate to statutory requirements that each alternative must satisfy in order to be eligible for selection and include the following:

4.1.1 Overall Protection of Human Health and Ecological Receptors

Alternatives shall be assessed to determine whether they can adequately protect human health and ecological receptors, in both the short- and long-term, from unacceptable risks posed by hazardous substances, pollutants, or contaminants present at the Site by eliminating, reducing, or controlling exposures to levels established during development of remediation goals. Overall protection of human health and ecological receptors draws on the assessment of other evaluation criteria, especially long-term effectiveness and permanence, short-term effectiveness, and compliance with ARARs. RAOs for the Site do not include the protection of human health; therefore, the overall protection of human health was not assessed for remedial alternatives in this FFS.

4.1.2 Compliance with Applicable or Relevant and Appropriate Requirements

The alternatives shall be assessed to determine whether they attain applicable or relevant and appropriate requirements under federal environmental laws and state environmental or facility citing laws or provide grounds for invoking a waiver.

4.2 Primary Balancing Criteria

The Primary Balancing Criteria are the technical criteria upon which the detailed analysis is primarily based and include the following.

4.2.1 Long-Term Effectiveness and Permanence

Alternatives shall be assessed for the long-term effectiveness and permanence they afford, along with the degree of certainty that the alternative will prove successful. Factors that shall be considered, as appropriate, include the following:

- Magnitude of residual risk remaining from untreated waste or treatment residuals remaining at the conclusion of the remedial activities. The characteristics of the residual should be considered to the degree that they remain hazardous, taking into account their volume, toxicity, mobility, and propensity to bioaccumulate.
- Adequacy and reliability of controls, such as containment systems and ICs, necessary to manage treatment residuals and untreated waste. This factor addresses, in particular, the uncertainties associated with land disposal for providing long-term protection from residuals; the assessment of the potential need to replace technical components of the

alternative, such as a cap, a slurry wall, or a treatment system; and the potential exposure pathways and risks posted should the remedial action need replacement.

4.2.2 Reduction of Toxicity, Mobility, or Volume Through Treatment

The degree to which alternatives employ recycling or treatment that reduces toxicity, mobility, or volume shall be assessed, including how treatment is used to address the principal risks posed by the Site. Factors that shall be considered, as appropriate, include the following:

- 1. The treatment or recycling processes the alternatives employ and materials they will treat;
- 2. The amount of hazardous substances, pollutants, or contaminants that will be destroyed, treated or recycled;
- 3. The degree of expected reduction in toxicity, mobility, or volume of the waste due to treatment or recycling and the specification of which reductions(s) are occurring;
- 4. The degree to which the treatment is irreversible;
- 5. The type and quantity of residuals that will remain following treatment, considering the persistence, toxicity, mobility, and propensity to bioaccumulate of such hazardous substances and their constituents; and
- 6. The degree to which treatment reduces the inherent hazards posed by principal threats at the Site.

4.2.3 Short-Term Effectiveness

The short-term impacts of alternatives shall be assessed considering the following:

- 1. Short-term risks that might be posed to the community during implementation of an alternative;
- 2. Potential impacts on workers during remedial action and the effectiveness and reliability of protective measures;
- 3. Potential environmental impacts of the remedial action and the effectiveness and reliability of mitigating measures during implementation; and
- 4. Time until protection is achieved.

4.2.4 Implementability

The ease or difficulty of implementing the alternatives shall be assessed by considering the following types of factors, as appropriate:

- 1. Technical feasibility, including technical difficulties and unknowns associated with the construction and operation of a technology, the reliability of the technology, ease of undertaking additional remedial actions, and the ability to monitor the effectiveness of the remedy;
- 2. Administrative feasibility, including activities needed to coordinate with other offices and agencies and the ability and time required to obtain any necessary approvals and permits from other agencies (for off-site actions); and
- Availability of services and materials, including the availability of adequate off-site treatment, storage capacity, and disposal capacity and services; the availability of necessary equipment and specialists, and provisions to ensure any necessary additional resources; the availability of services and materials; and the availability of prospective technologies.

4.2.5 Costs

The types of costs that shall be assessed include the following:

- 1. Capital costs, including both direct and indirect costs;
- 2. Annual O&M costs; and
- 3. Net present value of capital and O&M costs.

The USEPA guidance document "A Guide to Developing and Documenting Cost Estimates During the Feasibility Study" (USEPA, 2000) was used to develop cost estimates presented in this FFS. The cost estimates developed for this FFS are primarily for the purpose of comparing remedial alternatives during the remedy selection process, not for establishing project budgets.

4.3 Modifying Criteria

The third group is made up of the Modifying Criteria specified below. These last two criteria are assessed formally after the public comment period, although to the extent that they are known will be factored into the identification of the preferred alternative.

4.3.1 State/Support Agency Acceptance

Assessment of state/agency concerns may not be completed until comments on this FFS are received, but may be discussed, to the extent possible, in the proposed plan issued for public comment. The state/agency concerns that shall be assessed include the following:

- 1. The state's/agency's position and key concerns related to the preferred alternative and other alternatives; and
- 2. State/agency comments on ARARs or the proposed use of waivers.

4.3.2 Community Acceptance

This assessment includes determining which components of the alternatives interested persons in the community support, have reservations about, or oppose. This assessment may not be completed until comments on the proposed plan are received.

4.4 Green Sustainable Remediation

The last group is made up of the GSR criteria specified below. There are six criteria included with this analysis, which are then summarized to provide each alternative with an overall qualitative GSR rating. The six GSR criteria evaluated with this FFS include the following:

- Greenhouse Gas (GHG) Emissions;
- Toxic Chemical Usage and Disposal;
- Energy Consumption;
- Use of Alternative Fuels;
- Water Consumption; and
- Waste Generation.

5.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

The purpose of the comparative analysis is to identify and compare advantages and disadvantages of each evaluated alternative relative to one another with respect to remedy selection criteria presented in **Section 4.0** in order to determine which of the alternatives best meets those criteria. The comparative analysis is documented in this section and summarized in **Table 11** and **Table 12**. **Table 13** presents a numerical comparison of the evaluated alternatives.

5.1 Threshold Criteria

Only those alternatives that would meet the threshold criteria of providing overall protection of ecological receptors and would attain compliance with ARARs were carried forward for comparative analysis. Based on available information, all alternatives discussed in **Section 3.2** will achieve some protection of ecological receptors from unacceptable risks posed by hazardous substances, pollutants, or contaminants present at the Site to varying degrees.

Alternatives 1 would provide no achievement of this criteria. Alternative 2 would provide a low achievement of protection because all contaminated sediment would be left in place and no actions would be performed to isolate contaminated sediments from receptors. This alternative instead relies on ICs and natural sedimentation to slowly isolate and biodegrade contaminants. Sedimentation rates at the Site may range between less than 1 millimeter per year (Beak, 1992) and 50 millimeters per year (Schubauer-Berigan and Crane, 1996). Based on ITRC guidance, sites with net sedimentation rates of 5 millimeters per year are candidates for MNR (ITRC, 2014); however, sedimentation data for the Site is sparse and the uncertainty of sedimentation at the site is high. Therefore, Alternative 2 may provide protection of human health and ecological receptors over time. ARARs would not be met for sediment because contamination would remain in place.

Alternatives 3A, 3B, 4, 5, and 6 would eliminate or control exposure to contaminated sediment over time; however, contaminated sediment would remain in place under Alternatives 3A, 3B, 4, and 6, requiring monitoring to assure long-term effectiveness. Further, hydrodynamics of the Site, including sediment erosion and deposition, are limited or unknown; therefore, uncertainty of the ability for Alternatives 3A, 3B, 4, and 6 to meet threshold criteria is high. Alternatives 3A, 3B, and 6 would rely on natural sedimentation to isolate contaminated sediment from receptors. Natural sedimentation rates at the Site are currently poorly understood. Alternative 4 would provide a higher level of protection than Alternatives 3A, 3B, and 6 because contaminated sediments would be isolated and a new PBAZ would be established; however, contaminated sediments would remain and place and a high degree of uncertainty regarding the overall effectiveness of Alterative 4 due to a lack up understanding of hydrodynamics at the Site. Alternative 5 would provide the highest level of protection, since contaminated sediments would be removed from the aquatic environment; however, the depth of sediments impacted with dioxins is currently not known and complete removal of all contaminated sediment may not be feasible and the ability to meet threshold criteria is uncertain.

In summary, Alternatives 1 and 2 provide a no and low achievement of protection ecological receptors and a low achievement of ARARs, respectively; however, the degree of environmental effects requires additional evaluation. Alternatives 3A, 3B, 4, and 6 provide moderate to moderately high achievement, respectively, of protection of ecological receptors and ARARs. Alternative 5 provides the highest achievement of protection of ecological receptors and ARARs at the Site, but contaminated sediment would be relocated off-site.

5.2 Balancing Criteria

5.2.1 Long-Term Effectiveness and Permanence

Alternatives 1 provides no achievement of this criteria. Alternative 2 provides a low achievement of long-term effectiveness or permanence as the MNR at the Site is currently poorly understood and the Site may not achieve RAOs in a reasonable time frame.

Based on ITRC guidance, sites with net sedimentation rates of 5 millimeters per year are candidates for MNR (ITRC, 2014). Alternatives 2, 3A, 3B, and 6 may be effective in the long-term because historical sedimentation data indicates sedimentation rates at the Site range between 28 and 50 millimeters per year; however, sediment erosion and deposition data are limited for the Site and uncertainty of the long-term effectiveness and permanence of these alternatives is high. Unknowns in the hydrodynamic model, such as the erosion of contaminated sediments, as well as the effects of periodic flooding, may also reduce the long-term effectiveness and permanence of Alternatives 2, 3A, 3B, and 6. Additionally, contaminated sediment would remain in place under Alternatives 2, 3A, 3B, and 6, requiring a monitoring and evaluation period and ICs to assure longterm effectiveness; therefore, these alternatives have a low to moderate degree of permanence. Of these three alternatives, Alternative 2 would achieve the least long-term effectiveness and permanence because it relies only on natural sedimentation, which may be inadequate to isolate contaminated sediments. Alternative 3A would achieve better long-term effectiveness and permanence than Alternative 2 because natural sedimentation would be supplemented by the 0.15-meter thin-layer cover, accelerating the process of physical isolation. Alternative 3B would provide better long-term effectiveness and permanence than Alternative 3A because the amended thin-layer cover material would likely reduce exposure to contaminants through flux while also accelerating the process of physical isolation. Alternative 6 may provide better longterm effectiveness than Alternative 3A because the broadcast amendment would likely reduce exposure to contaminants, similar to Alternative 3B; however, Alternative 6 would not benefit from the isolation from contaminants that is included in Alternative 3A/3B. Bench-scale testing indicates that Alternative 3B and Alternative 6 will likely be effective in the long term when amendment materials mix into underlying sediments and sequester sediment contaminants throughout the entire PBAZ.

Alternative 4 has a higher degree of long-term effectiveness than Alternatives 2, 3A, 3B, and 6. Contaminated sediments would remain in place under Alternative 4, requiring a monitoring and evaluation period to assure long-term effectiveness and permanence. Hydrodynamic data for the Site, including flow velocities and sediment erosion and deposition, are limited or currently unavailable; therefore, uncertainty of the long-term effectiveness and permanence of Alternative 4 is relatively high.

Dredging and disposal of dewatered sediment at an off-site landfill under Alternative 5 would be the most effective in the long-term compared to Alternatives 2, 3A, 3B, 4, and 6; however, contaminants would not be permanently destroyed. All accessible contaminated sediments would potentially be removed under Alternative 5, providing the most permanence. The depth of sediments impacted with dioxins is currently not known and complete removal of all contaminated sediment under Alternative 5 may not be feasible; therefore, Alternative 5 has a high degree of uncertainty regarding long-term effectiveness and permanence.

In summary, Alternative 5 would provide the highest degree of long-term effectiveness, followed by Alternative 4 because contaminants would either be removed completely or made inaccessible by a cap; however, because the depth of contamination and hydrodynamics of the Site are not well understood, the long-term effectiveness and permanence of these remedies is uncertain. Alternatives 3A, 3B, and 6 provide moderate long-term effectiveness and permanence because

these alternatives rely on natural sedimentation, which is currently not well understood. Alternatives 1 and 2 provide the lowest degree of long-term effectiveness and permanence.

5.2.2 Reduction of Toxicity, Mobility, or Volume Through Treatment

Treatment of contaminants sediments to reduce toxicity, mobility, or volume is not a major component of any of the evaluated alternatives.

Alternatives 1, 2, and 3A would not provide a reduction in the toxicity, mobility, or volume through treatment; however, mobility of contaminants would be reduced over time providing adequate sedimentation is occurring at the Site. The amended material utilized in Alternative 3B and 6 would provide some reduction of toxicity by reacting with contaminated materials that pass through the thin-layer cover through ebullition, infiltration, and bioturbation processes. Alternative 4 would also not provide a reduction in the toxicity, mobility, or volume through treatment; however, mobility of contaminants would be reduced at the time of the remedial action because contaminated sediments would be capped in place and toxicity would be reduced over time through natural processes.

Alternative 5 would not provide a reduction in the toxicity, mobility, or volume through treatment; however, the volume of contaminated sediment would be reduced at the Site because all accessible contaminated sediment would be removed from the aquatic environment, though the volume of contaminated sediment transported to the off-site landfill would not change. Therefore, removal of contaminants from the aquatic environment would provide a reduction in toxicity, mobility, and volume of contaminants within the Reservoir. Removal of the contaminants would be considered permanent.

In summary, Alternatives 1, 2, and 3A provide the lowest degree of toxicity, mobility, and volume reduction through natural processes. Alternative 3B and 6 are the only remedies that achieves reduction of toxicity, mobility, or volume through treatment via amendment material, achieving a moderate to high achievement of these criteria. Alternative 4 effectively reduces the mobility of contaminated sediments and would reduce the toxicity over time, providing a moderate to high achievement of these criteria. Alternative 5 would provide the highest degree of reduction of volume, though not through treatment. Natural degradation and sedimentation is poorly understood at the Site, therefore uncertainty of the level of achievement for all alternatives is high, with exception to Alternative 5.

As summarized in **Section 1.4.3.1**, in order to evaluate how a remedial alternative involving AC might affect mercury, which is present in sediment at the Site but determined not to be a COC, a literature review was completed by the United States Army Research and Development Center. The review focused on how a remedy involving AC will impact the potential for mercury toxicity and bioaccumulation. Review of available research indicated either AC is a useful sorbent for reducing the potential for mercury bioaccumulation, or that AC is not effective at sorbing mercury; however, AC does not appear to increase the potential for mercury toxicity and bioaccumulation in water or sediments (U.S. Army Research and Development Center, 2020).

5.2.3 Short-Term Effectiveness

There are no short-term risks associated with Alternative 1. Alternative 2 has low short-term risks as sampling and monitoring activities would have no effect on the Site; with the exception of minimal risk to site workers during sampling efforts, which is mitigated through the Site Safety and Health Plan (SSHP). The rest of the alternatives would have short-term risks during implementation of the remedy. Alternatives 3A, 3B, 4, 5, and 6 require varying amounts of capping or dredging that may impact short-term effectiveness. The potential short-term risks increase as the complexity of each alternative increases. Alternatives 6, 3A, 3B, 4, and 5 have a respectively

increasing degree of complexity. The potential short-term risks to the community and workers with Alternatives 3A, 3B, 4, 5, and 6 are associated with increased boat/barge and trucking traffic, daily job hazards, and contact with contaminated materials, dust, and noise.

No short-term adverse effects to aquatic habitat and biota are associated with Alternatives 1 and 2, with the exception of continued exposure to contaminated sediments.

Short-term adverse effects to aquatic habitat and biota would be similar among Alternatives 3A, 3B, 4, 5, and 6, and would include displacement of fish and smothering or removal of benthic organisms; however, the degree of these effects varies with each alternative. Alternative 6 would result in the least amount of short-term adverse effects, followed by Alternatives 3A and 3B because benthic organisms would likely survive placement of broadcast amendment or thin-layer cover material. Under Alternatives 3A and 3B, benthic organisms would benefit from immediate access to 0.15 meters of contaminant-free habitat to reside in; however, benthic organisms would still have access to contaminated sediments within their natural habitat until natural sedimentation provides adequate isolation of contaminated sediment. Alternative 4 would have more short-term adverse effects because benthic organisms would not survive cap placement and former habitat would be smothered; however, cap design and construction incorporating habitat zones and associated PBAZ thicknesses would prevent exposure of newly established benthic organism colonies to contaminated sediments.

Alternative 4 would have immediate short-term impacts to the power-generating potential of Thomson Reservoir because the alternative includes construction of a cap up to 1.20 meters in thickness. This cap thickness would reduce the overall capacity of the reservoir and limit the power-generating capabilities of the hydroelectric generator in Forbay Reservoir.

Alternative 5 would likely present similar adverse effects as Alternative 4 since dredging contaminated sediments would result in a complete loss of the established habitat and benthic community. Additionally, the thin-layer cover placed following dredging would not provide as much habitat for benthic communities to recover. The total depth of contamination is not currently known; therefore, if contaminated sediments are not completely removed benthic organisms may be exposed to contamination not previously accessible.

Benthic organisms would be expected to be re-established for all alternatives within several growing seasons.

Short-term adverse effects to surface water may also occur during thin-layer cover and cap placement, as well as dredging activities. Surface water control structures have shown that they are reliable in minimizing these short-term adverse effects.

In summary, Alternative 6 will have the highest achievement of the short-term effectiveness criterion followed by Alternative 3A and 3B. Alternative1 and 2 and will have a moderate achievement of this short-term effectiveness criterion. Alterative 4 and 5 have a low achievement of short term effectiveness due to an increase in short-term risks from construction activities and immediate destruction of existing benthic communities and habitat.

5.2.4 Implementability

There are no implementability concerns associated with Alternatives 1 and few with Alternative 2. Alternative 2 ICs limiting access to the Reservoir may be difficult to enforce. Varying degrees of capping, dredging, upland construction, surface water control structures, and/or monitoring and evaluation would be required under Alternatives 3A, 3B, 4, 5, and 6. These alternatives are technically feasible and implementable from an engineering perspective. These technologies have been implemented successfully at other sediment sites and could be readily implemented at the Site. Services and materials are available for implementing each component of the remedy.

Alternative 5 includes dredging contaminated sediment that is in contact with subgrade (bedrock) that may pose additional but not insurmountable difficulties. Additionally, depth of contamination is currently not known; therefore, if the depth of contamination is significantly greater than what is currently estimated, removal of all contaminated sediment under Alternative 5 may be difficult to implement.

Weather could significantly impact productivity of Alternatives 3A, 3B, 4, 5, and 6, particularly if done in the early spring or late fall. High winds in the late fall produce large waves that could impact productivity. Winter or freezing conditions in the fall could also impact productivity or shorten the construction season altogether. Alternative 5 has the longest estimated time to complete and therefore would stand to be the most impacted by weather.

Implementability also includes administrative feasibility of the remedy. As with most sediment remediation activities, multiple state and federal agencies and other stakeholders input is required, providing a lower achievement of administrative feasibility of implementing a remedy. Additional time will be required to obtain any necessary approvals and permits from other agencies. Alternatives 3A, 3B, 4, 5, and 6 will require extensive coordination and concurrence with Minnesota Power, the entity that manages the Reservoir and owns much of the surrounding land. Several of these alternatives will impact the capacity of the reservoir and would require extensive construction for lay-down and staging areas, which could pose difficulties to implementation.

Alternative 5 will require more coordination with other regulatory agencies than Alternatives 3A, 3B, 4, and 6 because off-site disposal will be required. Permits for capping, however, would be required for Alternatives 3A, 3B, 4, and 6. Alternatives 1 and 2 will require the least amount of coordination with regulatory agencies and stakeholders.

In summary, Alternative 1 provides the greatest achievement of the implementability criterion. Alternative 2 is then the next easiest to implement since it requires only sampling and monitoring. Alternatives 3A, 3B, and 6 have the next highest achievement of implementability, respectively, because they impact the reservoir the least, require a shorter implementation schedule, and are generally less complex compared to Alternatives 4 and 5. Alternative 5 is more complex than Alternative 4, and will require the most permitting and a longer construction schedule; therefore, Alternative 5 achieves the lowest implementability ranking of all the alternatives. **Table 13** presents a numerical score that provides a scale to compare all alternatives.

5.2.5 Cost

Cost estimates developed for each alternative are included in **Section 3.0** and summarized in **Table 4**. Cost estimates include capital costs for professional/technical services, construction activities, and ICs, monitoring and evaluation costs over a 5-year period, and periodic costs such as bathymetric surveys. Costs are presented as present value in each respective alternative cost estimate summary table (**Table 5** through **Table 9**) with a base year of 2016 and a discount rate of 7%.

Cost estimates are presented as ROM costs as insufficient data exists in which to delineate the horizontal and vertical extent of contamination at the Site, and significant assumptions regarding contaminated sediment volumes and the spatial extent of contamination were made to facilitate cost estimating. Full delineation of remedial areas is essential for conducting cost estimating as unit volumes (i.e., volume of sediments requiring removal, transportation, disposal, etc.; volume of cover/cap materials to be purchased, placed, etc.) have a dramatic influence over total project cost. For example, larger scale projects typically see reduced costs per unit of material dredged/placed due to economies of scale and potential efficiencies gained by working several shifts in a single day (e.g., 16-hour or 24-hour production days) and through maximizing use of

rented equipment/facilities and constructed upland support features. Additionally, changes in unit volumes can increase the total project cost rapidly as individual cost elements can be more expensive than sediment removal or cover/cap placement alone, such as transportation, disposal, sediment dewatering and contact water treatment, and purchase of amendments, treatment media, or other consumables.

Site hydrodynamics are also poorly understood. Development of a hydrodynamic model would be beneficial in defining erosive and depositional areas of the Site. Definition of erosive areas could add to total project cost as additional armoring materials could be required over sand cover/cap areas to prevent scouring. Definition of depositional areas of the Site could reduce total project costs as alternatives involving natural recovery through contaminant isolation could be implemented.

In summary, the cost estimates provided within this FFS should be considered to be ROM costs and should be refined after additional Site data is collected. As compiled, Alternative 1 has no cost. Alternative 2 is the most cost effective option; however, it only includes a baseline study and a monitoring and evaluation period of 5 years. Alternative 3A is the next most cost-effective option as only a thin-layer sand cover is required. Alternatives 6 is the next most cost-effective option as it requires application of amendment material, which is significantly more expensive than sand used in Alternative 3A. Alternative 4 is similar in cost effectiveness to Alternative 3B, but it requires significantly more sand than Alternative 3A. Alternative 3B is significantly more costly than Alternatives 3A and 6 because it requires both sand and amendment material. Alternative 5 is the least cost effective option as it requires complete removal of contaminated sediments, transportation and disposal of contaminated sediments, and placement of thin-cover material. **Table 13** presents a score that compares the costs for all alternatives.

5.3 Modifying Criteria

The modifying criteria, State/support agency and community acceptance, are typically assessed formally after a public comment period; however, this FFS will not go to public comment. This FFS was developed in coordination with the MPCA and the final document will have MPCA acceptance.

5.4 Green Sustainable Remediation Criteria

5.4.1 Green House Gas Emissions

Alternatives 1 produces no GHG. Alternative 2 would only produce GHG emissions associated with mobilization/demobilization and boat operation associated with sampling efforts. Alternatives 3A, 3B, 4, 5, and 6 would result in GHG emissions from the mobilization, operation, and demobilization of all fuel-powered construction equipment required to construct the cap/cover, and/or dredge. Alternative 5 would also produce emissions during transport by truck to the disposal facility. Reduction of emissions can be accomplished by using equipment that is compliant with the latest USEPA non-road engine standards and retrofitting older equipment with appropriate filters.

5.4.2 Toxic Chemical Usage and Disposal

There are no known toxic chemicals associated with these alternatives.

5.4.3 Energy Consumption

Alternatives 1 has no energy consumption. Alternative 2 would consume minimal amounts of fossil fuels compared to the other alternatives. Alternatives 3A, 3B, 4, 5, and 6 would result in the

consumption of fossil fuels for the mobilization, operation, and demobilization of all diesel-powered construction equipment associated with the dredging, hauling, and disposal of the contaminated sediment and the installation of the cover/cap material. The amount of cover/cap material placed in Alternatives 3A and 3B is considerably less than in Alternative 4; therefore, the energy consumption for cover/cap construction for Alternatives 3A and 3B would be less than Alternative 4. Alternative 5 would require the greatest amount of energy to implement.

5.4.4 Use of Alternative Fuels

Alternatives 1 and 2 would not require the use of alternative fuels. Biodiesel blended fuels (B10 or B20) could be used as a supplemental fuel source for all diesel powered construction equipment associated with Alternatives 3A, 3B, 4, 5, and 6.

5.4.5 Water Consumption

Alternatives 1 and 2 would not require the consumption of water. There are few water consumption considerations associated with Alternatives 3A, 3B, 4, 5, and 6. A minimal quantity of water would be required to decontaminate personnel and equipment during sediment dredging activities associated with Alternative 5, and water utilized for hydraulic dredging would be sourced from the Reservoir, treated during the dewatering process, and returned to the Reservoir.

5.4.6 Waste Generation

Alternatives 1, 2, 3A, 3B, 4, and 6 would not generate a significant amount of waste. Alternative 5 would generate a large volume of waste that includes the dredged contaminated sediments.

5.5 Comparative Analysis Summary

The comparative analysis of alternatives narrative discussion and quantitation table (**Table 13**) did not clearly identify a superior alternative to address the contamination at the Site and no significant difference in the balancing criteria score was found between these alternatives other than cost; however, Alternatives 3B and 6 received the highest overall scores and should be evaluated further for remedy selection. All alternatives, with the exception of Alternative 1, involve relatively high degrees of uncertainty due to limited knowledge and understanding of contaminant distribution, risks to receptors, and hydrodynamics at the Site.

Bench-scale treatability testing (**Appendix F**) was completed on sediments collected from Scanlon Reservoir (which are assumed to be similar in composition and COCs to Site sediments) to evaluate the effectiveness of different AC amendments and doses to reduce the bioavailability of dioxins/furans in Site sediments using two AC particle size ranges; a silt-sized powdered activated carbon (PAC) and a fine sand-sized granular activated carbon (GAC). The results of the bench-scale treatability indicated that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins in Site sediments. Application methods will be retained for further engineering and cost evaluations.

Review of available research indicates either AC is a useful sorbent for reducing the potential for mercury bioaccumulation, or that AC is not effective at sorbing mercury; however, AC does not appear to increase the potential for mercury toxicity and bioaccumulation in water or sediments (U.S. Army Research and Development Center, 2020).

The comparative analysis summary tables and comparative analysis quantitation table are presented in **Table 11**, **Table 12**, and **Table 13**, respectively.

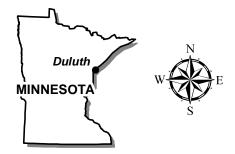
The modifying criteria, State/support agency acceptance, and community acceptance are assessed formally after the public comment period. Stakeholder and community input will provide valuable insight as the MPCA considers information for the selection of a preferred alternative. The MPCA will conduct outreach activities to resource managers, current Site users, the public and local units of government prior to the public comment period.

Further studies are recommended during the design phase of the selected alternative. These recommended studies, depending on the alternative selected, may include:

- Further delineation and determination of extent, thickness, and volume of contaminated sediment;
- Hydrodynamic study to understand natural processes such as depositional and scouring forces to inform design and placement of cover materials, and effectiveness of Monitored Natural Recovery (MNR);
- Updated bathymetric survey and mapping of substrate types;
- Investigation into the potential for ongoing sources related to upstream industries.

6.0 REFERENCES

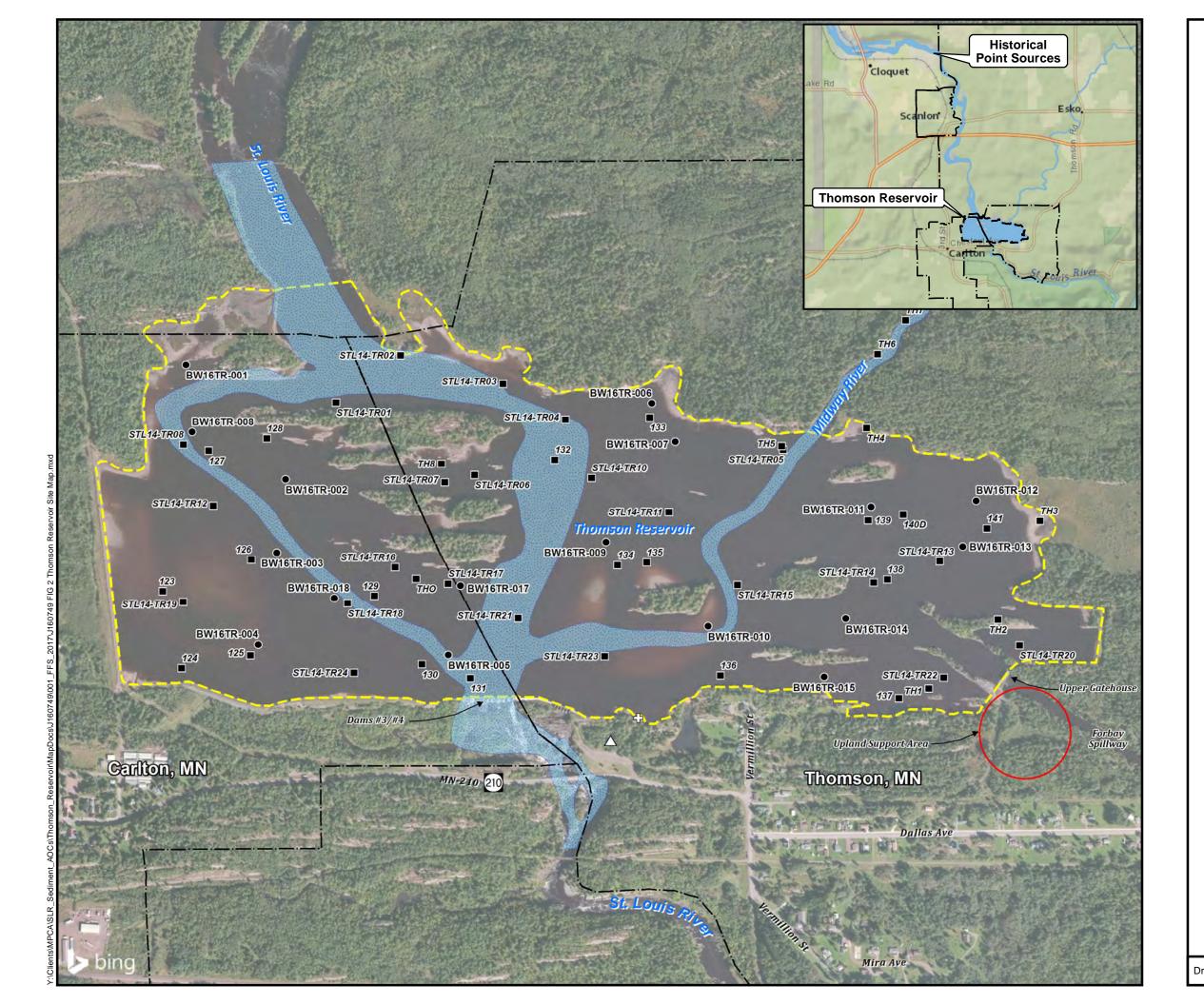
- Bay West LLC, 2015. DRAFT Technical Memorandum, Remedial Action Objectives, Preliminary Remedial Goals, Potentially Bioactive Zone Thicknesses, SR#276 U.S. Steel Duluth Works Site. October.
- Beak Consultants, LTD. 1992. Estimation of suspended solids loadings in the lower St. Louis River system. Report for Minnesota Power, Duluth, Minnesota. Beak Report #4302.1, Brampton, Ontario.
- Berg, James A., 2011. "Hydrogeology of the Surficial Aquifer, County Atlas Series, Atlas C-19, Part B, Plate 7 of 10"; State of Minnesota, Department of Natural Resources, Division of Ecological and Water Resources.
- Boerboom, Terrence J., 2009. "Geologic Atlas of Carlton County, Minnesota, Atlas C-19, Part A." Minnesota Geological Survey.
- Department of Natural Resources, 1996. Thomson Reservoir Bathymetry.
- EA Engineering, Science, and Technology, Inc., PBC (EA), 2015. "Site Characterization Report, Assessment of Contaminated Sediment, St. Louis River Site Characterization, St. Louis River and Bay Area of Concern, Duluth, Minnesota"; U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, Illinois. EP-R5-11-10.
- Interstate Technology and Regulatory Council (ITRC) Contaminated Sediments Team. 2014. "Contaminated Sediments Remediation – Remedy Selection for Contaminated Sediments." August.
- Minnesota Department of Health (MDH), 2014. Minnesota fish consumption advisory. Health Risk Assessment Unit, MDH, St. Paul, Minnesota.
- Minnesota Power, 2011. 2011 Thomson Reservoir Sediment Sampling.
- Minnesota Power, 2018. Water Quality and Fish Tissue Report for the St. Loius River Project System, 2010-2015. Environmental and Land Management Department. March 1.
- Minnesota Pollution Control Agency (MPCA), 1998. Risk-Based Site Evaluation Manual. September.
- MPCA, 2003. "Bioactive Zone for the Sediment Operable Unit of the St. Louis River/Interlake/Duluth Tar Superfund Site." February.
- MPCA, 2007. "Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota." February.
- MPCA, 2008. "Beneficial Use Impairments." June.
- MPCA, 2009. Managing Dredged Materials in the State of Minnesota. June.
- MPCA, 1995. "Draft Work Plan, Sediment Operable Unit Supplemental Remedial Investigation and Feasibility Study Reports SLRIDT Site, Duluth Minnesota." November 1995.
- MPCA and Wisconsin Department of Natural Resources (WDNR), 1992. "The St. Louis River System Remedial Action Plan. Stage I."
- MPCA and WDNR, 1995. "The St. Louis River System Remedial Action Plan, Progress Report Stage II."
- Parsons Corporation, November 2004. "Onondaga Lake Feasibility Study Report."
- Schubauer-Berigan, M., and J.L. Crane, 1996. "Preliminary Contaminant Assessment of the Thomson, Forbay, and Fond Du Lac Reservoirs"; U.S. Environmental Protection Agency (USEPA), Region V, Great Lakes National Program Office; Chicago, Illinois.


- U.S. Army Research and Development Center, 2020. DRAFT. "The potential for unintended formation of methylmercury and increased mercury bioaccumulation when using activated carbon for remediation of dioxin/furan contaminated sediments at Scanlon and Thomson Reservoirs". March 19.
- USEPA, 2003. NAS Review Draft Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds: Part I: Volume 3: Chapter 3: Levels of CDD, CDF, and PCB Congeners in Environmental Media and Food. USEPA, Exposure Assessment and Risk Characterization Group, National Center for Environmental Assessment Washington Office, Office of Research and Development, Washington, D.C. EPA/600/P-00/001Cb. December.
- USEPA, 1990. "The Feasibility Study: Detailed Analysis of Remedial Action Alternatives." Office of Solid Waste and Emergency Response (OSWER) Directive 9955.3-01FS4. March.
- USEPA, 2000. A Guide to Developing and Documenting Cost Estimates During the Feasibility Study, USEPA, 2000. A Guide to Developing and Documenting Cost Estimates During Feasibility Studies, EPA-540-R-00-002. July.
- USEPA, 2005. "Contaminated Sediment Remediation Guidance for Hazardous Waste Sites."
- USEPA, 2013. "Use of Amendments for In Situ Remediation at Superfund Sediment Sites." April.

Site Location Map

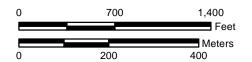
Thomson Reservoir SLR Sediment AOCs

Duluth, MN



Map Projection: NAD 1983 UTM Zone 15 N Basemap: National Geographic Society, i-cubed

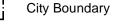
Date Drawn/Revised:5/16/2017 Project No.J160749

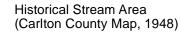

Site Map

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

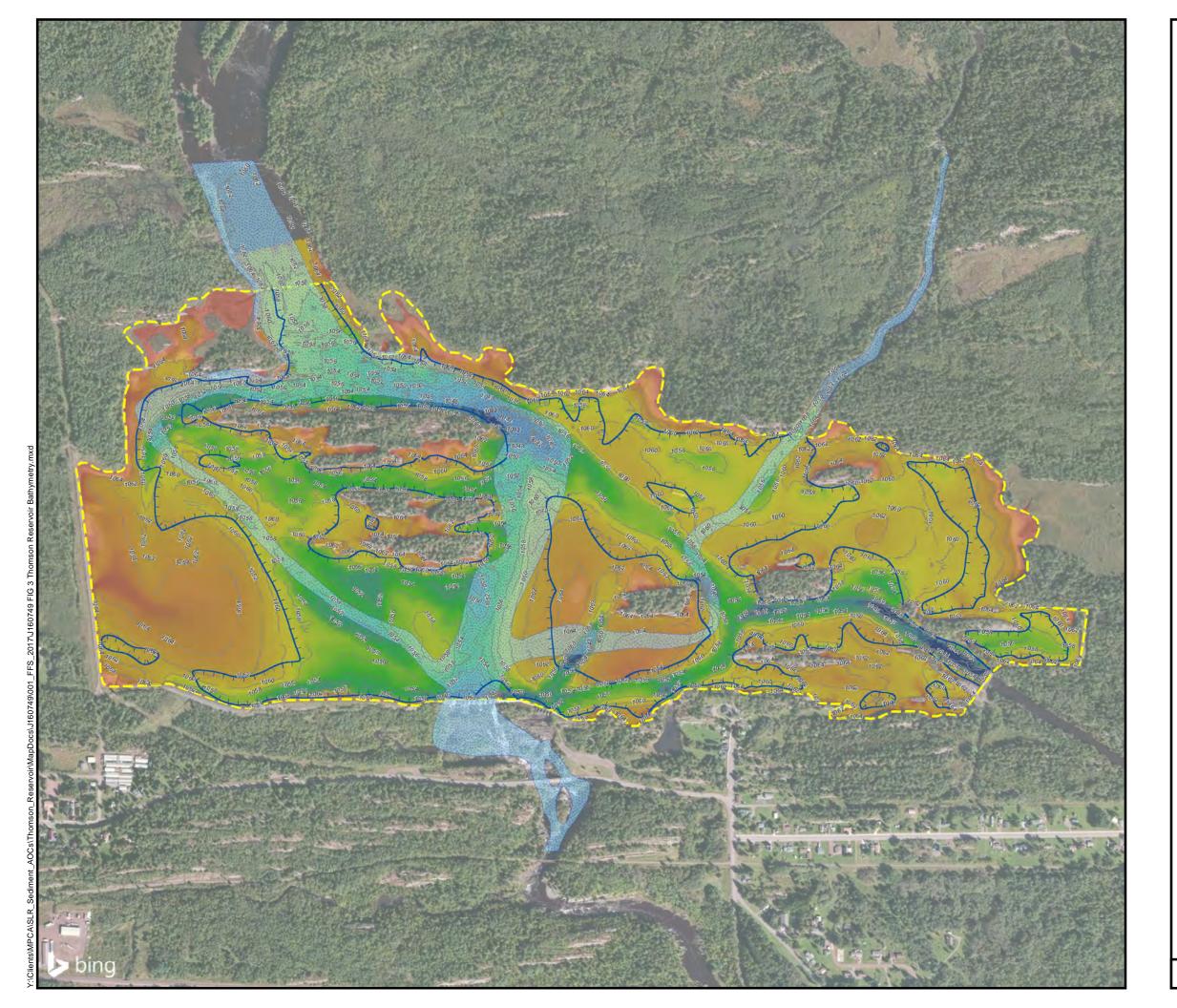
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)




- Sediment Sample Locations(2016)
- **Historical Sediment Sample Locations**
- Carry-Down Access Point (UMD Outpost Pier)

UMD Kayak and Canoe Institute Outpost

Thomson Reservoir Site Boundary



Drawn By: S.G.

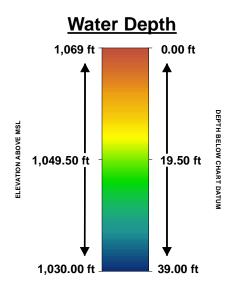
Date Drawn/Revised:5/16/2017 Project No.J160749

Bathymetry

Thomson Reservoir SLR Sediment AOCs

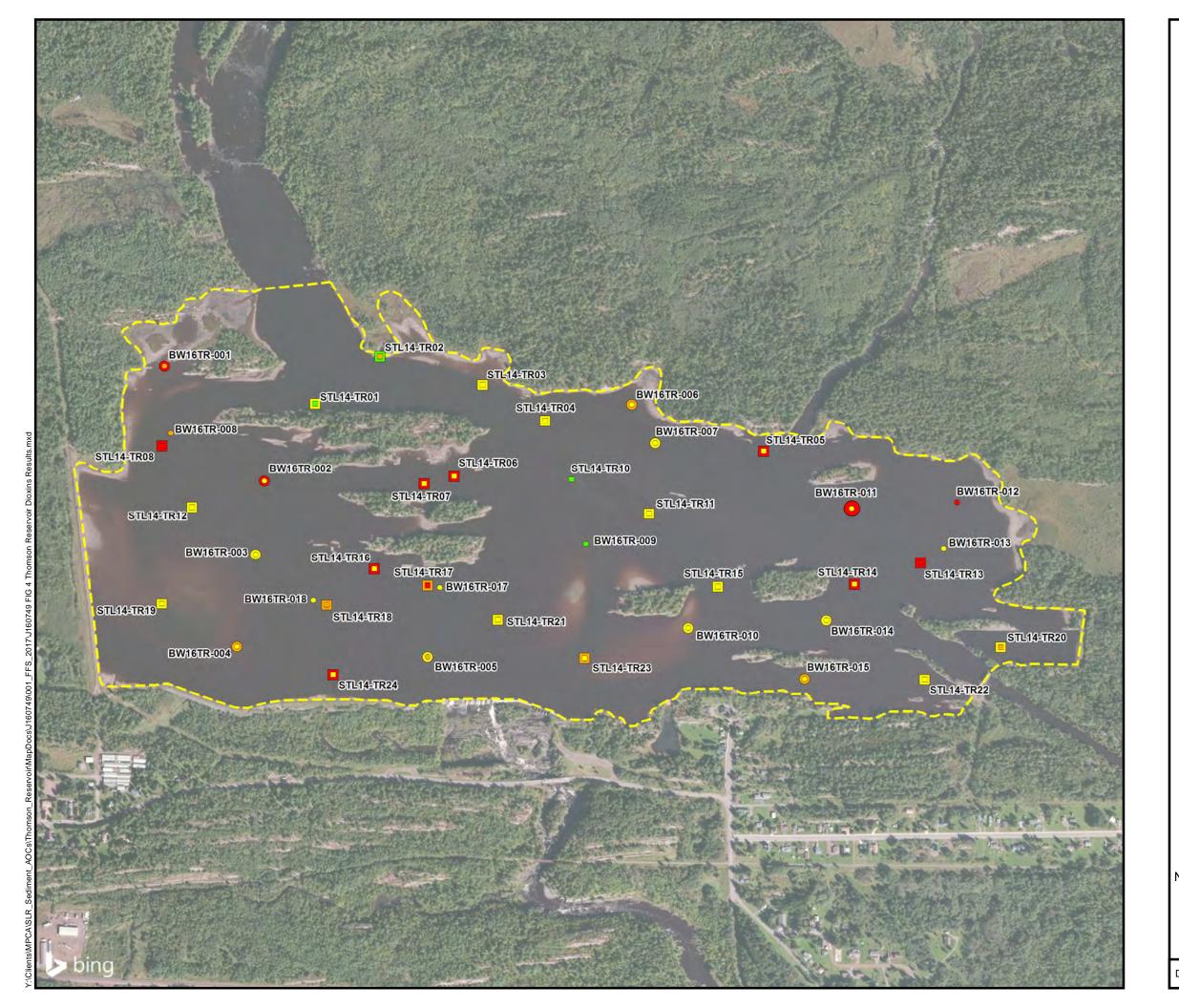
Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

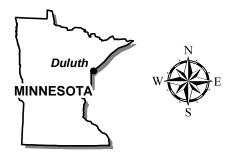


Low Water Line (1059ft)

Bathymetry Contour Line (2ft Intervals)


Thomson Reservoir Site Boundary and High Water Line (1069ft)

Historical Stream Area (Carlton County Map, 1948)


Drawn By: S.G. Date Drawn/Revised:6/15/2017 Project No.J160749

Dioxins Results

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

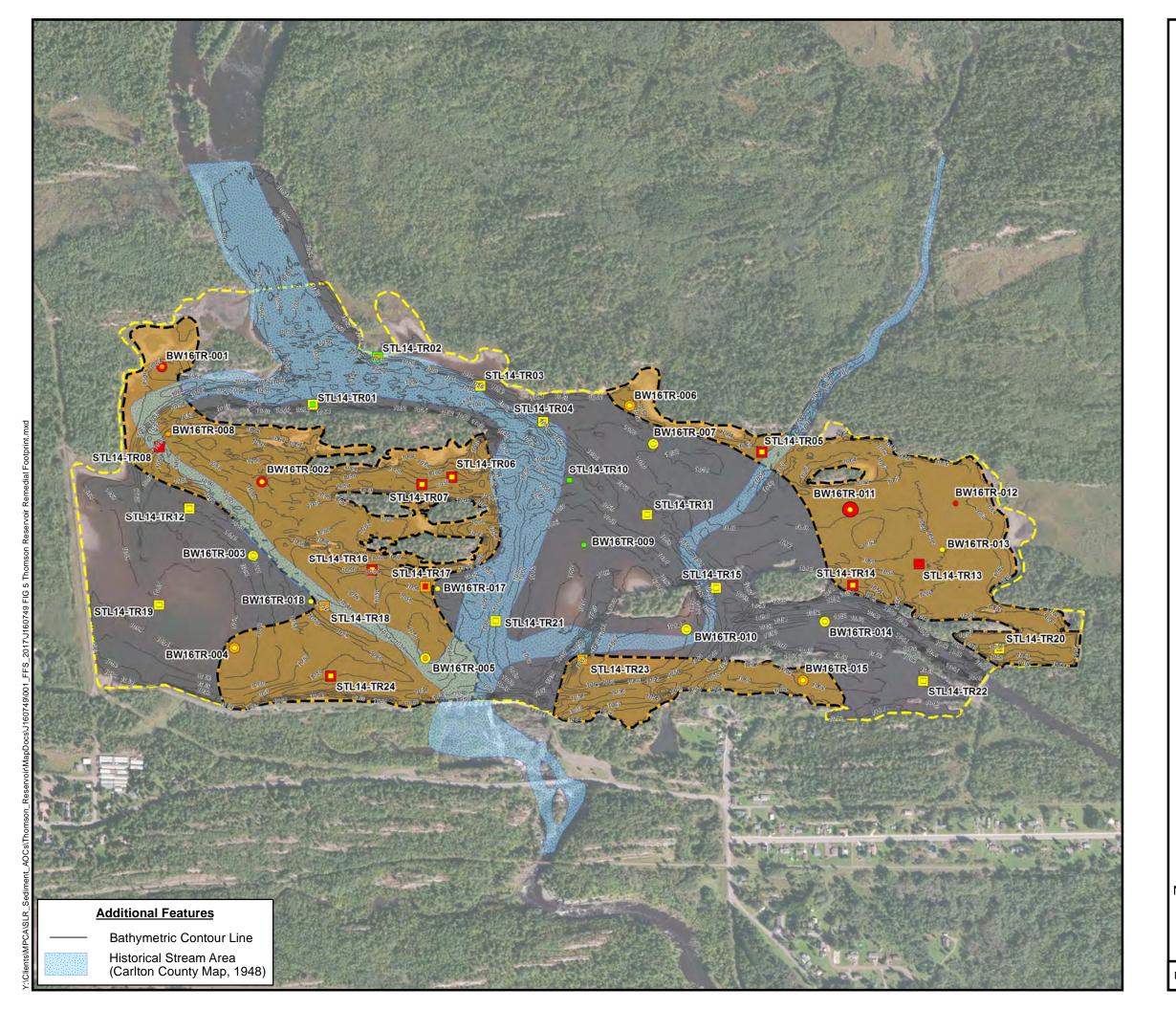
Thomson Reservoir Site Boundary

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m


Dioxins SQT Comparison

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

NOTE: Dioxins results used in SQT comparison are TEQ KM FISH values from MPCA sediment database.

Drawn By: S.G. Date Drawn/Revised:5/16/2017 Project No.J160749

Remedial Footprint

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Thomson Reservoir Site Boundary

Remedial Footprint (156.80 Acres)

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

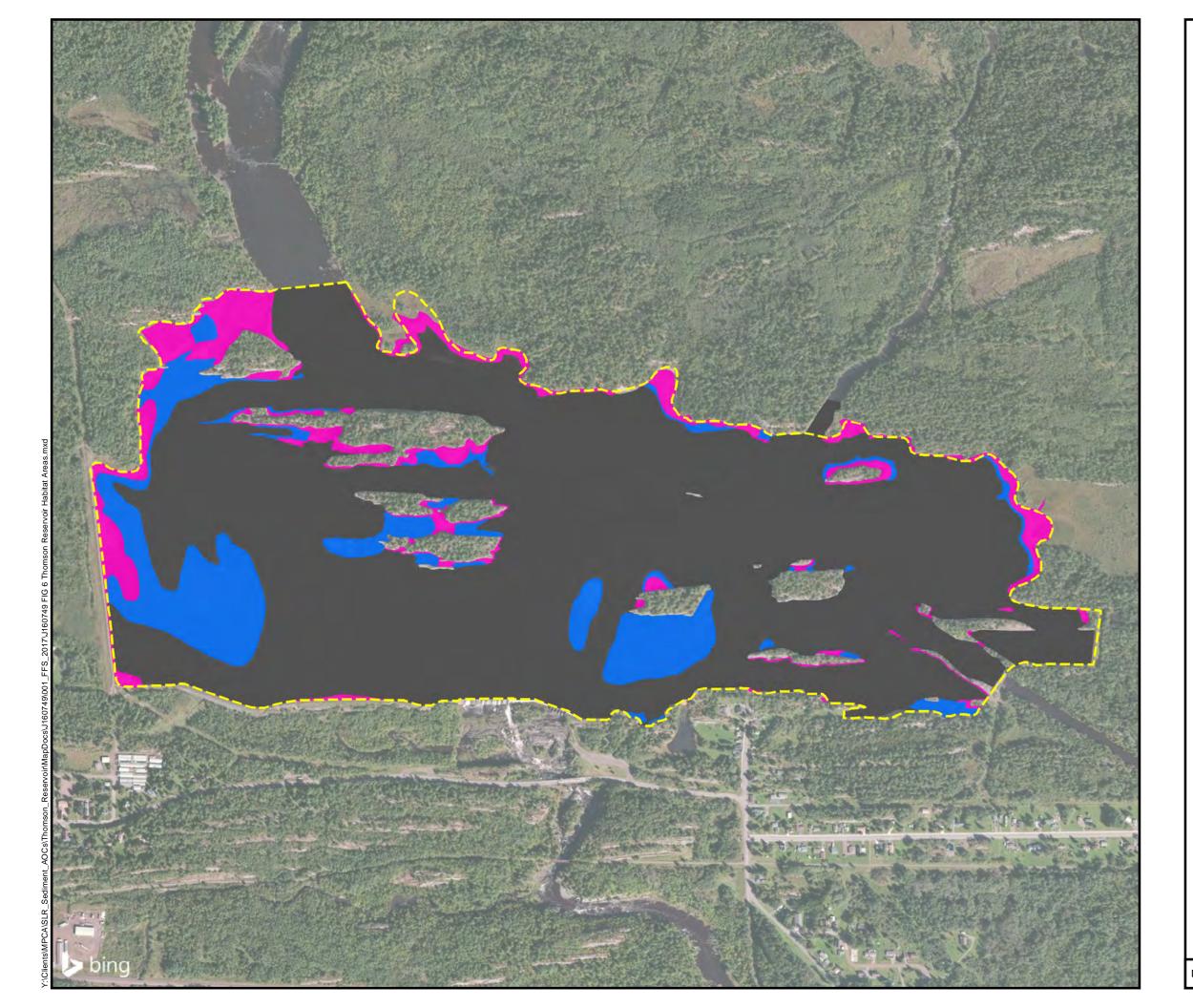
Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Dioxins SQT Comparison

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
 - Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Dioxins SQT Exceedance Areas


Estimated Area Exceeding Midpoint SQT (156.80 Acres)

NOTE: Dioxins results used in SQT comparison are TEQ KM FISH values from MPCA sediment database.

Drawn By: S.G.

Date Drawn/Revised:5/16/2017 Project No.J160749

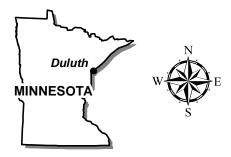


Figure 6

Habitat Areas

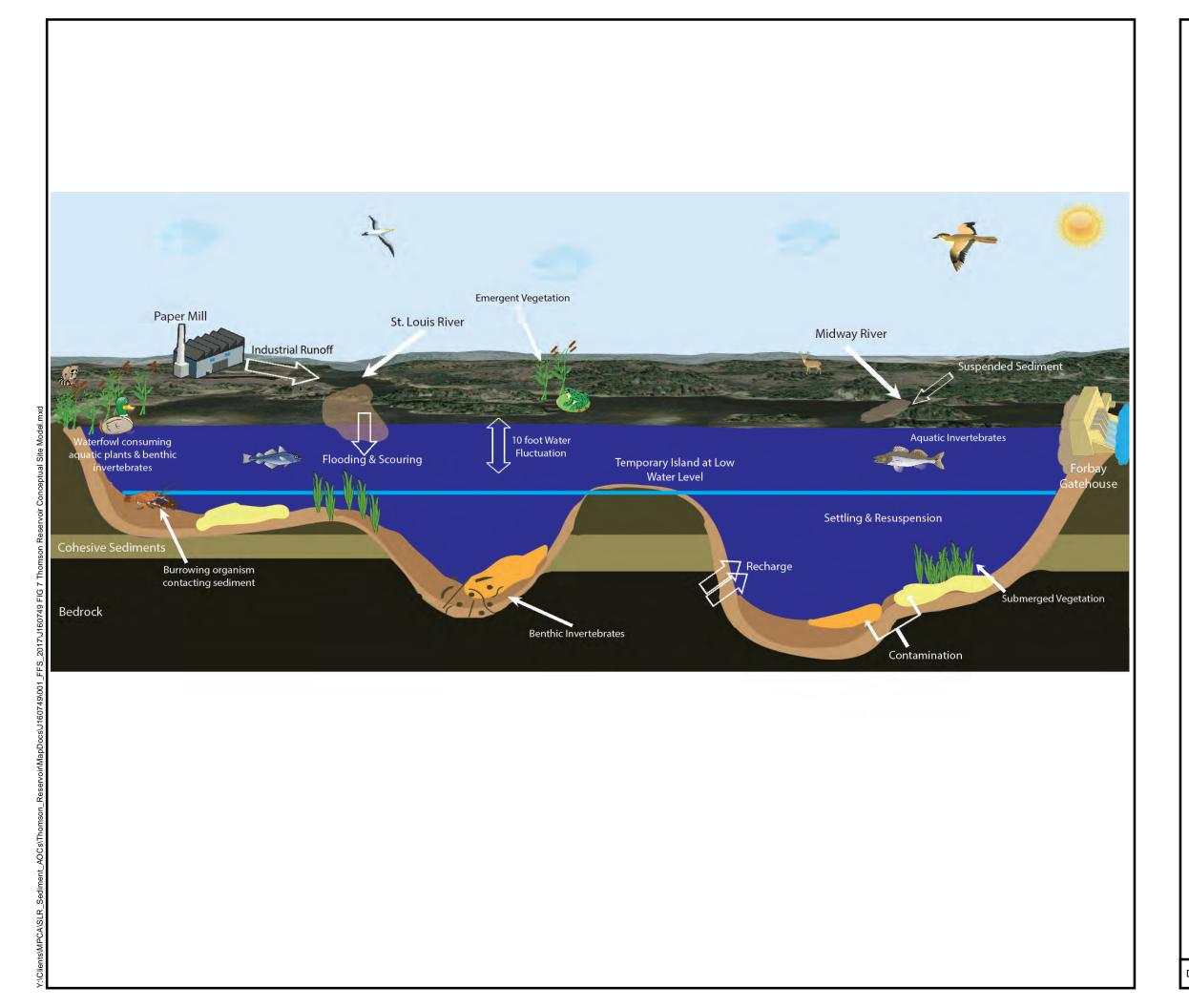
Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Thomson Reservoir Site Boundary

Backshore/Foreshore Habitat Zone (29.56 Acres)

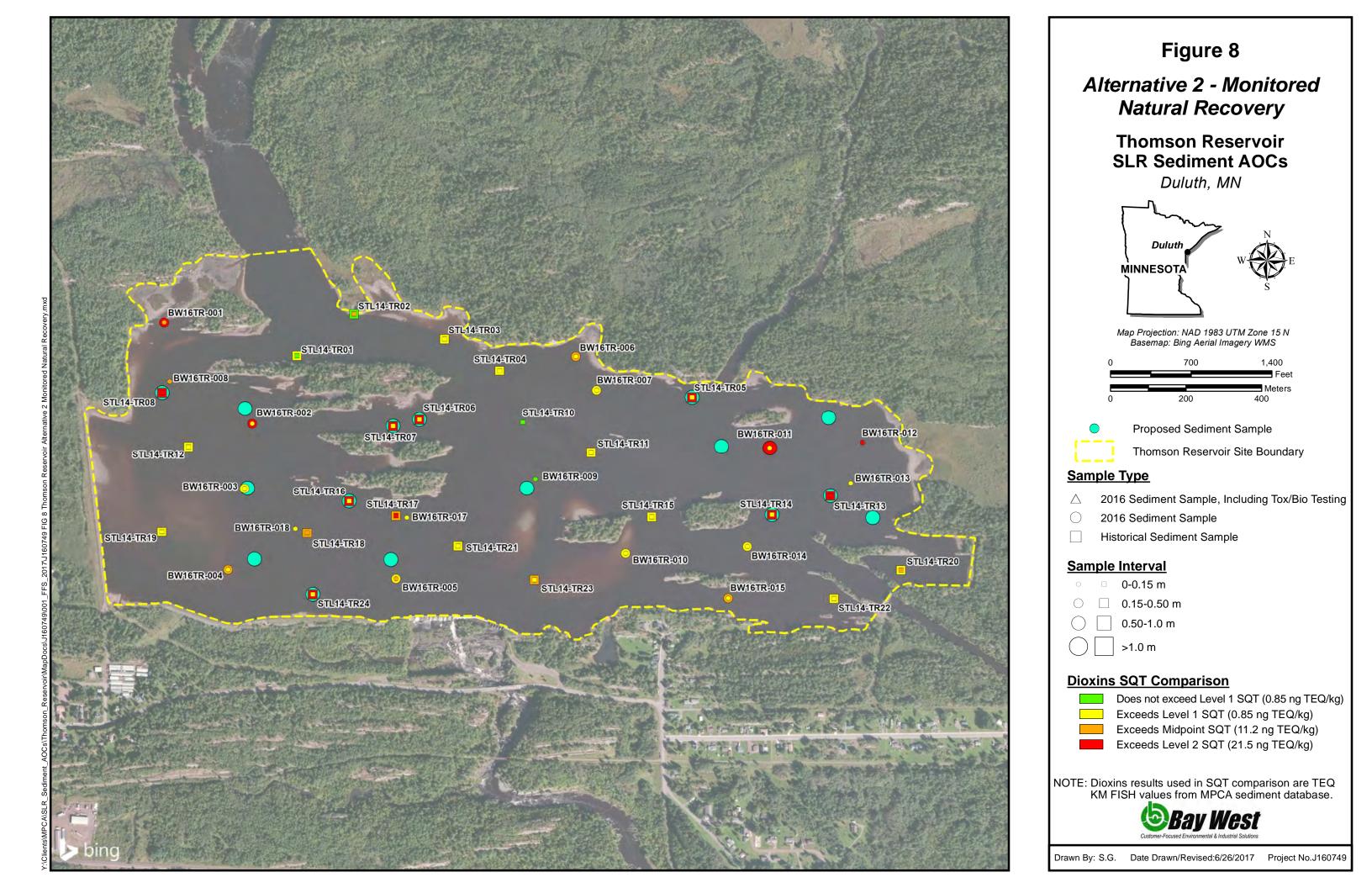

Emergent Aquatic Vegetation Habitat Zone (43.47 Acres)

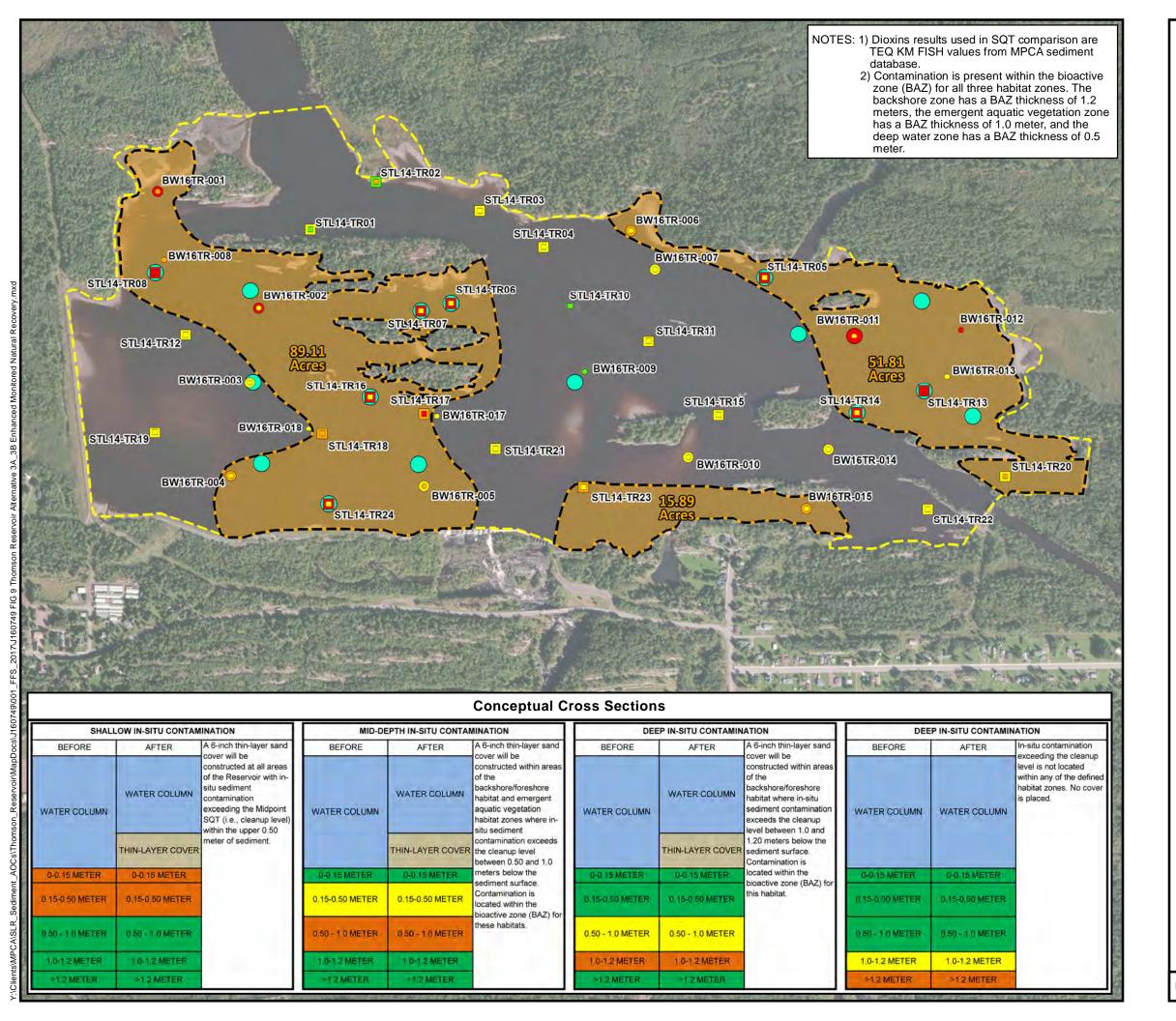
Submerged Aquatic Vegetation and Deep Water Habitat Zone (299.40 Acres)

Drawn By: S.G. Date Drawn/Revised:5/16/2017 Project No.J160749

Figure 7

Conceptual Site Model


Thomson Reservoir SLR Sediment AOCs


Duluth, MN

Drawn By: S.G. Date Drawn/Revised:5/16/2017 Project No.J160749

Figure 9

Alternative 3A/3B - Enhanced Monitored Natural Recovery

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Proposed Sediment Monitoring Locations

Thomson Reservoir Site Boundary

Targeted Thin-Layer Cover Areas

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval

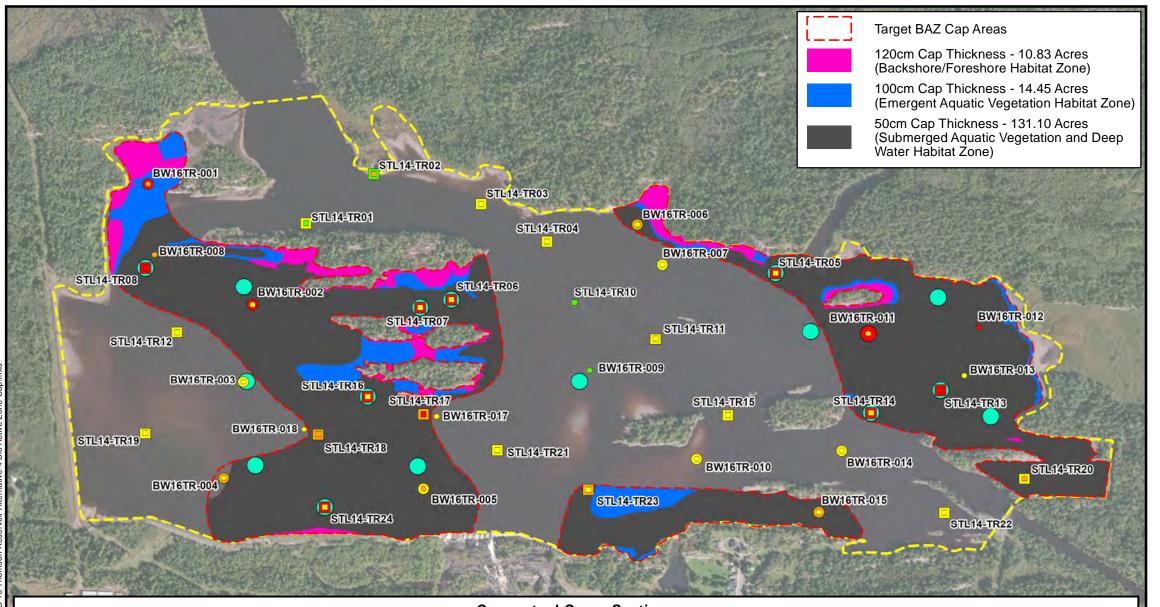
- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Dioxins SQT Comparison

Does not exceed Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Midpoint SQT (11.2 ng TEQ/kg)


Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Dioxins SQT Exceedance Areas

Estimated Area Exceeding Midpoint SQT (156.80 Acres)

Conceptual Cross Sections

BACKSHORE/FORES	SHORE HABITAT ZONE	EME
BEFORE	AFTER	E
WATER COLUMN	1.2 METER CAP	WATE
	AQUABLOCK IZ	
0-0 15 METER	0-0.15 METER	0-0
0.15-0.50 METER	0.15-0.50 METER	0.15-
0.50-1.0 METER	0.50-1.0 METER	0.50-
>1.0 METER	>1.0 METER	>1
The backshore/foreshor	e habitat zone has a	The em

The line to the	The fill and the file
The backshore/foresho	re habitat zone has a
bioactive zone (BAZ) th	ickness of 1.2 meters. If
	CUL (i.e., Midpoint SQT)
	nterval then an AquaBlok
isolation zone (IZ) and of constructed.	1.2 meter sand cap is

BEFORE	AFTER
	WATER COLUMN
WATER COLUMN	1.0 METER CAP
	AQUABLOCK IZ
0-0.15 METER	0-0.15 METER
0.15-0.50 METER	0.15-0.50 METER
0.50-1.0 METER	0.50-1.0 METER
>1.0 METER	>1 0 METER

	The line is the
The emergent aquatic ve	egetation habitat zone has
a bioactive zone (BAZ) t	hickness of 1.0 meter. If
sediments exceed the C	UL within the 0-1.0 meter
	k isolation zone (IZ) and
1.0 meter sand cap is co	onstructed.
The second secon	

DEEP WATER HABITAT ZONE		
BEFORE	AFTER	
VATER COLLINAL	WATER COLUMN	
VATER COLUMN	0.5 METER CAP	
	AQUABLOCK IZ	
0-0.15 METER	0-0.15 METER	
15-0.50 METER	0.15-0:50 METER	
50-1,0 METER	0.50-1.0 METER	
>1 0 METER	>10 METER	

zone (BAZ)thickness of 0.5 meter. If

zone (IZ) and 0.5 meter sand cap is

constructed.

sediments exceed the CUL within the 0-0.50

meter interval then an AquaBlok isolation

NO CAP	NO CAP	NO CAP
		0-0.50 METER
0-1.20 METER	0-1.0 METER	
>1.20 METER	>1.0 METER	>0.50 METER:
exceed the CUL within zone (e.g. 1.2 meter fo	constructed in areas when the appropriate depth of the appropriate depth of the appropriate of the the appropriate of the appropriate of the the appropriate of the appropriate of the the appropriate of the appropriate of the appropriate of the the appropriate of the appropriate	BAZ per the habitat abitat, 1.0 meter for

EMERGENT

AQUATIC

VEGETATION ZONE

WATER COLUMN/

DEEP WATER

HABITAT ZONE

WATER COLUMN/

BACKSHORE/

FORESHORE

HABITAT ZONE

WATER COLUMN

ALTERNATIVE CONSTRUCTION		
AFTER		
WATER COLUMN		
0.5 METER CAP		
0-0.15 METER		
0.15-0.50 METER		
0.50-1 0 METER		
>1.0 METER		

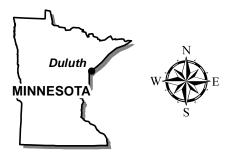

be determined during the design phase, such s that shown above. This alternative onstruction method incorporates existing ediments with concentrations less than the CUL into the cap thickness. This example is representative of the emergent aquatic regation habitat zone and has a BAZ zone thickness of 1.0 meter with concentrations below the CUL.

Figure 10

Alternative 4 - Bio-Active Zone Cap

Thomson Reservoir SLR Sediment AOCs

Duluth. MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

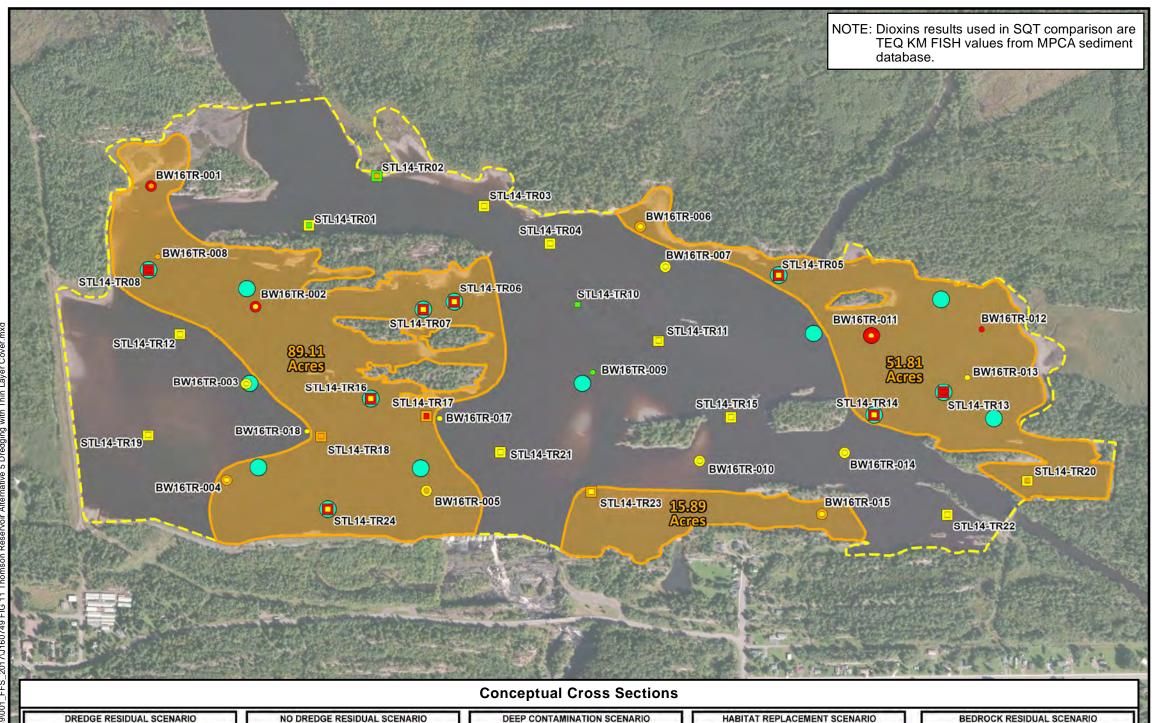
Proposed Sediment Monitoring Locations

Thomson Reservoir Site Boundary

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval


- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Dioxins SQT Comparison

database.

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Midpoint SQT (11.2 ng TEQ/kg)
- Exceeds Level 2 SQT (21.5 ng TEQ/kg)

NOTE: Dioxins results used in SQT comparison are TEQ KM FISH values from MPCA sediment

DREDG	E RESIDUAL SCI	ENARIO
BEFORE	TARGET	AFTER
WATER COLUMN	WATER COLUMN	
0-0.15 METER		WATER
0.15.0.50 METER	DREDGE	COLUMN
>0.50 METER	OVERDREDGE	THIN-LAYER COVER
	>0.50 METER	VERIFICATION SAMPLE

Overburden between 0 and 0.15 meter below the ediment surface is removed along with sediment exceeding the cleanup level (i.e., Midpoint SQT) to a depth of 0.50 meter, plus an average over dredge of .15 meter. Due to the high concentrations in the area, ost-dredge verification sampling indicates residuals xceeding the CUL remain at the sediment surface. Residuals persist after additional cleanup passes. A 15 meter sand cover is constructed

NO DREI	OGE RESIDUAL S	CENARIO
BEFORE	TARGET	AFTER
WATER COLUMN	WATER COLUMN	
0-0.15 METER	DREDGE	WATER COLUMN
0.15-0.50 METER	OVERDREDGE	
	0,15-0,50 MÉTER	VERIFICATION SAMPLE
>0.50 METER	>0.50 METER	⇒0.50 METER
Surface contamin	ation between 0 an	d 0.15 meter

below the sediment surface is removed along with a 0.15 meter over dredge. Post-dredge verification sampling indicates dredging achieved the cleanup level. A 0.15 meter thin-layer sand cover is not

DEEP CO	NOTAMINATION	SCENARIO
BEFORE	OPTION 1	OPTION 2
		WATER
WATER COLUMN	WATER COLUMN	THIN-LAYER COVER OR 0.5- 0.7 METER CAP
0-0.15 METER		0-0.15 METER
0.15-0.50 METER	DREDGE	0.15-0.50 METER
>0.50 METER		>0.50 METER

effectiveness of dredging should be weighed against thin-layer cover or bioactive zone (BAZ) cap. The thickness of the cover/cap would likely be made base on Decisions regarding the habitat zone where contamination is located and the associated bioactive zone (BAZ) thickness.

	EPLACEMENT	0.000
BEFORE	TARGET	AFTER
WATER	WATER	· · · · · · · · · · · · · · · · · · ·
COLUMN	COLUMN	COLUMN
0-0.15 METER	M-AD-	COLUMN
0.15-BEDROCK	DREDGE	THIN-LAYER COVER
BEDROCK	BEDROCK	BEDROCK
Overburden betwee	en 0 and 0.15 me	eter below the

sediment surface is removed along with sediment exceeding the cleanup level to bedrock. A 0.15 meter sand cover is placed to restore some benthic habitat.

0-0.15 METER 0.15-BEDROCK	DREDGE	THIN-LAYER COVER
BEDROCK	BEDROCK	BEDROCK
Overburden betwe sediment surface i exceeding the clea sediments or dred level remain inacc following dredging	s removed along vanup level to bedro ge residuals excessessible within bedro	with sediment ock. In-situ eding the cleanup rock crevices

TARGET

COLUMN

WATER

BEFORE

COLUMN

Figure 11

Alternative 5 - Dredging with Thin-Layer Cover

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

0	700	1,400
		Feet
		Meters
0	200	400

Proposed Sediment Monitoring Locations

Thomson Reservoir Site Boundary

Targeted Dredge and Thin-Layer Cover Areas

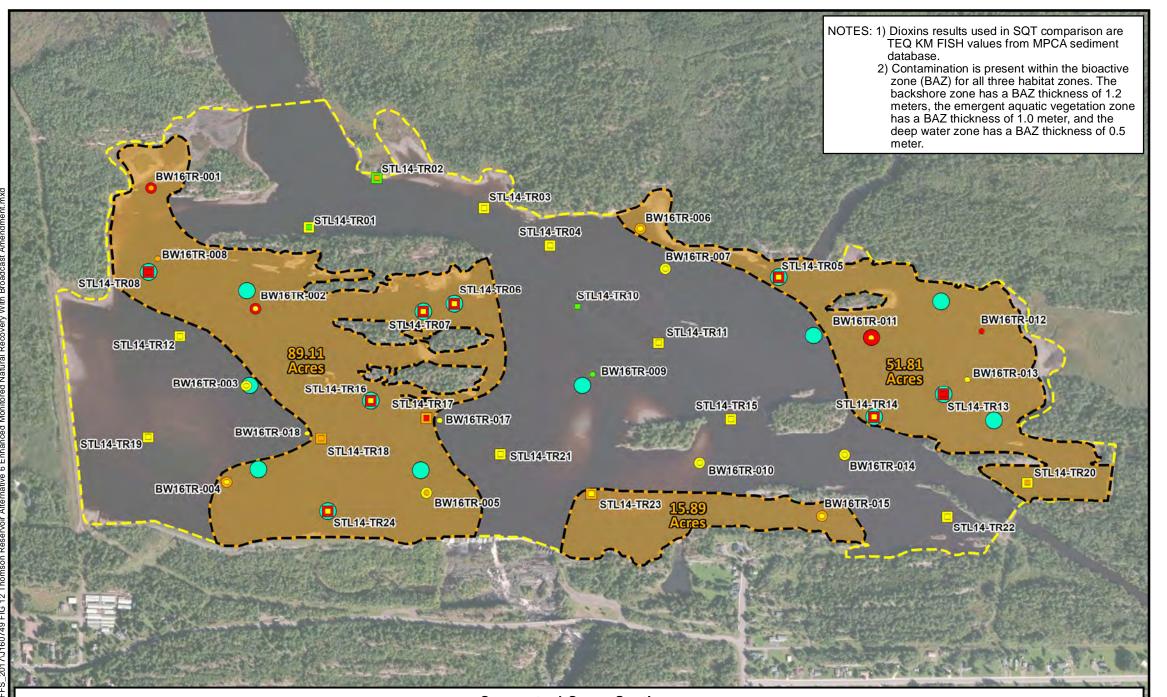
Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Dioxins SQT Comparison


- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
- - Exceeds Midpoint SQT (11.2 ng TEQ/kg)
 - Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Dioxins SQT Exceedance Areas

Estimated Area Exceeding Midpoint SQT (156.80 Acres)

Conceptual Cross Sections

SHALL	OW IN-SITU CONTA	MINATION	MID-DE	PTH IN-SITU CONTA	MINATION
BEFORE	AFTER	A 6-inch thin-layer	BEFORE	AFTER	A 6-inch thin-layer
WATER COLUMN	WATER COLUMN	sand cover will be constructed at all areas of the Reservoir with in-situ sediment contamination exceeding the	WATER COLUMN	WATER COLUMN	sand cover will be constructed within areas of the backshore/foreshore habitat and emergen aquatic vegetation habitat zones where
	BROADCAST COVER	Midpoint SQT (i.e., cleanup level) w ithin		BROADCAST COVER	in-situ sediment contamination
0-0.15 METER	0-0.15 METER	the upper 0.50 meter	0-0.15 METER	0-0.15 METER	exceeds the cleanup
0.15-0.50 METER	0.15-0.50 METER	of sediment.	0.15-0.50 METER	0.15-0.50 METER	level betw een 0.50 and 1.0 meters below the sediment surface
0.50 - 1.0 METER	0.50 - 1.0 METER		0.50 - 1.0 METER	0.50 - 1.0 METER	Contamination is located within the bioactive zone (BAZ
1.0-1.2 METER	1.0-1.2 METER		1.0-1.2 METER	1.0-1.2 METER	for these habitats.
>1.2 METER	>1.2 METER		>1.2 METER	>1.2 METER	

DEEP	IN-SITU CONTAMI	NATION					
BEFORE	AFTER	A 6-inch thin-layer					
WATER COLUMN	WATER COLUMN	sand cover will be constructed within areas of the backshore/foreshore habitat where in-situ sediment contamination					
	BROADCAST COVER	exceeds the cleanup level betw een 1.0 and 1.20 meters					
0-0.15 METER	0-0.15 METER						
0.15-0.50 METER	0.15-0.50 METER	below the sediment surface. Contamination is					
0.50 - 1.0 METER	0.50 - 1.0 METER	located w ithin the bioactive zone (BAZ) for this habitat.					
1.0-1.2 METER	1.0-1.2 METER						
>1.2 METER	>1.2 METER						

DEEP	IN-SITU CONTAMI	NATION
BEFORE	AFTER	In-situ contamination
WATER COLUMN	WATER COLUMN	exceeding the cleanup level is not located w ithin any of the defined habitat zones. No cover is placed.
0-0.15 METER	0-0.15 METER	
0.15-0.50 METER	0.15-0.50 METER	
0.50 - 1.0 METER	0.50 - 1.0 METER	
1.0-1.2 METER	1.0-1.2 METER	
>1.2 METER	>1.2 METER	

Figure 12

Alternative 6 - Enhanced Monitored Natural Recovery With Broadcast Amendment

Thomson Reservoir SLR Sediment AOCs

Duluth, MN Duluth MINNESOTA V

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

0	700	1,400
		Feet
		Meters
0	200	400

Proposed Sediment Monitoring Locations

Thomson Reservoir Site Boundary

Targeted Thin-Layer Cover Areas

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval

- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Dioxins SQT Comparison

Does not exceed Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Level 1 SQT (0.85 ng TEQ/kg)

Exceeds Midpoint SQT (11.2 ng TEQ/kg)

Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Dioxins SQT Exceedance Areas

Estimated Area Exceeding Midpoint SQT (156.80 Acres)

Tables

Table 1 Statistics for Select Sediment Sample Parameters Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

	All Intervals																			
Statistic	Units	Level 1	Midpoint SQT	Level 2	ssv	Number of Results	Mean		Standard Deviation	Range	Minimum	Maximum	Level 1 Exceedances	Level 1 Percent	Midpoint Exceedances	Midpoint Percent	Level 2 Exceedance	Level 2 Percent	SSV Exceedances	SSV Percent
Total PAHs	μg/kg	1600.00	12300.00	23000.00	NE	28	602.34	347.25	660.47	2288.85	43.15	2332.00	4	14.29%	0	0.00%	0	0.00%	NE	NE
PCB	μg/kg	60.00	370.00	680.00	5.00	66	42.38	0.00	81.68	320.00	0.00	320.00	14	21.21%	0	0.00%	0	0.00%	19	28.79%
Mercury	mg/kg	0.18	0.64	1.10	0.02	165	0.25	0.13	0.35	2.19	0.01	2.20	58	35.15%	16	9.70%	7	4.24%	164	99.39%
D/Fs	ng/kg	0.85	11.20	21.50	0.02	81	33.59	7.38	91.74	670.96	0.14	671.10	74	91.36%	29	35.80%	17	20.99%	53	65.43%

	0.0 - 0.15 Meter																			
Statistic	Units	Level 1	Midpoint SQT	Level 2	ssv	Number of Results	Mean	Median	Standard Deviation	Range	Minimum	Maximum	Level 1 Exceedances	Level 1 Percent	Midpoint Exceedances	Midpoint Percent	Level 2 Exceedance	Level 2 Percent	SSV Exceedances	SSV Percent
Total PAHs	μg/kg	1600.00	12300.00	23000.00	NE	11	224.59	179.00	122.11	335.85	43.15	379.00	0	0.00%	0	0.00%	0	0.00%	NE	NE
PCB	μg/kg	60.00	370.00	680.00	5.00	27	19.36	0.00	52.08	240.00	0.00	240.00	3	11.11%	0	0.00%	0	0.00%	5	18.52%
Mercury	mg/kg	0.18	0.64	1.10	0.02	80	0.17	0.08	0.28	1.86	0.01	1.87	15	18.75%	5	6.25%	2	2.50%	79	98.75%
D/Fs	ng/kg	0.85	11.20	21.50	0.02	41	18.02	5.17	44.96	254.52	0.14	254.66	37	90.24%	10	24.39%	4	9.76%	24	58.54%

	0.15 - 0.50 Meter																			
Statistic	Units	Level 1	Midpoint SQT	Level 2	ssv	Number of Results	Mean	Median	Standard Deviation	Range	Minimum	Maximum	Level 1 Exceedances	Level 1 Percent	Midpoint Exceedances	Midpoint Percent	Level 2 Exceedance	Level 2 Percent	SSV Exceedances	SSV Percent
Total PAHs	μg/kg	1600.00	12300.00	23000.00	NE	9	364.33	300.00	256.12	702.80	109.70	812.50	0	0.00%	0	0.00%	0	0.00%	NE	NE
PCB	μg/kg	60.00	370.00	680.00	5.00	24	41.14	0.00	88.98	320.00	0.00	320.00	5	20.83%	0	0.00%	0	0.00%	5	20.83%
Mercury	mg/kg	0.18	0.64	1.10	0.02	46	0.25	0.15	0.25	1.07	0.03	1.10	18	39.13%	4	8.70%	1	2.17%	46	100.00%
D/Fs	ng/kg	0.85	11.20	21.50	0.02	33	53.47	9.57	132.57	670.67	0.43	671.10	31	93.94%	16	48.48%	10	30.30%	23	69.70%

	0.50 - 1.00 Meter																			
Statistic	Units	Level 1	Midpoint SQT	Level 2	ssv	Number of Results	Mean	Median	Standard Deviation	Range	Minimum	Maximum	Level 1 Exceedances	Level 1 Percent	Midpoint Exceedances	Midpoint Percent	Level 2 Exceedance	Level 2 Percent	SSV Exceedances	SSV Percent
Total PAHs	μg/kg	1600.00	12300.00	23000.00	NE	7	1298.31	1247.00	820.33	1850.70	481.30	2332.00	3	42.86%	0	0.00%	1	14.29%	NE	NE
PCB	μg/kg	60.00	370.00	680.00	5.00	9	36.69	0.00	60.67	160.00	0.00	160.00	2	22.22%	0	0.00%	0	0.00%	3	33.33%
Mercury	mg/kg	0.18	0.64	1.10	0.02	17	0.35	0.20	0.49	2.12	0.08	2.20	10	58.82%	1	5.88%	1	5.88%	17	100.00%
D/Fs	ng/kg	0.85	11.20	21.50	0.02	1	0.00	0.00	0.00	0.00	143.54	143.54	1	0.00%	1	0.00%	1	0.00%	0	0.00%

										1.00+	Meter									
Statistic	Units	Level 1	Midpoint SQT	Level 2	ssv	Number of Results	Mean		Standard Deviation	Range	Minimum	Maximum	Level 1 Exceedances	Level 1 Percent	Midpoint Exceedances	Midpoint Percent	Level 2 Exceedance	Level 2 Percent	SSV Exceedances	SSV Percent
Total PAHs	μg/kg	1600.00	12300.00	23000.00	NE	8	1389.53	1597.50	802.10	1850.70	481.30	2332.00	4	50.00%	0	0.00%	1	12.50%	NE	NE
PCB	μg/kg	60.00	370.00	680.00	5.00	14	83.91	35.38	105.37	299.25	0.00	299.25	5	35.71%	0	0.00%	0	0.00%	8	57.14%
Mercury	mg/kg	0.18	0.64	1.10	0.02	33	0.42	0.22	0.43	1.84	0.05	1.89	20	60.61%	7	21.21%	3	9.09%	33	100.00%
D/Fs	ng/kg	0.85	11.20	21.50	0.02	6	12.34	8.09	11.69	26.45	0.60	27.05	5	83.33%	2	33.33%	2	33.33%	6	100.00%

D/Fs = polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans

μg/kg = micrograms per kilogram mg/kg = milligrams per kilogram ng/kg = nanograms per kilogram PCB = polychlorinated biphenyl NA - Not Applicable

NE - Not Established

Table 2 Contaminants of Concern Summary Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Contaminant	Units	Cleanup Level	Maximum Concentration Detected	Mean Concentration
Dioxins	ng TEQ/kg	11.2	392.7	32.58

ng TEQ/kg – nanograms toxic equivalence per kilogram

							Ranking				
Category	Technology	Description	Applicability		Effectiveness		Implementablility		Relative Cost	Retained for Consideration	Rationale
Institutional Controls	Institutional Controls		May consist of fish consumption advisories, commercial fishing bans, waterway use restricitons, or deed restrictions	0	Effective in meeting RAOs when combined with other remedies.		Easily implemented with little distruption to the Site.	\$	Minimal but there are long term costs associated with initiating and maintaining institutional controls.	Yes.	Some institutional controls already in place; however, additional controls are expected to be a required component of any remedy.
Natural Recovery	Monitored Natural Recovery	processes to isolate, destroy, or reduce exposure or toxicity of impacted sediment.	While burial of contaminated sediments appears to be occuring in depopsitional areas of the reservior, deposition rates may not be sufficient to isolate COCs in reasonable timeframe and concentrations do not appear to be reducing.	0	Burial is occuring however current data does not indicated the extent of MNR effectiveness in COC reduction.		Highly implementable with no disturbance to the Site.	\$	The main cost of NR is associated with monitoring.	Yes.	Effectiveness at Thomson has not been demonstrated, known to be effective under right conditions and/or when combined with other remedies.
Natural Necovery	Enhanced Monitored Natural Recovery	EMNR adds amendments to the soil or sediment to accelerate physical isolation process and facilitates re-establishment of benthic or plant habitat. May include a granular or carbon sorbent cover (over sediments) or biological stimulants (to soil).	EMNR should be effective in areas where burial already occuring in some areas of the Site; however, insufficient mixing of sediment may reduce effectiveness of COC reduction via MNR alone.	•	EMNR should be effective in areas where burial already occuring; however, insufficient mixing of sediment or lack of natural degadation processes may reduce effectiveness of COC reduction.	•	Implementable; however, requires site access, staging area, and placement equipment. Impact to reservoir operation can be minimal with advanced planning.	\$\$	Greater initial cost than NR due to thin cover or amendment placement however capital cost will be partially offset by reduced time to RAOs. Lower compared to sediment removal and capping.	Yes.	Proven method. Effective for contaminant scenario at Site.
Capping	Capping	Capping provides a physical barrier and chemical isolation from COCs. Caps may be constructed from clean sediment, sand, gravel, geotextiles, liners, reactive or absorptive material and may consist of multiple layers. Granular sediment caps can provide erosion protection and limit bioturbation.	Cap thickness depends on bioactive zone (BAZ) thickness requirements, which vary by habitat, substrate and water depth. A cap may alter hydrologic and habitat conditions, as well as reservoir capacity.		Highly effective and prevent technology. COCs have low solubility and mobility. Short term movement of COCs in porewater is possible during consolidation. Armoring potentially required in areas of scour.	•	Implementable. Dredging may be required in shallow areas to achieve cap thickness, specialized equipment may be necessary to multilayer caps, maintenance may be required depending on hydrologic conditions.	\$\$\$	Capping costs are generally less than sediment removal, and depend on cap thickness, material, lateral extent and surface water engineering factors. Material costs for a synthetic cap are generally higher than a granular cap.	Yes.	Proven effective method to control exposure and erosion.

Category	Technology	Description	Applicability		Effectiveness		Implementablility		Relative Cost	Retained for Consideration	Rationale
	Mechanical Dredging	Sediment is lifted to the surface using a mechanical excavator or crane and placed on a barge for transport. Removed sediment has a similar moisture content as the in situ material, requiring dewatering prior to disposal. Residual cover is typically needed to manage remaining impacts.	encountered. Sediment resuspension controls expected to be	0	Highly effective and preventative technology; however, resuspension and bedrock may limit effectiveness.	•	Requires dredging equipment and up land staging infrastructure for sediment treatment and transportation. Less staging space required than hydraulic dredging.	\$\$\$	Main capital costs include equipment mobilization, staging area devlopment, equipment operation, residual cover materials, and construction and operation of a containment area for dredged material.	No	Incompatible with bedrock underlying sediments.
Excavation and Removal	Hydraulic Dredging	Hydraulic dredging captures water with the sediment and removes it by pumping the sediment slurry typically through a pipeline to the dewatering location or final disposal site. High water content of slurry requires significant dewatering. Residual cover is typically needed to manage remaining impacts.	Hydraulic dredging favorable in area of the site where slanted slate bedrock may be encountered.		Highly effective and proven technology. More effective for potential dredge depths (average 30 cm) than mechanical dredging.		Implementable. Requires large staging area for dewatering equipment, requires more water treatment than mechanical dredging.	\$\$\$	Higher costs than mechanical dredging due to the need for mechanical equipment to remove debris, and the additional treatment and disposal costs due to greater water content of the slurried sediment.	Yes.	Suitable for dredging soft sediments and navigating uncertain bedrock terrane.
	Mechanical Removal in Dry Conditions	Water is diverted or drained from the excavation area using a containment barrier such as a cofferdam to allow for excavation of dry sediment with conventional equipment (e.g. backhoe). Typically limited to shallow areas.	Well suited for shallow areas and geometry that allows for construction of containment barrier and water diversion. May be applicable for shallow areas of resevior if water level can be coordinated with Minniesota Power		Effective and proven technology. Allows for visual inspection during removal. Minimal resuspension/redeposition. High degree of accuracy.	0	Not feasible in large-volume removal areas. Site preparation difficult due to water management. Must be coordinated with Minniesota Power to not interfere with dam operations.	\$\$\$	Costs are similar to mechanical dredging, with the added cost to construct diversion or containment structures.	No	Not suitable for large volume removal areas.
	Off-Site	Removed soil or sediment is transported to an offsite disposal location that will accept the waste. Dewatering of sediments is generally required before transport.	Transportation of large volumes of sediment would create significant truck traffic through the surrounding community for a long duration.		Effective at meeting RAOs, low risk of spills during transportation.	•	Infrastructure required to support large volume of trucking. Disruption to neighbors during trucking, may result in limited work hours. Seasonal restrictions may also apply.	\$\$\$\$	Costs for offsite disposal include dewatering, water treatment, loading and transportation costs and landfill disposal fees. Transportation costs depend on distance to the landfill.	Yes.	Suitable. Sparse residential housing results in minimal disruption to community. Onsite storage facilities are not available.
Disposal	Confined Disposal Facility (CDF)	CDFs are engineered structures enclosed by dikes and specifically designed to contain sediment. CDFs may be located either upland (above the water table), near-shore (partially in the water), or completely in the water (island CDFs).	Land is available for a CDF; however, significant land alteration and associated infrastructure required.		Most widely used method for disposal and has been demonstrated effective.	0	Requires high level of design, detailed knowledge of dredge plans, requires large permanent area for construction, and treatment of discharge.	\$\$\$	Costs for a CDF include engineering and design costs, materials for dikes and suspended solids control, and construction equipment and labor.	No	Based on the surrounding land use and lack of input from Minnesota Power, consolidation areas are not developed or feasible.
	On-site Contained Aquatic Disposal (CAD)	Dredged or excavated sediment is disposed within a natural or excavated depression elsewhere in the water body.	A suitable location to accommodate entire sediment volume is not available. Areas of sufficient depth to hold some volume are subject to erosion and resuspension or are adjacent to dam structures.	0	May be effective at containing COCs due to low mobility/solubility; stream flow may cause erosion.	\otimes	A suitable location to accommodate entire sediment volume is not available.	\$\$\$	Specialized equipment for a CAD may be required, especially if the disposal site is in deep water. Dredging to create a CAD would add cost.	No	Based on the reservoir charateristics as wells as its use for hydroelectric generation and public recreation, a suitable location is not available in the reservoir to accommodate the required disposal volume.

							Ranking				
Category	Technology	Description	Applicability		Effectiveness		Implementablility		Relative Cost	Retained for Consideration	Rationale
	Immobilization	Immobilization treatments add chemicals or cements to reduce the leachability of COCs. Mechanisms include solidification (encapsulation) or stabilization (chemical or absorptive reactions that convert COCs to less toxic or mobile forms).	Implementation at a sediment site is difficult, due to submerged work requirement and concerns with interfering with reservoir/dam operations.	0	Is effective for dioxins. Stabilization of sediments reduces erosion potential. May result in poor environment for benthic community.	\otimes	Sediment mixing can be difficult. May require dewatering. Requires equipment for mixing. Solidified sediment would proven reservoir maintenance dredging.	\$\$\$	Costs for solidification or stabilization affected by the quantity and type of reagents added to the waste and the need for specialized equipment for mixing reagents with sediment.	No	Not proven to be effective for sediments. Costly and more difficult to implement than other technologies.
	Enhanced Bioremediation	Microbial degradation by bacteria or fungi is enhanced by adding materials such as oxygen, nitrate, sulfate, hydrogen, nutrients, or microorganisms to the sediment or soil.	Can be effective for dioxins.	0	Requires specific geochemical parameters to be successful (temperature, Ph, nutrient availability)	0	Easily implemented with little disruption to the Site.	\$\$\$	Costs of enhanced bioremediation are relatively low, but several treatments and monitoring similar to MNR may be required.	No	Difficult to implement sub aqueously.
In Situ Treatment	Oxidation/Reduction	Chemicals are injected into sediment to act as an oxidant/electron acceptor to facilitate aerobic decomposition of organic matter.	chemical addition may create toxic conditions.	0	Chemical addition may create toxic conditions.	0	Bench-scale testing and pilot-scale testing required to determine the type, concentration, and quantity of oxidant and amendments required.	\$\$\$	Costs include bench- or pilot-scale tests. Monitoring may be required.	No	Not proven safe for subaqueous conditions.
	Chemical Oxidation	The addition of chemical oxidizers to sediment can cause the rapid and complete chemical destruction of many toxic organic chemicals.	Limited effectiveness for Site COCs. Dirk/Ric/???	\otimes	Addition of chemicals may form temporarily toxic conditions for benthic or aquatic organisms	•	Pilot studies would be required to determine the effectiveness of specific oxidants for COCs.	determine effective injection, and a determine	Costs include bench- or pilot-scale tests to determine effectiveness, oxidants for injection, and a delivery system. Monitoring may also be required.	No	Limited effectiveness. Chemical addition may create toxic conditions.
	Phytoremediation	Phytoremediation uses plant species to remove, transfer, stabilize, and destroy COCs in soil and sediment. Generally limited to sediments in shallow water zones and low concentrations.	Habitat restoration not likely necessary, technology not effective in deep areas of reservoir.	0	Effective only in shallow contaminated areas, which are sparse at the Site.		Implementation involves planting and in some cases harvesting with little disruption to the Site.	\$\$	Primary costs are purchasing and planting applicable species. Monitoring may also be required.		May be implemented for habitat restoration, but not effective alone.
	Adsorption	Adsorbents can be used as sediment amendments for in situ treatment of COCs. Sorption organics can take place simultaneously with a suitable combination of sorbents.	May be useful as EMNR amendment.	(•)	Sorption organics can take place simultaneously with a suitable combination of sorbents.	•	Sorbent amendments can be delivered to the sediment in the form of pellets that are dense enough to sink through the water column and are resistant to re suspension while being worked into the sediments	\$\$	The main costs include the adsorbent material, and a method for depositing it on the surface sediment. Monitoring may also be required.	No	Not retained as sole remedy, but may be useful as capping or ENR amendment.

							Ranking					
Category	Technology	Description	Applicability		Effectiveness		Implementablility		Relative Cost	Retained for Consideration	Rationale	
	Passive Dewatering	Passive dewatering relies on natural evaporation and drainage to remove moisture from the sediment. Drainage may be driven by gravity or assisted with a vacuum pump. Passive dewatering may occur in CDFs, lagoons, tanks, or temporary holding/rehandling facilities.	Upland areas need to be developed at the site to serve as a staging area and passive dewatering area.	0	Passively dewatered sediments may not have low enough water content for landfill disposal, so supplemental technologies may be required. CDF volume must be designed to account for passive dewatering residence time.	0	Significant footprint required for construction of lagoons or a CDF. Time frames for passive dewatering likely longer than for mechanical dewatering. With a proper CDF design passive methods may be easily supplemented with other dewatering technologies.	\$\$	Costs to consider include construction of a dewatering facility or adequately sized CDF.	No	Not appropriate for offsite disposal, given duration of construction season and time to achieve passive dewatering.	
	Sediment Reworking	Reworking sediments to promote drainage, and mixing sediments with excavation equipment can enhance passive dewatering.	If a CDF is constructed, sediment reworking could be performed within the CDF.	•	Sediment mixing and reworking would facilitate a timelier and more complete dewatering.	•	Mixing and reworking sediments would decrease time needed to dewater with passive methods. Reworking and mixing could be done with standard excavation equipment already required for the project.	\$\$	Cost savings are expected over passive dewatering alone due to time saved.	No	Not appropriate for offsite disposal.	
Dewatering	Hydrospoic Amendment Addition	Dredged sediments are mixed with amendments such as slags or cementitious materials to remove moisture and improve strength and stability.	Could be used to enhance dewatering in conjunction with sediment reworking.	•	Effectiveness of amendments depend on the moisture content of removed sediment. Pre-treatment dewatering likely required due to hydraulic dredging for maximum effectiveness and to achieve desired geotechnical properties.	•	Would require staging, mixing, and curing areas. However, the process can be completed in a relatively short time frame. Amendment addition creates a greater volume and mass, which needs to be considered in disposal options. Likely requires pre-treatment dewatering.	\$\$	Costs include amendment materials and mixing equipment. Costs increase with increased moisture content. Both the addition rate and the bulking factor of treated material should be considered when evaluating costs of amendment material.	No	Not appropriate for offsite disposal.	
	Geotextile Tube Dewatering	Sediment slurry from hydraulic dredging is pumped into the geotextile tube and filtered by the geotextile fabric. Sediment is retained within the geotextile tube, while free liquids pass through the exterior of the tube.	Applicable to hydraulic dredging, which is retained for alternatives for the Site. Upland areas need to be developed at the site to serve as a staging area and passive dewatering area.	•	Applicable to hydraulic dredging. For fine grained sediment, polymer addition is usually needed to facilitate dewatering. Treatability testing required to determine if filtrate would need treatment to meet water quality criteria.	•	Would require a staging location if transported to landfill. Dewatering duration likely to be shorter than for passive dewatering but longer than mechanical.	\$\$\$	Costs include flocculent and coagulant materials, cost of geotextile tubes and construction of staging area.	Yes.	Appropriate for use with hydraulic dredging.	
	Mechanical Dewatering	Mechanical dewatering technologies include use of plate filters, presses, centrifuges or other equipment to squeeze, press, or draw water from dredged sediment.	Requires homogeneous waste stream provided by hydraulic dredging methods and site sediments.	•	Generally works best with a homogeneous waste stream produced via hydraulic dredging. Selection of specific mechanical dewatering equipment depends on treatment or disposal methods that follow.	•	Faster than passive dewatering and requires less space. Production rates depend on size and quality of the dewatering device and on the solids content of the input stream.	\$\$\$\$	Costs of mechanical dewatering are generally higher than passive dewatering due to the energy and equipment requirement.	No	Not cost effective.	
	Rapid Dewatering Systems	A system that continuously processes the slurry from a hydraulic dredge and separates solids into piles of debris; shells; and gravel, sand, and fines. Includes polymer addition and flocculation, which may remove some COCs.	Suitable for hydraulic dredging methods, which are retained.	•	Applicable to hydraulic dredging methods. Pilot scale testing may be needed to evaluate effectiveness for site specific conditions.	•	The complete system is mobile and has a relatively small footprint.	\$\$\$	Exact cost would depend on site-specific treatment needs.	No	Not appropriate for offsite disposal.	

							Ranking				
Category	Technology	Description	Applicability		Effectiveness		Implementablility	Relative Cost		Retained for Consideration	Rationale
		Filters remove solids and sediments from wastewater, also removing absorbed COCs from the waste stream. Flocculants may be added to the waste stream to facilitate solids removal.	Filtration is a standard method for water treatment and would be effective at removing site COCs sorbed to suspended sediments in the waste stream.		Filters can be selected based on the required particulate size. Treatability study to determine if filtration is effective at reducing the COC concentration.	0	Filtration is a widely used method for water treatment. Selection of the filtration methods and type requires engineering design and site specific knowledge of the waste stream.	\$\$\$	Costs depend on change out frequency of filtration material.	Yes.	Effective for COC removal.
Water Treatment	Liquid Absorption	Involves pumping water through a vessel containing granular activated carbon (GAC), organoclay, or another adsorbent material; dissolved compounds to adsorb to its surface.	Conventional absorptive materials would remove dioxins.	•	Activated carbon vessels are appropriate for treating dioxins. The presence of multiple constituents can impact the performance of activated carbon systems.	•	Liquid adsorption systems are widely available, have a relatively small footprint, and require a relatively short timeframe for treatment.	\$\$\$	Costs include activated carbon, or other adsorbent vessels. The adsorbent must be recharged or replaced periodically. Power is required for pumping.	Yes.	Effective for COC removal.
	Advanced Oxidation	Advanced oxidation uses UV light and the addition of strong oxidizers to destroy organic constituents in water.	Advanced oxidation is applicable for treating most organics, including dionxins.	0	Advanced oxidation is applicable for treating most organics, including dionxins.	•	Advanced oxidation systems are widely available, have a relatively small footprint, and require a relatively short timeframe for treatment. Handling and storage of oxidizers would require special safety precautions.	\$\$\$\$	Costs may be higher because of energy requirements to power UV lights.	No	Effective for COC removal but cost too high.

	Effectiveness	Implementability	Relative Cost
\otimes	Not effective at reaching RAOs	Not implementable at the Site	\$\$\$\$ - High
	Partially effective for some COCs or Site areas	Difficult to implement	\$\$\$ - Medium-high
•		Implementable, requires technical knowledge	\$\$ - Moderate
	Demonstrated effective technology	Readily implemented	\$ - Low

Table 4 Alternatives Summary Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Alternative	Alternative 1: No Action	Alternative 2: Monitored Natural Recovery (MNR)	Alternative 3A: Enhanced MNR	Alternative 3B: Enhanced MNR with Cover Amendment	Alternative 4: Potentially BioActive Zone Cap	Alternative 5: Dredging with Thin- Layer Cover	Alternative6: Enhanced MNR with Broadcast Amendment
Total Present Worth Cost	\$0	\$644,000	\$10,200,000	\$28,685,000	\$29,370,000	\$53,040,000	\$20,200,000
Remedial Area	0 acres	157 acres	157 acres	157 acres	157 acres	157 acres	157 acres
Yearly Schedule	No schedule required for this alternative		Baseline Characterization Year 0; Pre- Design Investigation Year 1; Remedy construction Year 2; Monitoring and evaluation Years 3, 5, and 7	Baseline Characterization Year 0; Pre- Design Investigation Year 1; Remedy construction Year 2; Monitoring and evaluation Years 3, 5, and 7	Baseline Characterization Year 0; Pre- Design Investigation Year 1; Remedy construction Years 2 and 3; Monitoring and evaluation Years 3, 5, and 7		Baseline Characterization Year 0; Pre-Design Investigation Year 1; Remedy construction Year 2; Monitoring and evaluation Years 3, 5, and 7
Volumes	No estimated volumes associated with this alternative	No estimated volumes associated with this alternative	0.15-meter (0.5-foot) cover plus an assumed 4-centimeter (1.5-inch) over placement totalling 158,000 cubic yards	0.15-meter (0.5-foot) amended cover plus an assumed 4-centimeter (1.5-inch) over placement totalling 162,000 cubic yards	0.5- to 1.2-meter (1.6- to 3.9-feet) sand	Average dredge depth 0.30 meter (1 foot) Sitewide with assumed 0.15-meter (0.5-foot) over dredge totaling 353,000 cubic yards; Placement of 0.15-meter (0.5-foot) sand cover with an assumed 4-centimeter (1.5-inch) over placement totaling 147,000 cubic yards.	0.01-meter cover, totalling 8,100 cubic yards
Construction Equipment	No construction phase associated with this alternative	No construction phase associated with this alternative		One hydraulic spreader barge with 12-hour shifts, 5 days per week	Two hydraulic spreader barges with 12-hour shifts, 5 days per week	Two hydraulic dredges with 24-hour shifts, 5 days per week; One hydraulic spreader barge with 24-hour shifts, 5 days per week	Two stone slinger/hoppers with 12-hour shifts, 5 days per week
Pre-Construction Timeframe (Construct Upland Support Area, Mobilization, and Equipment Setup/Calibration)	No construction phase associated with this alternative	No construction phase associated with this alternative	6 weeks	6 weeks	6 weeks	8 weeks	4 weeks
Active Construction Timeframe (Implement Remedy)	No construction phase associated with this alternative	No construction phase associated with this alternative	20 weeks	21 weeks	38 weeks	22 weeks dredging; 9 weeks cover (concurrent with dredging)	11 weeks
Post-Construction Timeframe (Demobilization and Site Restoration)	No construction phase associated with this alternative	No construction phase associated with this alternative	3 weeks	3 weeks	2 wooks	2 weeks Season 1 demobilization; 25 weeks excavation, transportation, and disposal of dewatered sediment; 3 weeks Season 2 demobilization	3 weeks
Total On Site Project Duration	No construction phase associated with this alternative	No construction phase associated with this alternative	29 weeks	30 weeks	47 weeks (Two construction seasons required)	32 weeks Season 1; 28 weeks Season 2; 60 weeks total	18 weeks

Table 5 Cost Estimate - Alternative 2: Monitored Natural Recovery Focused Feasibility Study Thomson Reservior

Minnesota Pollution Control Agency

Description	Unit		Estimated Unit Cost	Estimated Quantity			Present Value		Comments
Baseline Characterization Costs									
Work Plan	Report	\$	8,000	1	\$	8,000	\$	8,000	FSP, QAPP, and project coordination; Year 0
Field Sampling	Event	\$	40,000	1	\$	40,000	\$	40,000	Labor and equipment; Year 0
Sample Analysis	Event	\$	102,000	1	\$	102,000	\$	102,000	Physical/chemical sediment, tox/bio testing, and benthic fish tissue; Year 0
Hydrodynamic Field Data Collection	Event	\$	3,000	2	\$	6,000	\$	6,000	One day per data collection event; twice per year during Year 0
Bathymetric Surveying	Survey	\$	42,000	1	\$	42,000	\$	42,000	Multi-beam bathymetric survey; Year 0
Baseline Characterization Summary Report	Report	\$	17,000	1	\$	17,000	\$	17,000	Report, hydrodynamic investigation, background study, figures; Year 0
Total Cost for Baseline Characterization					\$	215,000	\$	215,000	See Table 3-1 for cost breakdown; Year 0
Monitoring and Evaluation Costs									
Work Plan	Report	\$	8,000	1	\$	8,000	\$	7,000	FSP, QAPP, and project coordination; Year 1
Field Sampling	Event	\$	40,000	3	\$	120,000	\$	99,000	Labor and equipment; Years 1, 3, and 5
Sample Analysis	Event	\$	88,000	3	\$	264,000	\$	217,000	Physical/chemical sediment, tox/bio testing, and benthic fish tissue; Years 1, 3, and 5
Collect Hydrodynamic Data	Event	\$	3,000	6	\$	18,000	\$	15,000	One day per data collection event; twice per year; Years 1, 3, and 5
Institutional Control Site Review	Event	\$	2,000.00	3	\$	6,000	\$	5,000	Years 1, 3, and 5
Sampling and IC Results Report	Report	\$	8,000.00	3	\$	24,000	\$	20,000	Years 1, 3, and 5
Bathymetric Survey	Survey	\$	42,000.00	1	\$	42,000	\$	30,000	Multi-beam bathymetric survey; Year 5
Implement Institutional Controls	Lump Sum	\$	50,000.00	1	\$	50,000	\$	36,000	Year 5
				SUBTOTAL	\$	532,000	\$	429,000	-
				TOTAL	\$	747,000	\$	644,000	

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Table 3-6 for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

Table 6 Cost Estimate - Alternatives 3A/3B: Enhanced Monitored Natural Recovery Focused Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

Description	Unit	Est	imated Unit	Estimated	Ex	ctended Value	Pr	esent Value	Comments
2			Cost	Quantity					
Baseline Characterization		_			_				
Total Cost for Baseline Characterization	Lump Sum	\$	215,000.00	1	\$	215,000	\$	215,000	See Table 5 for cost breakdown; Year 0
Pre-Design Investigation Costs									
Work Plan	Report	\$	25,000	1	\$	25,000	\$	23.000	FSP, QAPP, and project coordination; Year 1
Field Sampling	Event	\$	40,000	2	\$		\$		Labor and equipment; initial and step-out sampling events; Year 1
Sample Analysis	Lump Sum	\$	156,000	1	\$	156,000	\$	146,000	Initial and step-out sampling events; Year 1
Results Report	Report	\$	17,000	1 .	\$	17,000	\$	16,000	_ Detailed report with figures, cross sections, etc.; Year 1
				SUBTOTAL	\$	278,000	\$	260,000	
Construction Costs		_			_		_		
Equip. Mob/Demob, Setup/Breakdown, Calibration	Lump Sum		213,000.00	1	\$	210,000			Heavy equipment, spreader barge, distribution system, office trailers, etc.; Year 2
Site Work	Lump Sum		361,000.00	1	\$	360,000			Construct upland support area; Year 2
Purchase Cover Material and Import to Site	Cubic Yard		20.80	158107.00	\$				Purchase and haul from local upland borrow source; Year 2
Labor and Equipment to Place Cover	Cubic Yard		14.97	158107.00	\$	2,370,000			Construct in single lift with single spreader barge; 12-hr day; Year 2
Site Operating Expenses and Security		\$	24,000.00	8.00	\$	190,000 460,000	\$		Office trailers and site security; Year 2
Construction Quality Assurance and Oversight		\$	16,000.00	29.00	\$				Two full-time staff labor, equipment, and sample analysis; Year 2
Site Restoration	Lump Sum	Ф	128,000.00	1 SUBTOTAL	\$	7.010.000		6,130,000	_Remove upland staging area; plantings; Year 2
Monitoring and Evaluation Costs				SUBTUTAL	φ	7,010,000	Φ	0,130,000	
Monitoring and Evaluation Work Plan	Report	\$	8,000.00	1	\$	8.000	\$	7 000	FSP, QAPP, and project coordination; Year 3
Monitoring and Evaluation Work 1 Idn	Event	\$	40.000.00	3	\$	120,000			Labor and equipment; Years 3, 5, and 7
Continue Hydrodynamic Data Collection	Event	\$	3.000.00	6	\$	18,000			One day per data collection event; twice per year; Years 3, 5, and 7
Monitoring and Evaluation Sample Analysis	Event	\$	88,000.00	3	\$	264,000			Physical/chemical sediment, tox/bio testing, and benthic fish tissue; Years 3, 5, and 7
Monitoring and Evaluation IC Site Review		\$	2,000.00	3	\$		\$		Years 3, 5, and 7
Sampling and IC Results Report		\$	8,000.00	3	\$	24,000			Years 3, 5, and 7
Monitoring and Evaluation Bathymetric Survey	Survey	\$	42,000.00	1	\$				Multi-beam bathymetric survey; Year 7
Implement Institutional Controls	Lump Sum		50,000.00	1	\$	50,000	\$		Year 7
				SUBTOTAL	\$	532,000	\$	366,000	
				TOTAL	\$	8,035,000	\$	6,970,000	
				25% Contingency	\$	2,009,000	\$	1,740,000	
		CC	ONSTRUCTIO	N GRAND TOTAL	\$	10,044,000	\$	8,710,000	
Professional and Technical Services									
Remedial Design (6%)	Lump Sum		600,000.00	1	\$	600,000		524,000	
Project Management and Permitting (5%)	Lump Sum	\$	500,000.00	1	\$	500,000	\$	437,000	Year 2
Construction Management (6%)	Lump Sum	\$	600,000.00	1 .	\$	600,000	\$	524,000	_Year 2
				SUBTOTAL	\$	1,700,000	\$	1,490,000	
			AL TERM	ATIVE 04 TOTAL	•	44 740 000	•	40 000 000	
			ALIERN	ATIVE 3A TOTAL	Þ	11,740,000	Þ	10,200,000	-
Adjustment for Amended Cap									
Description	Unit	Est	imated Unit	Estimated	E.	tended Value	D-	esent Value	Comments
·			Cost	Quantity					
Place additional material	Cubic Yard	\$	15.94	4053.27	\$	65,000	\$	56,774	_
				SUBTOTAL		65,000	\$	56,774	
				25% Contingency		16,000	\$	14,000	_
				GRAND TOTAL	\$	81,000	\$	70,774	
Dansadial Danism (COV)	L C	•	E 000	4	e	E 000	•	4.000	Year 2
Remedial Design (6%) Project Management and Permitting (5%)	Lump Sum Lump Sum		5,000 4,000	1 1	\$ \$	5,000 4.000		.,	Year 2 Year 2
Construction Management (6%)	Lump Sum Lump Sum		5,000	1	\$	5,000	\$	-,	Year 2
Construction Management (6%)	Lump Sum	Ф	5,000	SUBTOTAL	_	14,000	_	11,000	_ 18al Z
				SUBTUTAL	φ	14,000	φ	11,000	
Bulk Material Costs (Not Included in Contingency or P&T	Services)								
Materials, shipping, and extra labor and equipment		\$ 2	1,069,844.44	1.00	\$	21,070,000	\$	18,403,000	Granular activated carbon; Year 2
1		. –							•
			ALTERN.	ATIVE 3B TOTAL	\$	32,905,000	\$	28,685,000	
Notes:									

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Table 3-6 for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

Table 7 Cost Estimate - Alternative 4: Potentially Bioactive Zone Cap Focused Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

Description	Unit	E	Estimated Unit Cost	Estimated Quantity	E	xtended Value	F	Present Value	Comments
Baseline Characterization									
Total Cost for Baseline Characterization	Lump Sum	\$	215,000	1	\$	215,000	\$	215,000	See Table 5 for cost breakdown; Year 0
Pre-Design Investigation Costs									
Total Cost for Pre-Design Investigation	Lump Sum	\$	278,000	1	\$	278,000	\$	260,000	See Table 6 for cost breakdown; Year 1
Construction Costs									
Equipment Mobilzation/Demobilization, Setup/Break	Lump Sum	\$	343,000	1	\$	343,000	\$	300,000	Heavy equipment, spreader/conveyor barges, distribution system, office trailers, etc.; Year 2
Site Work	Lump Sum	\$	361,000	1	\$	361,000	\$	320,000	Construct upland support area; Year 2
Purchase Cover Material and Import to Site	Cubic Yard	\$	20.80	620173.00	\$	12,900,000	\$	11,270,000	Purchase and haul from local upland borrow source; Year 2
Labor and Equipment to Place Cover	Cubic Yard	\$	11.70	620173.00	\$	7,256,000	\$	6,340,000	Construct in multiple lifts using two barges; 12-hr day; Year 2
Site Operating Expenses and Security	Month	\$	23,677	12.00	\$	284,000	\$	250,000	Office trailers and site security; Year 2
Construction Quality Assurance and Oversight	Week	\$	16,000	46	\$	736,000	\$	640,000	Two full-time staff labor, equipment, and sample analysis; Year 2
Site Restoration	Lump Sum	\$	128,000	1	\$	128,000	\$	110,000	Remove upland staging area; plantings; Year 2
				SUBTOTAL	. \$	22,008,000	\$	19,230,000	
Monitoring and Evaluation Costs									
Total Cost for Monitoring and Evaluation	Lump Sum	\$	532,000	1	\$	532,000	\$	366,000	See Table 6 for cost breakdown; Years 3, 5, and 7
				TOTAL	. \$	23,033,000	\$	20,071,000	
				25% Contingency	\$	5,760,000	\$	5,020,000	
			CONSTRUCTIO	N GRAND TOTAL	. \$	28,790,000	\$	25,090,000	
Professional and Technical Services									
Remedial Design (6%)	Lump Sum	\$	1,730,000	1	\$	1,730,000	\$	1,510,000	Year 2
Project Management and Permitting (5%)	Lump Sum	\$	1,440,000	1	\$	1,440,000	\$	1,260,000	Year 2
Construction Management (6%)	Lump Sum	\$	1,730,000	1	\$	1,730,000	\$	1,510,000	Year 2
				SUBTOTAL	. \$	4,900,000	\$	4,280,000	-
				TOTAL	. \$	33,690,000	\$	29,370,000	

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Table 3-6 for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

Table 8

Cost Estimate - Alternative 5: Dredging with Thin-Layer Cover Focused Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

Estimated Unit		-4:4111:4	Fatina et a d						
Description	Unit		Cost	Estimated Quantity	Ext	tended Value	F	Present Value	Comments
Baseline Characterization		•							
Total Cost for Baseline Characterization	Lump Sum	\$	215,000.00	1	\$	215,000	\$	215,000	See Table 5 for cost breakdown; Year 0
Pre-Design Investigation Costs									
Total Cost for Pre-Design Investigation	Lump Sum	\$	278,000.00	1	\$	278,000	\$	260,000	See Table 6 for cost breakdown; Year 1
Construction Costs									
Equip. Mob/Demob, Setup/Breakdown, Calibration	Lump Sum	\$	570,000.00	1	\$	570,000	\$	500,000	Heavy equipment, dredges, piping, treatment vessels, office trailers, etc.; Year 2
Site Work	Lump Sum	\$	1,062,237.00	1	\$	1,060,000	\$	930,000	Construct upland support area; Year 2
Dredge Sediments	Cubic Yard	\$	10.70	379456.00	\$	4,060,000	\$	3,550,000	Dredge sediments using two dredges; 24-hr day; Year 2
Treat Dredge Contact Water (per CY sediment removed)	Cubic Yard	\$	40.00	379456.00	\$	15,180,000	\$	13,260,000	"All-in" ROM estimate including mob/demob, materials, equipment, labor, and disposal
Purchase Cover Material and Import to Site	Cubic Yard	\$	20.80	158106.67	\$	3,290,000	\$	2,870,000	Purchase and haul from local upland borrow source; Year 2
Labor and Equipment to Place Cover	Cubic Yard	\$	8.35	158106.67	\$	1,320,000	\$	1,150,000	Construct in single lift using single spreader barge; 24-hr day; Year 2
Excavation and T&D of Dewatered Sediments	Lump Sum	\$	13,433,000.00	1	\$	13,430,000	\$	10,960,000	Excavate dewatered sediments, truck to landfill, dispose; Year 3
Site Operating Expenses and Security	Month	\$	23,677.00	20	\$	470,000	\$	410,000	Office trailers and site security; Year 2
Construction Quality Assurance and Oversight	Lump Sum	\$	1,515,000.00	1	\$	1,520,000	\$	1,320,000	Two full-time staff labor, equipment, and sample analysis; Year 2
Site Restoration	Lump Sum	\$	407,000.00	1	\$	410,000	\$	360,000	Remove upland staging area; plantings; Year 2
				SUBTOTAL	\$	41,310,000	\$	35,310,000	
Monitoring and Evaluation Costs									
Total Cost for Monitoring and Evaluation	Lump Sum	\$	532,000.00	1	\$	532,000	\$	367,000	See Table 6 for cost breakdown; Years 3, 5, and 7
				TOTAL	\$	42,335,000	\$	36,152,000	
				25% Contingency	\$	10,580,000	\$	9,040,000	
			CONSTRUCTIO	N GRAND TOTAL	\$	52,915,000	\$	45,192,000	•
Professional and Technical Services									
Remedial Design (6%)	Lump Sum	\$	3,170,000.00	1	\$	3,170,000	\$	2,770,000	Year 2
Project Management and Permitting (5%)	Lump Sum		2,650,000.00	1	\$	2,650,000	\$	2,310,000	
Construction Management (6%)	Lump Sum	\$	3,170,000.00	1	\$	3,170,000	\$	2,770,000	Year 2
	•			SUBTOTAL	\$	8,990,000	\$	7,850,000.00	•
				TOTAL	\$	61,910,000	\$	53,040,000	

Notes

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Table 3-6 for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

Table 9

Cost Estimate - Alternatives 6: Enhanced Monitored Natural Recovery - Broadcast Ammendment Focused Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

Description	Unit	Es	timated Unit Cost	Estimated Quantity	Ex	tended Value	Pr	esent Value	Comments
Baseline Characterization			_						
Total Cost for Baseline Characterization	Lump Sum	\$	215,000.00	1	\$	215,000	\$	215,000	See Table 5 for cost breakdown; Year 0
Pre-Design Investigation Costs									
Total Cost for Pre-Design Investigation	Lump Sum	\$	278,000.00	1	\$	278,000	\$	260,000	See Table 6 for cost breakdown; Year 1
Construction Costs									
Equip. Mob/Demob, Setup/Breakdown, Calibration	Lump Sum	\$	87,000.00	1	\$	90,000	\$	80,000	Heavy equipment, spreader barge, office trailers, etc.; Year 2
Site Work	Lump Sum	\$	360,992.00	1	\$	360,000	\$	320,000	Construct upland support area; Year 2
Labor and Equipment to Place Cover	Cubic Yard	\$	138.44	4860.80	\$	670,000	\$	590,000	Broadcast ammendment with 1 stone slinger barge; 12-hr day; Year 2
Site Operating Expenses and Security	Month	\$	21,000.00	6.20	\$	130,000	\$	110,000	Office trailers and site security; Year 2
Construction Quality Assurance and Oversight	Week	\$	7,000.00	24.80	\$	170,000	\$	150,000	One full-time staff labor and equipment; Year 2
Site Restoration	Lump Sum	\$	127,614.00	1	\$	130,000	\$	110,000	Remove upland staging area; plantings; Year 2
				SUBTOTAL	. \$	1,550,000	\$	1,360,000	
Monitoring and Evaluation Costs									
Total Cost for Monitoring and Evaluation	Lump Sum	\$	532,000.00	1	\$	532,000	\$	367,000	See Table 6 for cost breakdown; Years 3, 5, and 7
				TOTAL	. \$	2,575,000	\$	2,200,000	
				25% Contingency	\$	644,000	\$	550,000	
		C	ONSTRUCTION	N GRAND TOTAL	. \$	3,219,000	\$	2,750,000	
Professional and Technical Services									
Remedial Design (6%)	Lump Sum	\$	190,000.00	1	\$	190,000	\$	166,000	Year 2
Project Management and Permitting (5%)	Lump Sum	\$	160,000.00	1	\$	160,000	\$	140,000	Year 2
Construction Management (6%)	Lump Sum	\$	190,000.00	1	\$	190,000	\$	166,000	_Year 2
				SUBTOTAL	. \$	540,000	\$	470,000	
Bulk Material Costs (Not Included in Contingency or P&T	Services)								
Purchase Pelitized AC and Import to Site	Ton	\$	4,000.00	4860.80	\$	19,440,000	\$	16,980,000	Purchase and ship from manufacturer; Year 2
			ALTERN	NATIVE 6 TOTAL	. \$	23,200,000	\$	20,200,000	

Notes:

All values are based on 2016 dollars with an assumed discount rate of 7 percent per year. See Table 3-6 for present value calculations.

Assumptions are based on professional judgment and experience of specialists at Bay West. Actual project costs will be highly dependent upon final design.

Table 10 Present Worth Calculations Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Discount rate used for present worth calculations: 7.00%

Notes:

Present worth calculation is: [(2016 Cost)/(1.07^Event Year 1)]+[(2016 Cost)/(1.07^Event Year 2)]+...

Year 0 is 2016.

The Baseline Characterization for all alternatives would be conducted during Year 0.

The Pre-Design Investigation would be conducted on Year 1 for the cover/cap/dredge alternatives.

Construction would be conducted on Year 2 for the cover/cap/dredge alternatives.

Monitoring and evaluation would be conducted on Years 1, 3, and 5 for the MNR Alternative, and Years 3, 5, and 7 for the cover/cap/dredge alternatives.

Alternative 2: Monitored Natural Recovery	2016 Costs		Years		Total Present Worth	Note
Baseline Characterization Costs						
Baseline Characterization Work Plan	\$8,000	0			\$8,000	
Field Sampling	\$40,000	0			\$40,000	
Sample Analysis	\$102,000	0			\$102,000	
Hydrodynamic Field Data Collection	\$6,000	0			\$12,000	Times 2 for two events
Bathymetric Surveying	\$42,000	0			\$42,000	
Baseline Characterization Summary Report	\$17,000	0			\$17,000	
Monitoring and Evaluation Costs						
Work Plan	\$8,000	1			\$7,477	
Field Sampling	\$40,000	1	3	5	\$98,555	
Sample Analysis	\$88,000	1	3	5	\$216,820	
Collect Hydrodynamic Data	\$3,000	1	3	5	\$14,783	Times 2 for two events per year
Institutional Control Site Review	\$2,000	1	3	5	\$4,928	
Sampling and IC Results Report	\$8,000	1	3	5	\$19,711	
Bathymetric Survey	\$42,000	5			\$29,945	
Implement Institutional Controls	\$50,000	5			\$35,649	

Alternative 3: Enhanced MNR	20	16 Costs	Years		Total Present Worth	Note		
Baseline Characterization								
Total Cost for Baseline Characterization		\$215,000	0			\$215,000		
Pre-Design Investigation Costs								
Work Plan		\$25,000	1			\$23,364		
Field Sampling		\$40,000	1			\$74,766	Times 2 for two events	
Sample Analysis		\$156,000	1			\$145,794		
Results Report		\$17,000	1			\$15,888		
Construction Costs				•				
Equip. Mob/Demob, Setup/Breakdown, Calibration		\$213,000	2			\$186,042		
Site Work	\$	361,000	2			\$315,311		
Purchase Cover Material and Import to Site	\$	3,290,000	2			\$2,873,613		
Labor and Equipment to Place Cover	\$	2,370,000	2			\$2,070,050		
Site Operating Expenses and Security	\$	190,000	2			\$165,953		
Construction Quality Assurance and Oversight	\$	460,000	2			\$401,782		
Site Restoration	\$	130,000	2			\$113,547		
Monitoring and Evaluation Costs				•				
Monitoring and Evaluation Work Plan	\$	8,000	3			\$6,530		
Monitoring and Evaluation Field Sampling	\$	40,000	3	5	7	\$86,081		
Continue Hydrodynamic Data Collection	\$	3,000	3	5	7	\$6,456		
Monitoring and Evaluation Sample Analysis	\$	88,000	3	5	7	\$189,379		
Monitoring and Evaluation IC Site Review	\$	2,000	3	5	7	\$4,304		
Sampling and IC Results Report	\$	8,000	3	5	7	\$17,216		
Monitoring and Evaluation Bathymetric Survey	\$	42,000	7			\$26,155		
Implement Institutional Controls	\$	50,000	7			\$31,137		
Professional and Technical Services								
Remedial Design (6%)	\$	600,000	2			\$524,063		
Project Management and Permitting (5%)	\$	500,000	2			\$436,719		
Construction Management (6%)	\$	600,000	2			\$524,063		
Adjustment for Amended Cap								
Materials, shipping, and extra labor and equipment	\$	21,069,844	2			\$18,403,218		
Place additional material		\$65,000	2			\$56,774		
Remedial Design (6%)		\$5,000	2			\$4,367		
Project Management and Permitting (5%)		\$4,000	2			\$3,494		
Construction Management (6%)		\$5,000	2			\$4,367		

Table 10 Present Worth Calculations Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Alternative 4: BAZ Cap	2016 Costs	Years		Total Present Worth	Note			
Baseline Characterization				·				
Total Cost for Baseline Characterization	\$215,000			\$215,000				
Pre-Design Investigation Costs								
Total Cost for Pre-Design Investigation	\$278,000	1		\$259,813				
Construction Costs								
Equip. Mob/Demob, Setup/Breakdown, Calibration	\$343,000	2		\$299,589				
Site Work	\$361,000	2		\$315,311				
Purchase Cover Material and Import to Site	\$12,900,000	2		\$11,267,360				
Labor and Equipment to Place Cover	\$7,256,000	2		\$6,337,671				
Site Operating Expenses and Security	\$284,000	2		\$248,057				
Construction Quality Assurance and Oversight	\$736,000	2		\$642,851				
Site Restoration	\$128,000	2		\$111,800				
Monitoring and Evaluation Costs								
Total Cost for Monitoring and Evaluation	\$532,000			\$367,260				
Professional and Technical Services								
Remedial Design (6%)	\$1,730,000	2		\$1,511,049				
Project Management and Permitting (5%)	\$1,440,000	2		\$1,257,752				
Construction Management (6%)	\$1,730,000	2		\$1,511,049				

Alternative 5: Dredging	2016 Costs	Years		Total Present Worth	Note		
Baseline Characterization							
Total Cost for Baseline Characterization	\$215,000	0		\$215,000			
Pre-Design Investigation Costs				·			
Total Cost for Pre-Design Investigation	\$278,000	1		\$259,813			
Construction Costs							
Equip. Mob/Demob, Setup/Breakdown, Calibration	\$ 570,000	2		\$497,860			
Site Work	\$ 1,062,237	2		\$927,799			
Dredge Sediments	\$ 4,060,000	2		\$3,546,161			
Treat Dredge Contact Water	\$ 15,180,000	2		\$13,258,800			
Purchase Cover Material and Import to Site	\$ 3,290,000	2		\$2,873,613			
Labor and Equipment to Place Cover	\$ 1,320,000	2		\$1,152,939			
Excavation and T&D of Dewatered Sediments	\$ 13,430,000	3		\$10,962,880			
Site Operating Expenses and Security	\$ 470,000	2		\$410,516			
Construction Quality Assurance and Oversight	\$ 1,515,000	2		\$1,323,260			
Site Restoration	\$ 407,000	2		\$355,490			
Monitoring and Evaluation Costs							
Total Cost for Monitoring and Evaluation	\$532,000			\$367,260			
Professional and Technical Services							
Remedial Design (6%)	\$ 3,170,000	2		\$2,768,801			
Project Management and Permitting (5%)	\$ 2,650,000	2		\$2,314,613			
Construction Management (6%)	\$ 3,170,000	2		\$2,768,801			

Table 10 Present Worth Calculations Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Alternative 6: Enhanced MNR with Broadcast Amendme	201	6 Costs		Years	Total Present Worth	Note		
Baseline Characterization					·			
Total Cost for Baseline Characterization		\$215,000	0		\$215,000			
Pre-Design Investigation Costs								
Total Pre-Design Investigation Costs		\$278,000	1		\$259,813			
Construction Costs								
Equip. Mob/Demob, Setup/Breakdown, Calibration	\$	87,000	2		\$75,989			
Site Work	\$	360,992	2		\$315,304			
Purchase Pelitized AC and Import to Site	\$ 19	9,440,000	2		\$16,979,649			
Labor and Equipment to Place Cover	\$	670,000	2		\$585,204			
Site Operating Expenses and Security	\$	130,000	2		\$113,547			
Construction Quality Assurance and Oversight	\$	170,000	2		\$148,485			
Site Restoration	\$	127,614	2		\$111,463			
Monitoring and Evaluation Costs								
Total Cost for Monitoring and Evaluation	\$	532,000	3		\$434,270			
Professional and Technical Services								
Remedial Design (6%)	\$	190,000	2		\$165,953			
Project Management and Permitting (5%)	\$	160,000	2		\$139,750			
Construction Management (6%)	\$	190,000	2		\$165,953			

Table 11 Comparative Analysis Summary - Threshold, Balancing, and Modifying Criteria Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Evaluation Criteria	Alternative 1: No Action with Baseline Characterization	Alternative 2: Monitored Natural Recovery (MNR)	Alternative 3A: Enhanced MNR	Alternative 3B: Enhanced MNR with Cover Amendment	Alternative 4: Potentially Bioactive Zone Cap	Alternative 5: Dredging with Thin-Layer Cover	Alternative 6: Enhanced MNR with Broadcast Amendment
Threshold Criteria							
Overall Protection of Human Health & Environment	Provides a low achievement of protection of Human Health and the Environment as contaminant concentrations remain with minimal controls to prevent exposure.	Provides a low achievement of protection of Human Health and the Environment as contaminant concentrations remain with minimal controls to prevent exposure.	Provides a moderate achievement of protection of Human Health and the Environment. Contaminated sediment would remain in place but concentrations would reduce to less than RAOs over time.	Provides a moderate to high achievement of protection of Human Health and the Environment. Contaminated sediment would remain in place but concentrations would reduce to concentrations less than RAOs over less time that Alternative 3a time.	Provides a moderate to high achievement of protection of Human Health and the Environment. Contaminated sediment would remain in place but contaminants would be completely isolated and would reduce to concentrations less than RAOs over less time than Alternative 3a and 3b.	Provides a high achievement of protection of Human Health and the Environment. Only residual contaminated sediment would remain in place; however, it is anticipated that the residual contamination will not exceed the RAOs.	
ARARs	Provides a low achievement of ARARs since chemical- specific TBCs are not met for sediment. Location and action-specific ARAR s do not apply to this alternative.	Provides a low achievement of ARARs since chemical- specific TBCs are not met for sediment. Location and action-specific ARAR s do not apply to this alternative.	Provides a moderate achievement of ARARs if implemented properly. All contaminants would likley be reduced to concentrations less than RAOs over time.	Provides a moderate achievement of ARARs if implemented properly. All contaminants would likley be reduced to concentrations less than RAOs over time.	Provides a moderate achievement of ARARs if implemented properly. All contaminants would likley be reduced to concentrations less than RAOs over time.	Provides a high achievement of ARARs if implemented properly. Contaminants above the RAOs would be removed.	Provides a moderate achievement of ARARs if implemented property. All contaminants may be reduced to concentrations less than RAOs over time.
			ı	Primary Balancing Criteria			
Long-term Effectiveness and Permanence	Provides a low achievement of long-term effectiveness and remedy is not long-term effective or permanent.	Provides a low achievement of long-term effectiveness and remedy is not long-term effective or permanent; however, long-term monitoring would document if and how soon RAOs might be achieved.	Provides a moderate achievement of long-term effectiveness and permanence because it reduces a contaminant concentrations in sediments to less than RAOs over time; however, sedimentation rates necessary for achieving RAOs are poorly understood at the Site. Monitoring, and possible reapplication of the thin-cover material may be necessary as all contaminants would remain in place.	Provides a moderate to high achievement of long-term effectiveness and permanence because it reduces contaminant concentrations in sediments to less than RAOs over time; however, sedimentation rates necessary for achieving RAOs are poorly understood and the long-term effictiveness is unproven for some amendments. Monitoring, and possible reapplication of the thin-cover material may be necessary as all contaminants would remain in place.	Provides a high achievement of long-term effectiveness and permanence because it isolates contaminated sediments from receptors and reduces contaminant concentrations in sediments to less than RAOs over time; however, monitoring, and possible reapplication of the cap material may be necessary as all contaminants would remain in place.	Contaminated sediments would be perminently removed from the Site; however, contaminated sediments would be placed in a disposal facility requiring long-term O&M.	Provides a moderate achievement of long-term effectiveness and permanence because it reduces contaminant concentrations in sediments to less than RAOs over time; however, sedimentation rates necessary for achieving RAOs are poorly understood at the Site. Monitoring, and possible reapplication of the amendment material may be necessary as all contaminants would remain in place.
Reduction of Toxicity, Mobility or Volume through Treatment	Provides a low achievement of this criterion as no reduction in toxicity, mobility, or volume is provided.	Provides a low achievement of this criterion as no reduction in toxicity, mobility, or volume is provided.	Provides a low to moderate achievement of this criterior as all contaminated sediment that exceed the RAOs would be left in pace; however, toxicity and volume of contaminated sediment would be reduced over time. Contaminant mobility would remain unchanged.		Provides a moderate to high achievement of this criterion as all contaminated sediment that exceed the RAOs would be left in pace; however, mobility would be reduced at the time of cap placement and toxicity of contaminants would be reduced over time.	Provides a high achievement of this criterion by removing all contaminated sediments that exceed the RAOs. The removed sediments would be treated through stabilization.	all contaminated sediment that exceed the RAOs would
Short-term effectiveness	Provides a moderate achievement of this criterion as no actions are implemented, so no risks to the community would result from remedy implementation; however, receptors would continue to be exposed to contaminated sediment.	Provides a moderate achievement of this criterion as no actions are implemented, so no risks to the community would result from remedy implementation; however, receptors would continue to be exposed to contaminated sediment.	Provides a moderate to high achievement of this criterion since it would take a moderate amount of time to place thin-cover material; however, impacts to the community and risks to workers is low. This alternative would also provide some isolation from contaminated sediments and would not eliminate benthic communities o habitat.	material; however, impacts to the community and risks to workers is low. This alternative would also provide some isolation from contaminated sediments and would not	would take a a longer amount of material and time than Alternatives 3a and 3b to place install the cap which would result in increased trucking and impacts to the community. Risks to workers is moderate.	Provides a low achievement of this criterion since it would take longer to implement on-site dredging and would affect the aquatic habitat longer. Off-site disposal lowers the ectiveness due to a slight increase in short-term risks from truck traffic to an off-site landfill.	requires the least amount of time to place amendment material, resulting in less impacts/risks to the
Implementability	Provides a high achievement of this criterion as no actions would be implemented.	Provides a high achievement of this criterion as no actions would be implemented.	Provides a moderate to high achievement of implementability since it requires placement of thin cover material using proven methods with a low level of complexity.	Provides a moderate to high achievement of implementability since it requires placement of thin cover material using proven methods with a moderate level of complexity.	Provides a moderate achievement of implementability since it requires placement of thin cap material using proven methods with a moderate to high level of complexity.	Provides a low to moderate achievement of implementability since it requires a large amount of dredging and staging coordination.	Provides a moderate to high achievement of implementability since it requires placement of amendment material using proven methods with a low level of complexity.
Cost (1)	\$ -	\$ 644,000				\$ 53,040,000	
Modifying Criteria	·	•	•				
State Support / Agency Acceptance	TBD	TBD	TBD	TBD		TBD	TBD
Community Acceptance	TBD	TBD	TBD	TBD		TBD	TBD

Notes
(1) Cost are presented as Present Value.
M = Million
*Not included in numerical comparison on (Table 5-2).
TBD = To Be Determined

Table 12 Comparative Analysis Summary - Green Sustainable Remediation Criteria Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

	T	T	T		1	T	,
Evaluation Criteria	Alternative 1: No Action with Baseline Characterization	Alternative 2: Monitored Natural Recovery (MNR)	Alternative 3A: Enhanced MNR	Alternative 3B: Enhanced MNR with Cover Amendment	Alternative 4: Potentially Bioactive Zone Cap	Alternative 5: Dredging with Thin-Layer Cover	Alternative 6: Enhanced MNR with Broadcast Amendment
			Green Sustainat	ole Remediation (GSR) Criteria*			
Green House Gas (GHG) Emissions	Total GHG emissions are limited to equipment mobilization/demobilization related to sampling activities.	Total GHG emissions are limited to equipment mobilization related to sampling activities.	Least GHG emissions produced during thin cover placment and equipment mobilization related to sampling activities.	Least GHG emissions produced during thin cover placment and equipment mobilization related to sampling activities.	, ,	Total GHG emissions are limited to dredging activities and hauling wastes by land to landfill. More dredging and hauling generates more GHG emissions.	Least GHG emissions produced during amendment placment and equipment mobilization related to sampling activities.
Toxic Chemical Usage and Disposal	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.	No toxic chemicals are used or disposed.
Energy Consumption	Fossil fuels are limited to equpment mobilization/demobilization for sampling activities.	Fossil fuels are limited to equpment mobilization for sampling activities.	Fossil fuels are limited to the equpment mobilization for sampling activities and thin cover placement operations only.	Fossil fuels are limited to the equpment mobilization for sampling activities and thin cover placement operations only.	Fossil fuels are limited to the equpment mobilization for sampling activities and thin cover placement operations only.	Fossil fuels are required for equpment mobilization for sampling activities, dredging activities, and hauling wastes by land to landfill. More dredging and hauling requires more fossil fuels.	amendment placement operations only.
Use of Alternative Fuels	Does not warrant the use of alternative fuels.	Does not warrant the use of alternative fuels.	Alternative fuels could be used to run heavy construction equipment.	Alternative fuels could be used to run heavy construction equipment.	Alternative fuels could be used to run heavy construction equipment.	Alternative fuels could be used to run heavy construction equipment.	Alternative fuels could be used to run heavy construction equipment.
Water Consumption	No water consumption is necessary.	No water consumption is necessary.	Little water consumption is necessary.	Little water consumption is necessary.	Little water consumption is necessary.	Little water consumption is necessary.	Little water consumption is necessary.
Waste Generation	No waste generation.	No waste generation.	No waste generation.	No waste generation.	No waste generation.	XXX yd3 of sediment for disposal will be generated.	No waste generation.
GSR Criteria Summary	Provides a high achievement of the GSR criterion.	Provides a high achievement of the GSR criterion.		Provides a moderate to high achievement of the GSR criterion.	Provides a moderate achievement of the GSR criterion.	Provides a low achievement of the GSR criterion.	Provides a moderate to high achievement of the GSR criterion.

(1) Cost are presented as Present Value. M = Million

* Not included in numerical comparison on (Table 5-2).

TBD = To Be Determined

Table 13 Numerical Comparative Analysis Summary Focused Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

Evaluation Criteria	Alternative 1: No Action with Baseline Characterization	Alternative 2: Monitored Natural Recovery (MNR)	Alternative 3A: Enhanced MNR	Alternative 3B: Enhanced MNR with Cover Amendment	Alternative 4: Potentially Bioactive Zone Cap	Alternative 5: Dredging with Thin-Layer Cover	Alternative 6: Enhanced MNR with Broadcast Amendment
Overall Protection of Human Health & Environment	1	1	2	2.5	2.5	3	2
ARARs	1	1	2	2	2	3	2
Long-term Effectiveness and Permanence	0.5	1	2	2.5	3	3	2
Reduction of Toxicity, Mobility or Volume through Treatment	1	1	1	2.5	2	2	2.5
Short-term effectiveness	2	2	2.5	2.5	2	1	3
Implementability	3	3	2.5	2.5	2	1.5	2.5
Cost (1)	3	3	2.5	1.5	1.5	0.5	2
State Support / Agency Acceptance	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Community Acceptance	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Total Numerical Value	11.5	12	14.5	16	15	14	16

Notes

Ratings are based on achievement of criterion: low achievement; moderate achievement; and high achievement.

Scores are based on 1 = low achievement; 2 = moderate achievement; and 3 = high achievement.

Scoring for cost are based on the following cost breakpoints: > \$40 million = low achievement; \$20 - \$40 Million = moderate achievement; and < \$20 million = high achievement.

GSR criteria not included in this numerical comparison.

See Table 6 for a discussion of each criterion.

⁽¹⁾ Cost are presented as Present Value.

Appendix A Public Works Correspondence

Appendix A – Record of Communications Interim Feasibility Study Thomson Reservoir Minnesota Pollution Control Agency

- Dirk Pohlmann with Bay West corresponded with John Hull, Aquablok, in October 2015 via email. Mr. Hull provided Bay West with information regarding AquaBlok products and applications.
- Dirk Pohlmann with Bay West corresponded with Matthew Lambert, Environmental Protection Agency, November 2015 via email. Mr. Lambert provided Bay West with clarification regarding Tier 1 and 2 sediment site lists, site action levels, site cleanup levels, objectives and goals.
- Jonna Bjelland with Bay West spoke with Derek Wolf, Public Works Superintendent for the City of Carlton on January 13, 2016. Mr. Wolf stated that the City is currently in the process of creating figures that map the storm sewer for the entire area. After verbally discussing the location of storm sewer discharges in both cities with Mr. Wolf it was determined that neither city discharges to the Reservoir. Both cities are located at elevations below the Reservoir and discharge to the St. Louis River below the dam.
- Jonna Bjelland with Bay West spoke with Tony Compo, Public Works Lead, January 21st, 2016. Mr. Compo stated that there are no storm sewer maps for the City of Scanlon. Mr. Compo stated that two storm sewers discharge on the west side of Highway 45 ultimately enter streams, which discharge to the Reservoir.
- Chris Musson of Bay West corresponded with Omar's Sand and Gravel, Inc. (Omar's) of Carlton, Minnesota via email and phone between February 10th and 18th, 2016. The Thomson Reservoir alternative scopes were discussed with John, a long-term employee at Omar's, and it was stated that projects on the scale of Thomson Reservoir are conducted regularly by Omar's. Supply, loading, and transportation services are offered by Omar's, and large quantities of washed sand are always kept in stock (i.e., stockpiled and ready for load-out). Quotes for supply and delivery of crushed concrete and washed sand were supplied to Bay West, but it was requested that pricing information be kept confidential (this pricing was incorporated into cost estimates). Gradation reports for two types of washed sand were also supplied to Bay West.
- Chris Musson of Bay West corresponded with Kyle Backstrom of SKB Environmental Services/Shamrock Trucking (Shamrock Landfill) located in Cloquet, Minnesota, via phone and email on February 10th, 2016. The Thomson Reservoir Dredging Alternative scope was discussed and Mr. Backstrom stated that Shamrock Landfill would have capacity to accept the dredge material and could also supply trucking services. No discount for use of sediment as daily cover would likely be given as large quantities of daily cover are already available. A rough estimate cost of \$16 per ton for disposal and approximately \$100 per hour per 23.5-ton end dump truck was supplied.
- Dirk Pohlmann with Bay West corresponded with Greg Prom, Minnesota Power/Allete, February 23, 2016, via email. Mr. Prom provided Bay West with the normal operating bands for the reservoirs: Scanlon = 1119.30 to 1120.30 and Thomson = 1059.38 to 1069.38.
- Dirk Pohlmann with Bay West corresponded with Greg Prom, Minnesota Power/Allete, February 25, 2016, via email. Mr. Prom provided Bay West with some diagrams of the river system around Scanlon and Thomson prior to the hydro construction.

Appendix B

Historical Dioxin Analytical Results

Appendix B - Historical Dioxin Analysis Results Interim Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

			Sample Depth	Sample Depth		Result
Sample Location	Sample Name	Sample Date	Upper (cm)	Lower (cm)	Sample Interval	(ng TEQ/kg)
THO	В	06/23/1992	4	16	0-15	0.55
THO	E	06/23/1992	44	52	15-50	0.835
THO	Н	06/23/1992	112	120	100+	3.4
THO	J	06/23/1992	144	154	100+	6.875
THO	L	06/23/1992	176	184	100+	9.3
THO	M	06/23/1992	184	192	100+	26.835
THO	N	06/23/1992	192	200	100+	27.045
THO	Р	06/23/1992	264	280	100+	0.6
STL14-TR01	TR01-0	08/16/2014	15	61	15-50	6.97315
STL14-TR01	TR01-S	08/13/2014	0	15	0-15	0.201311733
STL14-TR02	TR02-0	08/15/2014	15	61	15-50	0.430544922
STL14-TR02	TR02-S	08/13/2014	0	15	0-15	19.3216625
STL14-TR03	TR030b	08/14/2014	15	61	15-50	5.450064815
STL14-TR03	TR03-S	08/13/2014	0	15	0-15	8.933545
STL14-TR04	TR04-0	08/16/2014	15	61	15-50	3.678436364
STL14-TR04	TR04Sb	08/13/2014	0	15	0-15	1.754102857
STL14-TR05	TR05-0	08/16/2014	15	61	15-50	24.6666
STL14-TR05	TR05-S	08/12/2014	0	15	0-15	1.121029447
STL14-TR06	TR060b	08/14/2014	15	61	15-50	256.174
STL14-TR06	TR06-S	08/13/2014	0	15	0-15	6.225546667
STL14-TR07	TR07-0	08/14/2014	15	61	15-50	29.46225
STL14-TR07	TR07-S	08/13/2014	0	15	0-15	4.054512977
STL14-TR08	TR08-0	08/17/2014	15	61	15-50	46.6925
STL14-TR08	TR08-S	08/13/2014	0	15	0-15	254.656825
STL14-TR10	TR10-S	08/12/2014	0	15	0-15	0.138287273
STL14-TR11	TR11-0	08/16/2014	15	61	15-50	9.076222222
STL14-TR11	TR11-S	08/12/2014	0	15	0-15	8.835627852
STL14-TR12	TR120a	08/08/2014	15	61	15-50	4.335792
STL14-TR12	TR12-S	08/13/2014	0	15	0-15	10.12245926
STL14-TR13	TR13-0	08/15/2014	15	61	15-50	92.355
STL14-TR13	TR13-S	08/12/2014	0	15	0-15	88.51176
STL14-TR14	TR14-0	08/16/2014	15	61	15-50	26.4618
STL14-TR14	TR14-S	08/12/2014	0	15	0-15	2.324709359
STL14-TR15	TR15-0	08/16/2014	15		15-50	4.218688125
STL14-TR15	TR15-S	08/12/2014	0	15	0-15	1.037249362
STL14-TR16	TR16-0	08/16/2014	15		15-50	349.528
STL14-TR16	TR16-S	08/13/2014	0	15	0-15	9.533608392
STL14-TR17	TR17-0	08/17/2014	15	61	15-50	12.64566667
STL14-TR17	TR17-S	08/13/2014	0		0-15	27.63589091
STL14-TR18	TR18-0	08/17/2014	15		15-50	15.50735
STL14-TR18	TR18-S	08/13/2014	0		0-15	20.85326675
STL14-TR19	TR19-0	08/17/2014	15		15-50	7.379357143

Appendix B - Historical Dioxin Analysis Results Interim Feasibility Study Thomson Reservior Minnesota Pollution Control Agency

Sample Location	Sample Name	Sample Date	Sample Depth	Sample Depth	Sample Interval	Result
Sample Location	Sample Name	Sample Date	Upper (cm)	Lower (cm)	Sample interval	(ng TEQ/kg)
STL14-TR19	TR19-S	08/13/2014	0	15	0-15	1.778103896
STL14-TR20	TR20-0	08/16/2014	15	61	15-50	4.745645455
STL14-TR20	TR20-S	08/12/2014	0	15	0-15	16.581257
STL14-TR21	TR21-0	08/13/2014	15	61	15-50	3.051878492
STL14-TR21	TR21-S	08/13/2014	0	15	0-15	1.818740396
STL14-TR22	TR22-0	08/13/2014	15	61	15-50	4.960676364
STL14-TR22	TR22-S	08/13/2014	0	15	0-15	1.998355879
STL14-TR23	TR23-0	08/16/2014	15	61	15-50	19.197
STL14-TR23	TR23-S	08/12/2014	0	15	0-15	3.70088
STL14-TR24	TR24-0	08/17/2014	15	61	15-50	45.2735
STL14-TR24	TR24-S	08/13/2014	0	15	0-15	2.634521143

Notes

cm - centimeters

ng TEQ/kg - nanogram toxic effect quotient, per kilogram

SQT - Sediment Quality Target

Results shaded in yellow exceed Level 1 SQT (0.85 ng TEQ/kg)

Results shaded in orange exceed the midpoint SQT (11.2 ng TEQ/kg)

Results shaded in red exceed Level 2 SQT (21.5 ng TEQ/kg)

Appendix C

Thomson Reservoir Technical Memorandum, June 2017

Thomson Reservoir Technical Memorandum

Thomson Reservoir Carlton, Minnesota

June 2017

Thomson Reservoir Technical Memorandum

Thomson Reservoir Carleton, Minnesota

June 2017

Prepared for:

520 Lafayette Road North St. Paul, Minnesota 55155

Prepared by:

Bay West LLC 5 Empire Drive St. Paul, Minnesota 55103

Table of Contents

1.0 INTRODUCTION	
1.1 Purpose and Objectives	
1.2 Report Organization	2
1.3 Site Setting	2
1.4 Investigation History and COIs	2
2.0 FIELD ACTIVITIES AND METHODS	3
2.1 Sediment Sampling Overview	3
2.1.1 Ponar Equipment Description and Procedure	3
2.1.2 Check Valve Push Core Collection Equipment and Pro	ocedure 3
2.1.3 Russian Peat Borer Equipment Description and Proce	
2.1.4 Equipment Decontamination	5
2.2 Benthic Macroinvertebrate Tissue Sampling Overview	5
2.2.1 In Situ Benthic Macroinvertebrate Tissue Sampling	5
2.2.2 Ex Situ Benthic Macroinvertebrate Tissue Sampling	6
2.3 Fish Sampling Overview	6
2.4 Community Assessment Equipment Description and Pro	cedure 7
2.5 Sample Processing	
2.5.1 Sample Collection and Analysis	8
2.5.1.1 Sediment Physical/Chemical Analysis	8
2.5.1.2 Community Assessments	
2.5.1.3 Bioaccumulation Testing	
2.5.1.4 Fish Tissue Testing	
2.5.2 Rinsate Blanks	
2.5.3 Waste Characterization and Disposal	
2.6 Data Interpretation	
2.6.1 Treatment of Non-Detect Data	
2.6.2 Sediment Quality Targets (SQTs)	
2.6.3 Sample Interval Categorization	
3.0 SUMMARY OF RESULTS	
3.1 Sample Depth and Sediment Recovery	
3.2 Sediment Chemistry Data	
3.2.1 Mercury (Sediment)	
3.2.2 Dioxins/Furans (Sediment)	
3.3 Physical Sediment Characterization	16
3.3.1 Grain Size	
3.3.1.1 Total Organic Carbon	18
3.4 Tissue Chemistry Data	
3.4.1 Mercury and Methylmercury (Tissue)	19
3.4.1.1 Benthic Macroinvertebrate Tissue	
3.4.1.2 Fish Tissue	
3.4.2 Dioxins/Furans (Tissue)	
3.4.2.1 Benthic Macroinvertebrate Tissue	
3.4.2.2 Fish Tissue	
3.5 Community Assessment Comparison Data	24

4.0 4.1 4.2 4.3 5.0 6.0	A In S DIS	TA QUALITY REVIEW
List of	Tal	ples
Table	2 3 4 5 6 7 8 9 10	Sample Analysis Summary Sample Locations Core Summary Poling Summary Analytical Testing Parameters Summary Total Organic Carbon Results Community Assessment Metals Results Sediment Dioxin/Furans Results Sediment Benthic Macroinvertebrate Tissue Results - Macrobenthos Benthic Macroinvertebrate Tissue Results - Lumbriculus Fish Tissue Results
List of	Fig	ures
Figure Figure Figure Figure Figure Figure Figure	2 3 4 5 6 7	Site Location Map Site Map Sample Locations Poling Locations and Sediment Thicknesses Mercury SQT Results TEQ KM Fish SQT Results Mercury and Methylmercury In situ and Ex Situ Bioaccumulation Results TEQ KM Fish In situ and Ex Situ Bioaccumulation Results
List of	f A p	pendices
Appen Appen Appen Appen Appen	dix E dix (dix [2016 Tissue Analysis Project Plan for Duluth Reservoirs Draft Report Disposal Documentation Laboratory Analytical Reports

Acronyms and Abbreviations

%	percent	mg/kg	milligrams per kilogram
μg/kg	micrograms per kilogram	MPCA	Minnesota Pollution Control
	analysis of variance		Agency
AOC	Area of Concern	MS/MSD	matrix spike/matrix spike
	American Society for Testing		duplicate
	and Materials	ng	nanograms
Bay West	Bay West LLC	Pace	Pace Analytical Services,
BAZ	bioactive zone		Inc.
bss	below sediment surface	PAH	polycyclic aromatic
BUI	beneficial use impairment		hydrocarbon
	chain of custody	PCB	polychlorinated biphenyl
COC	chemical of concern		quality assurance
	constituent of interest		Quality Assurance Project
CSM	conceptual site model		Plan
	data quality objective	QC	quality control
ELAP	Environmental Laboratory		standard operating
	Accreditation Program		procedure
FFS	focused feasibility study	SQT	. sediment quality target
FSP	Field Sampling Plan	TEF	toxicity equivalency factor
	gas chromatograph/mass		toxicity equivalent
	spectrometer		toxicity equivalent per
GLEC	Great Lakes Environmental	· ·	kilogram
	Center, Inc.	TestAmerica	TestAmerica Laboratories,
GPS	Global Positioning System		Inc.
HD		TOC	total organic carbon
HH		TR	Thomson Reservoir
ID	identification	USACE	United States Army Corps of
IDW	investigation-derived waste		Engineers
KM	Kaplan-Meier	USDA	United States Department of
K-W	Kruskal-Wallis		Agriculture .
LCS	laboratory control sample	USEPA	United States Environmental
LCSD	laboratory control sample		Protection Agency
	duplicate	WDNR	Wisconsin Department of
MDH	Minnesota Department of		Natural Resources
	Health	WHO	World Health Organization
MDL	method detection limit		<u>-</u>

1.0 INTRODUCTION

Bay West LLC (Bay West) has completed a Technical Memorandum to support the Focused Feasibility Study (FFS) completed June 2016 by Bay West under contract with the Minnesota Pollution Control Agency (MPCA) at Thomson Reservoir (TR), also designated as SR #1373 (the Site). Limited field activities were conducted as part of ongoing work to investigate the extent and volume of contaminated sediment within Thomson Reservoir, and to evaluate risks to human health and the environment due to potential impacts to the benthic and fish communities. A site location map is included as **Figure 1**, and a site map is included as **Figure 2**.

This Technical Memorandum describes investigation field activities conducted in September and October of 2016, presents chemical, physical, and bioaccumulation site data collected during this event, discusses data results, conclusions, and recommendations. This Technical Memorandum is intended to be a supplement to the FFS; therefore, only data from the September and October 2016 event will be presented in this document. Historical data collected at the Site is summarized in the FFS.

1.1 Purpose and Objectives

Historical industrial activities in the St. Louis River (SLR) Area of Concern (AOC) has resulted in beneficial use impairments (BUIs). BUIs are a change in the chemical, physical or biological integrity of the Great Lakes system sufficient to cause any one of the 14 established BUIs, or other related uses, such as the microbial objective for waters used for body contact recreational activities (2013 Joint Commission). Sediment contamination in the SLR AOC causes BUIs, including degradation of bottom-feeding invertebrate communities, increased incidence of fish tumors and other abnormalities, fish consumption advisories, and restrictions on dredging (MPCA, 2008). The MPCA and Wisconsin Department of Natural Resources (WDNR) are currently working together to implement a comprehensive long-term plan to restore beneficial use and delist BUIs in the SLR AOC. Many of the BUIs in the AOC are linked to the presence of sediment contaminants. Some sediment-derived contaminants also appear suspended in the water column and are carried by the river to Lake Superior.

The purpose of this Technical Memorandum was to collect new and supplement existing information discussed in the FFS regarding sediment quality at the Site, including chemical and physical site data. Data collected will ultimately be used to develop a course for remedial action, if needed, to restore and delist the Site BUIs.

Specific objectives for the September and October 2016 investigation are to:

- Provide site-specific information regarding benthic organisms and the chemicals of concern (COCs; i.e., mercury and dioxins/furans) as defined within the FFS to benthic organisms;
- Conduct limited benthic macroinvertebrate community assessments to assess the "health"
 of the benthic community at locations with elevated COC concentrations and to provide
 an additional line of evidence regarding contaminant impacts at the Site using the
 sediment quality triad approach;
- Collect and analyze sediment samples for Site COCs to corroborate findings of bioaccumulation testing and to further define the vertical extent of contamination at the Site:
- Collect and analyze fish tissue samples for Site COCs to assess potential COC bioaccumulation; and

 Refine the conceptual site model (CSM) that evaluates contaminant fate and transport, and provides a comparison between SLR AOC-specific risk-based screening values and existing conditions to identify unacceptable risks to human health and/or the environment.

1.2 Report Organization

Section 1.0 – Introduction: This section provides a brief overview of the SLR AOC, Thomson Reservoir, and summarizes previous investigations and constituents of interest (COIs) relative to the Site.

Section 2.0 – Field Activities and Methods: This section describes the field activities and methods utilized.

Section 3.0 – Summary of Results: This section summarizes the results of the data collection, including chemical and physical site data.

Section 4.0 – Data Quality Review: This section describes the data quality review process and the results of quality assurance (QA)/quality control (QC) review of chemical data.

Section 5.0 - Discussion and Conclusion: This section discusses the results and conclusions.

Section 6.0 – References: This presents references for the report.

1.3 Site Setting

This document serves as a supplement to the existing FFS completed in 2016, which provides a full description of the site settings and history.

1.4 Investigation History and COIs

Numerous investigations of sediment quality have occurred at the Site, resulting in various report documents, which have been summarized in the FFS. Prior to reading this document, a review of Section 1.4.3 of the FFS should be completed to provide a better understanding of the Site history. Those investigations and reports not summarized in the FFS are summarized as follows.

Data Gap Investigation Field Sampling Plan (FSP), Thomson Reservoir, prepared by Bay West, September 2016 (FSP)

The FSP was developed by Bay West and approved by the MPCA in September 2016.

2.0 FIELD ACTIVITIES AND METHODS

Sampling activities and procedures were conducted in accordance with the September 2016 Thomson Reservoir Site-Specific Data Gap Investigation FSP, the September 2016 Quality Assurance Project Plan Addendum (2016 Quality Assurance Project Plan [QAPP] Addendum) for the Baseline and Data Gap Investigation at the SLR Areas of Concern, and applicable Bay West standard operating procedures (SOPs). The following section describes applicable physical site data, sediment sampling and procedure, and analytical results evaluation procedure.

All sample locations were pre-determined and aerial background maps were loaded onto a Trimble Global Positioning System (GPS) unit with sub-meter accuracy prior to site mobilization. The GPS was used to navigate as close to the pre-determined sample locations as possible, and GPS locational data was also collected at each of the sampled locations.

2.1 Sediment Sampling Overview

Site sediment sampling took place September 27 through October 6, 2016, and was conducted from a boat. The objectives of the September and October event were to collect bulk surface sediments for laboratory bioaccumulation testing, sediment community assessments, and to gather additional vertical and horizontal sediment quality data, as further defined in the FSP.

Sediment samples were collected only for physical and chemical analysis at the following locations: BW16TR-002 through BW16TR-007, BW16TR-009 through BW16TR-011, BW16TR-014, and BW16TR-015.

The following sections contain additional information on the sampling event, and the methods, procedures, and equipment used during sediment sample collection, if not already covered in the FFS or FSP. Sample locations are shown on **Figure 3**.

<u>2.1.1</u> Ponar Equipment Description and Procedure

All surface sediment samples were collected using a Wildco Petite Ponar grab sampler (ponar). The ponar was used to collect sediments from the sediment/water interface for submission as a bioaccumulation testing media, for benthic community assessments, and for physical and chemical analysis.

The ponar has a maximum sediment penetration depth of 2.75 inches (0.07 meter) and a total jaw volume of 2.4 liters. Due to the small size of the sampler, multiple "grabs" of sediment were performed at each location to collect a sufficient volume of sediment for testing/analysis (up to 5 gallons of sediment per location). After each grab of sediment, the team repositioned the sampler so that the next grab was collected approximately 0.25–0.50 meter away from the previous grab. This method of sediment collection was repeated to ensure that the final composite samples were representative of a single in situ sediment elevation (i.e., 0–0.07 meter).

Collected sediment was transferred directly from the ponar into clean, laboratory supplied, 5-gallon buckets. Once a sufficient volume of sediment had been collected, overlying water was decanted and the sediment was thoroughly homogenized within the buckets. A sub-sample was then collected and placed within Ziploc-type bags (double bagged) for grain size analysis.

2.1.2 Check Valve Push Core Collection Equipment and Procedure

Samples to be analyzed for physical and chemical parameters were collected using a 3-inch (inner diameter) check valve push core sampler. The check valve push core sampler used disposable acetate liners that minimized equipment decontamination and facilitated easy transport and storage of samples.

To begin sampling at a location, the water column depth was measured using a weighted 100-foot measuring tape. The water depth was then added to the desired depth of sampler advancement (i.e., desired core length), and this value was marked on the sampler's extension rods using marking tape. To collect the core, the sampler was lowered through the water column and advanced into the sediment until the mark met the water surface (indicating that a full push had been achieved), or until refusal was encountered. If refusal was encountered, the push was recorded by subtracting the distance between the mark and the water surface from the desired depth of sampler advancement.

Once the push was complete, the sampler was retracted while remaining in a vertical orientation. The recovery goal of the sampling event was 80 percent (%). If less than 80% recovery was achieved after three push attempts, or if refusal was encountered, the team attempted to obtain a core with the best feasible length and percent recovery based on Site conditions. Once the Engineer determined that the sample recovery was acceptable, the sample core was prepared for transport by draining excess overlying water, removing any excess core tubing to limit head space, and sealing both ends using disposable plastic caps. The core was then measured and identifying information was recorded on the core using an indelible ink marker.

In addition to core collection, poling was conducted at each check valve push core sampler location, based on Site conditions, using an approximate 2-inch diameter aluminum rod with graduated depth markings. Data recorded included: depth to resistance, depth to refusal, refusal type (i.e., soft [stiff sediments] or hard [rock or wood]), and observations of sediment type encountered. All field data related to sample collection and poling was recorded within a field notebook and/or on field sampling data sheets. The recorded field data included sample location, sample date/time, push, recovery, and any other observations that occurred during sampling, such as refusal. Core collection information is presented in **Table 3**, and field notes are included in **Appendix A**. A summary of poling is included in **Table 4**. Poling locations and sediment thicknesses are shown on **Figure 4**.

2.1.3 Russian Peat Borer Equipment Description and Procedure

The Russian peat borer is a side-filling chambered sampler. The closed chamber is pushed through the sediment until the desired sample depth/interval is reached, prohibiting sediment from entering the chamber. Once the target depth is reached, the "T" handle is turned clockwise to initiate sampling. As the sampler is turned 180 degrees, the sharpened edge of the bore longitudinally cuts a semi-cylindrical shaped sample until the opposite side of the cover plate is contacted. The contained sample can then be recovered without the risk of contamination by overlying sediments. The chamber length of the sampler used was approximately 0.40 meter.

The first 0.0 to 0.15-meter interval was collected using the check valve push core sampler, as previously explained. Once a check valve push core sample had been collected, the boat was either allowed to pivot several feet away from its previous location or deep sediment sampling using the Russian Peat Borer was conducting from a different location of the boat so that only undisturbed sediments would be collected. Once in position, the water depth was recorded and the sampler was advanced until refusal.

Once the sampler hit refusal, the depth was recorded and the "T" handle was turned to collect the sample. The sampler was laid horizontal within the boat and the side filling chamber was opened. Sediment was removed from the chamber and collected. All samples were placed directly into separate Ziploc bags and labeled with identifying information, and later stored on ice until they could be processed.

Photo showing discrete sample collected with Russian Peat Borer.

Poling was conducted at each sample location using an approximate 2-inch diameter aluminum rod with graduated depth markings. Data recorded included the following: depth to resistance, depth to refusal, refusal type (i.e., soft [stiff sediments] or hard [rock or wood]), and observations of sediment type encountered. All field data that related to sample collection and poling was recorded within a field notebook and/or on field sampling data sheets. The recorded field data included sample location, sample date/time, push, recovery, and any other observations that occurred during sampling, such as refusal. Core collection information is presented in **Table 3**, and field notes are included in **Appendix A**.

2.1.4 Equipment Decontamination

After each coring attempt, all materials in contact with sediments were washed with lake water to remove visible sediments (i.e., Wildco Petite Ponar, check valve push core sampler, and Russian Peat Borer). After each sample location, sampling equipment was decontaminated using Alconox, water, and a stiff bristled brush.

2.2 Benthic Macroinvertebrate Tissue Sampling Overview

2.2.1 In Situ Benthic Macroinvertebrate Tissue Sampling

Benthic invertebrate tissue sampling consisted of the attempted collection of benthic invertebrates using sediment sampling and sifting techniques, as well as Hester Dendy (HD) traps; however, tissue collection using sediment sampling and sifting techniques resulted in no appreciable mass of tissue. Only HD traps resulted in sufficient tissue mass for laboratory analysis. Benthic macroinvertebrate samples collected from HD traps will be referred to as "in situ" tissue samples. In situ benthic macroinvertebrate tissue sampling was collected using an HD trap placed in the sediment at the Site for approximately one month. The United States Environmental Protection Agency (USEPA) installed the HD traps at the Site in September 2016 and collected the traps in October 2016. The traps were placed into the sediment allowing the benthic macroinvertebrates to burrow into the spaces between the disks within the trap. The USEPA removed the HD traps and sorted the macroinvertebrates by species. The in-situ tissue samples consisted of composited macrobenthos and crawfish from the Site, and were used for chemical analysis.

Photo showing discs within the Hester Dendy trap

The in-situ tissue samples consisted of composited macrobenthos and crawfish from the Site, and were used for chemical analysis. For the purpose of this report, macrobenthos are a composition of macroinvertebrates, such as mayflies, dragonflies, and alderflies encountered at the Site. The compositing of macroinvertebrates was done at the Site due to insufficient mass of tissue for one specific macroinvertebrate species. Macrobenthos were composited from BW16TR-013, BW16TR-016, BW16TR-017, and BW16TR-018. Crawfish were composited from BW16TR-008, BW16TR-013, and BW16TR-016. Two tissue samples were submitted for analysis using HD traps (BW16TR-HD-001-MRCS and BW16TR-HD-001-C).

2.2.2 Ex Situ Benthic Macroinvertebrate Tissue Sampling

Sediment was also collected for the purpose of performing laboratory controlled 28 day (28-d) Lumbriculus variegatus bioaccumulation testing. These samples will be referred to as "ex situ" tissue samples. Ex situ benthic invertebrate tissue collection was done at locations where HD traps were not able to produce sufficient in situ tissue volume for analysis. Sediment was collected using the Ponar grab sampler and stored in laboratory supplied buckets. The sediment was submitted to the laboratory for bioaccumulation analysis, and chemical and physical analysis. Sediment for ex situ analysis was collected at BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018.

Details regarding the in situ and ex situ tissue analysis was documented in The Tissue Analysis Project Plan for Duluth Reservoirs, Draft Report, AEM; prepared for United States Army Corps of Engineers (USACE; 2016 Tissue Analysis Report) in **Appendix B**.

2.3 Fish Sampling Overview

Fish sampling was completed by the MPCA. Details regarding fish sampling was documented in the field forms and COCs provided to Advanced Environmental Management Group (AEM Group) as described in The Tissue Analysis Project Plan for Duluth Reservoirs, Draft Report, AEM Group; prepared for USACE (2016 Tissue Analysis Report) in **Appendix B**, Section 3.1, which provides a detailed explanation of fish sampling procedures completed at the Site.

2.4 Community Assessment Equipment Description and Procedure

Community assessments were completed by collecting approximately three ponar grabs of sediment from each sample location. The sediment was sieved through a 425-micron (35 mesh) screen. All material captured on the screen was placed into white plastic trays with fresh, cool water. Benthic organisms were removed from the tray, separated by organism type, and placed into smaller ice cube trays.

Photo showing a community assessment in progress.

Search and removal of organisms from each plastic tray took place for 15 minutes to retain consistency across all sample locations. A count of each species identified was recorded on community assessment worksheets, a field notebook, or an electronic log. Benthic organisms were released back into the water once assessments were complete. Additional information regarding benthic community assessments is included in the Bay West Site Specific Benthic Macroinvertebrate Community Assessment SOP found in the FSP and as an appendix to the QAPP addendum. Sediment for community assessments was collected at BW16TR-008, BW16TR-013, BW16TR-016, BW16TR-017, and BW16TR-018.

2.5 Sample Processing

Collected sediment was brought back to shore for processing for submittal to a laboratory as a media during bioaccumulation testing, for physical and chemical analysis, and for community assessment. Sediment to be used as media and for physical and chemical analysis from each location either remained in the 5-gallon bucket or was transferred into the appropriate laboratory supplied containers, dependent on sampling parameters for that particular sample location. Once a sample was collected and the container sealed, the container (not the lid) was labeled with the sample location identification (ID), sample date, and time of collection using an indelible ink marker.

Sediment samples were processed and submitted for chemical analysis in accordance with the approved site-specific FSPs.

All sample processing was conducted following the sampling event. The following activities were conducted during sample processing:

- Sample collection information (e.g., location ID, sample time, push, recovery, interval depth, etc.) was transferred from each sample core or Ziploc bag to Bay West's Sediment Sampling Log Sheet;
- Each sample was photographed during field sampling or during processing;
- Visual and physical observations of the sample were recorded on the log sheet in accordance with the site specific FSPs following the American Society for Testing and Materials (ASTM) D 2488 and the United States Department of Agriculture (USDA) descriptor classification, including sample color, material composition, grain size, firmness, cohesiveness, odor, and any other notable observations such as sheen.
- Analytical sample intervals were determined for core samples in accordance with the sitespecific FSPs;
- Sample material was placed in appropriate laboratory-supplied containers, labeled, and placed on ice for delivery to either Pace Analytical Services, Inc. (Pace), Test America Laboratories, Inc. (Test America), Axys, or Great Lakes Environmental Center, Inc. (GLEC); and
- All reusable sampling tools used for homogenization or other purposes were decontaminated after processing in a solution of Alconox and distilled water using the procedures described in **Section 2.1.4**.

2.5.1 Sample Collection and Analysis

2.5.1.1 Sediment Physical/Chemical Analysis

Sediment samples from BW16TR-002 through BW16TR-007, BW16TR-009 through BW16TR-011, BW16TR-014, and BW16TR-015 were collected to gather additional chemical data for delineation of extent and depth using a check valve push core sampler and Russian Peat Borer Sampler as detailed in **Section 2.1.3**. Sediment samples from BW16TR-001, BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018, were collected to gather information to support bioaccumulation tissue data using a Ponar sampler as detailed in **Section 2.1.1**.

Samples collected for additional delineation of contamination were submitted for the following:

- Dioxins/furans as congeners (Pace, USEPA 8290A);
- Mercury (Pace, USEPA 7471B); and
- Total organic carbon (TOC; Pace, USEPA 9060A).
- Grain size (Pace, ASTM D422 with hydrometer).

All samples were collected, prepared, and handled in accordance with the FSP, project QAPP and addendum, and Bay West SOPs.

The specific analysis for each sample is detailed in **Table 1**. Each sample was accounted for on chain of custody (CoC) completed during sample processing. All samples were stored on ice and delivered to the appropriate laboratory.

QC samples collected by the processing team consisted of duplicates and matrix spike/matrix spike duplicates (MS/MSDs). Field duplicates and matrix MS/MSD samples were collected for sediments at a frequency of 10% and 5%, respectively, for dioxins/furans and mercury. No duplicate or MS/MSD sample was collected for TOC or grain size analysis. Field equipment rinsate blanks were collected at a frequency of 1 per day for each day the ponar sampler was

used and analyzed for mercury. No duplicate or MS/MSD samples were collected in relation to benthic tissue analysis due to constraints in available tissue mass and project budget.

2.5.1.2 Community Assessments

Site benthic macroinvertebrates were collected from locations BW16TR-001, BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018, for community assessments. Community assessments were completed as described in **Section 2.4** and the community assessment findings are discussed in **Section 3.5**.

2.5.1.3 Bioaccumulation Testing

As outlined in the FSP, Site benthic macroinvertebrate tissue collected from locations BW16TR-001, BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018, were sampled for in situ and ex situ tissue. Ex situ bioaccumulation testing, which was not included as part of the FSP, was completed at locations BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018 because a sufficient tissue volume for analysis could not be collected during the field event. Sediment samples collected from BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018 were submitted for ex situ laboratory exposure testing, and physical and chemical analysis of sediment and tissue.

In situ Site benthic macroinvertebrate tissue was sampled only at BW16TR-001. Ex situ tissue samples were exposed to the sediment collected from the following locations BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018 because insufficient tissue volume could not be collected from the Site. Additionally, USACE conducted fish sampling at the Site. The bioaccumulation fish tissue sampling results were provided to Bay West by the USACE and are summarized in **Section 3.4.1.2**. The specific analysis for each sample is detailed in **Table 1**.

Sediment collected from BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018 were containerized and delivered to the GLEC Laboratory in laboratory-supplied containers. The GLEC laboratory conducted the following tests:

• 28-d *Lumbriculus variegatus* bioaccumulation testing (USEPA Method 100.3 and laboratory SOP).

Following the 28-d *Lumbriculus variegatus* bioaccumulation testing, *Lumbriculus variegatus* tissue was extracted from the sediment substrate by GLEC. Subsamples from the sediment samples and *Lumbriculus variegatus* tissue samples were submitted to multiple laboratories for analysis summarized as follows. Additionally, Bay West submitted in situ collected tissue and sediment from location BW16TR-001. Samples were submitted to the following laboratories using the following methods:

- Tissue Analysis-Dioxins/furans as congeners and lipids content (TestAmerica, USEPA 1613B or 8290A);
- Sediment Analysis-Dioxins/furans as congeners (Pace, USEPA 1613B or 8290A);
- Tissue Analysis–Mercury (TestAmerica; ASTM D2216);
- Sediment Analysis–Mercury (Pace; ASTM D2216);
- Tissue Analysis-Methyl Mercury (TestAmerica, EPA 1630 USEPA);
- Sediment Analysis–TOC (Pace; USEPA method such as 9060A); and
- Sediment Analysis-Grain size (Pace, ASTM D422 with hydrometer).

Bioaccumulation testing samples were collected, prepared, and handled in accordance with the laboratory's SOPs on collection and handling of environmental samples. For a detailed description of bioaccumulation testing, procedures, and results see the 2016 Tissue Analysis Report in **Appendix B**.

2.5.1.4 Fish Tissue Testing

Both the MPCA and the USEPA collected six different fish species from the Site, homogenized by fish species and delivered to the Test America in laboratory-supplied containers. Fish homogenization and laboratory testing is discussed in the 2016 Tissue Analysis Report fish sampling procedures completed at the Site (**Appendix B**, Section 3.1). Samples were submitted to the following laboratories using the following methods:

- Dioxins/furans as congeners and lipids content (TestAmerica, USEPA 1613B or 8290A);
- Mercury (TestAmerica; ASTM D2216); and
- Methyl Mercury (TestAmerica, EPA 1630 USEPA);

Fish tissue samples were collected, prepared, and handled in accordance with the laboratory's SOPs on collection and handling of environmental samples. For a detailed description of fish tissue testing, procedures, and results see the 2016 Tissue Analysis Report in **Appendix B**.

2.5.2 Rinsate Blanks

Rinsate blank samples were collected by pouring distilled water over non-disposable sampling equipment and into bottles provided by the analytical laboratory to verify proper decontamination of sampling equipment. Rinsate blanks were only taken for the ponar to verify proper decontamination of sampling equipment; it was not necessary to take rinsate samples from the check valve push core sampler because the majority of the sample only comes in contact with the disposable liner. The rinsate blanks were labeled BW16-RB01-100416 and BW16-RB02-100516 and were analyzed for mercury. Mercury was not detected at concentrations exceeding the laboratory reporting limit for rinsate blanks.

2.5.3 Waste Characterization and Disposal

IDW consisting of excess sediment and disposable sampling supplies was placed in two 55-gallon steel drums along with the investigation-derived waste (IDW) generated during the sampling event and two additional sampling events completed at Thomson Reservoir and Mud Lake West. A total of two drums of waste were generated during the three sampling events. An IDW sample was collected from the drums at the completion of sampling and submitted for analysis of landfill disposal parameters. The drums were transported to Bay West, under MPCA approval, and stored until IDW sample results were obtained. All IDW was characterized as non-hazardous waste and disposed of by Veolia ES Technical Solutions. Disposal documentation is included in **Appendix C**.

2.6 Data Interpretation

2.6.1 Treatment of Non-Detect Data

Scaling censored (non-detected) data was performed for dioxin/furan toxicity equivalent (TEQ) calculations for sediment and tissue with the goal to provide an accurate and consistent way to estimate TEQ values by eliminating false positives and false negatives from the final data set.

The sediment and tissue dioxin/furan data was input into a United States Environmental Protection Agency (USEPA) TEQ Kaplan Meier (KM) calculator which includes calculations that support a simple, quasi-sensitivity analysis that examines the effect of various ways of handling non-detect or rejected (R-flagged) analytical data results within a sample's congener profile. The

TEQ KM Calculator utilized 1998 World Health Organization (WHO) toxicity equivalency factors (TEFs) for fish (TEQ KM Fish value). The calculator was used to determine the TEQ KM Fish value for dioxin/furan sediment analysis. The tissue dioxin/furan data was calculated by Bay West. The tissue dioxin/furan data was calculated twice. The non-detect analytical data was calculated by taking half of the detection limit value. Once using the WHO 2005 TEFs for human health and a second time using the WHO 1998 TEF for fish. TEQ KM Fish sediment quality target (SQT) results are shown in **Figure 6** and **Figure 8**.

The fish tissue mercury, methylmercury, TEQ KM Human Health (HH), and TEQ KM Fish data was input into the USEPA ProUCL Oneway Analysis of Variance (ANOVA) statistics calculator. The ANOVA module has both classical and nonparametric Kruskal-Wallis (K-W) tests and is used to compare means (or medians) of multiple groups such as comparing mean concentrations of areas of concern and to perform inter-sample comparisons. Classical Oneway ANOVA tests were used to determine statistical differences in each trophic level between the Site and Boulder Lake Reservoir (reference Site).

2.6.2 Sediment Quality Targets (SQTs)

Numerical SQTs, adopted for use in the SLR AOC to protect benthic invertebrates, can be used throughout Minnesota as benchmark values for making comparisons to sediment chemistry measurements. Level 1 and Level 2 SQTs for the protection of sediment-dwelling organisms are available for 8 trace metals, 13 individual polynuclear aromatic hydrocarbons (PAHs), total PAHs (all 13 priority PAHs), total polychlorinated biphenyls (PCBs), and 10 organochlorine pesticides. In addition, Level 1 and Level 2 SQTs for COCs were adopted for the protection of fish, as insufficient information is available for sediment-dwelling organisms. SQTs are highly useful when evaluating risk for a specific compound or a group of compounds (i.e., total PCBs and total PAHs).

Contaminant concentrations below the Level 1 SQTs are unlikely to have harmful effects on sediment-dwelling organisms (i.e. benthic invertebrates). Contaminant concentrations above the Level 2 SQTS are more likely to result in harmful effects to benthic invertebrates (MPCA, 2007). Based on conversations with the MPCA, a qualitative comparison value midway between the Level 1 SQTs and Level 2 SQTs (i.e., midpoint SQT) will be used as conservative criteria to identify, rank, and prioritize sediment-associated contaminants within the Site.

2.6.3 Sample Interval Categorization

Sediment samples were collected from horizons (A, B, and C) within the sediment core, in accordance with the FSP. Horizons were determined by core length, recovery, and the observation of anthropogenic materials, such as sheens, staining, or non-native debris. Because of varying core lengths and recovery, sediment sample collection depth was not consistent between sample locations. In order to spatially evaluate analytical results and sediment screening criteria comparisons between sample locations, sediment samples were categorized into depth intervals. Sediment intervals and the methods for categorizing sediment samples into intervals were determined through discussions with the MPCA. Sediment samples were categorized into four intervals based on the depth of collection. The intervals focus on the stratigraphy of contamination within the bioactive zone (BAZ), which is assumed to be the upper meter of sediment. The intervals are as follows:

- 0.0 to 0.15 meter;
- 0.15 to 0.50 meter;
- 0.50 to 1.00 meter; and
- >1.0 meter.

Each sediment sample was categorized into one of the three intervals if at least 25% of the sample length was within an interval. For example, if a sample was collected from 0.30 to 0.55 meter below the sediment surface, the sample would be categorized in the 0.15 to 0.50-meter category. Occasionally, 25% of a sample was collected within two intervals. For example, if a sample was collected from 0.64 to 1.15 meters, 71% of the upper portion of the sample is within the 0.50 to 1.00-meter interval, and 29% of the lower portion of the sample is within the >1.00-meter interval. In these cases, the sample was considered in the discussion and evaluation of both the 0.5 to 1.00-meter interval and the >1.00-meter interval.

3.0 SUMMARY OF RESULTS

This section summarizes the results obtained from field activities.

3.1 Sample Depth and Sediment Recovery

The sampling objective at the Site, as outlined within the FSP, was to collect surface sediment samples and sediment samples for vertical and horizontal extent of Site contaminants.

As stated in **Section 2.1.1**, surface sediment samples were collected using a Wildco Petite Ponar sampler. Grab sample recovery was a 100%.

As stated in **Section 2.1.2**, additional sediment samples were collected using a check valve push core sampler. The sampler was advanced from the sediment surface to an average depth of at 0.49 meter below sediment surface (bss) at the Site. Refusal was encountered at five of the eight locations sampled. Refusal appeared to be due to clay and gravel layers encountered below an average 2.07 meters bss, creating increased resistance as the sampler was advanced. The average sediment recovery was approximately 82%, not achieving sediment recovery goals for the Site due to refusal at multiple locations.

Completed sediment collection logs and photographs of sediment prior to processing are included in **Appendix A**. **Table 1** and **Table 2** provide a summary of sample locations, water depths, sediment elevations, type of sample collected, and number of samples from each location.

3.2 Sediment Chemistry Data

The following discussion presents the summarized sediment analytical results from samples obtained from 17 locations collected during the September and October 2016 sampling event at the Site. Analytical results are presented with respect to the following depth intervals: 0.0 to 0.15 meters, 0.15 to 0.5 meter, 0.5 to 1.0 meter, and >1.0 meter. An explanation of sample interval calculations can be found in the **Section 2.5**.

Laboratory analyses and sampling frequency selected for sediment samples collected at the Site include the following:

- Mercury by SW-7471B (100%); and
- Dioxins and furans by SW-846 8290A (100%).

Table 5 provides a summary of sediment samples and laboratory analyses selected for each sample. Analytical results are presented in **Table 8** and **Table 9**, and laboratory analytical reports are included in **Appendix D**. **Figure 5** and **Figure 6** present analytical results for mercury and dioxin/furans at distinct intervals compared to their respective SQTs. The following sections present a summary of analytical results and calculations.

3.2.1 Mercury (Sediment)

All sediment samples were analyzed for mercury, and results were screened in comparison to the respective SQT values. The following table summarizes the mercury results. Mercury SQT results are illustrated in **Figure 5**.

Level 1 SQT exceedances occurred in samples BW16TR-004, BW16TR-006, BW16TR-007, and BW16TR-012 in the 0 to 0.15 and 0.15 to 0.5 meter intervals. The SQT Midpoint was exceeded in sample BW16TR-001 in the 0.15 to 0.5-meter interval. Level II SQT was exceeded in BW16TR-002 in the 0.15 to 0.50 and BW16TR-011 in the 0.5 to 1.0-meter interval. The maximum concentration of mercury (2.2 mg/kg) was identified at location BW16TR-011 in the 0.5 to 1.0-meter interval.

Sample Name	Sample Interval (meter)	Result (mg/kg)	Results Qualifier
BW16TR-001-0.0-0.15	0.0-0.15	0.13	
BW16TR-001-0.15-0.35	0.15-0.5	0.65	J
BW16TR-002-0.0-0.15	0.0-0.15	0.096	
BW16TR-002-0.30-0.55	0.15-0.5	1.1	J
BW16TR-003-0.0-0.15	0.0-0.15	0.072	
BW16TR-003-0.27-0.52	0.15-0.5	0.13	
BW16TR-004-0.0-0.15	0.0-0.15	0.054	
BW16TR-004-0.21-0.46	0.15-0.5	0.50	
BW16TR-005-0.0-0.15	0.0-0.15	0.13	
BW16TR-005-0.23-0.48	0.15-0.5	0.10	
BW16TR-006-0.0-0.15	0.0-0.15	0.098	
BW16TR-006-0.15-0.28	0.15-0.5	0.39	
BW16TR-007-0.0-0.15	0.0-0.15	0.050	
BW16TR-007-0.26-0.51	0.15-0.5	0.38	
BW16TR-008-0.0-0.15	0.0-0.15	0.050	
BW16TR-009-0.0-0.15	0.0-0.15	0.055	
BW16TR-010-0.0-0.15	0.0-0.15	0.068	
BW16TR-010-0.15-0.38	0.15-0.5	0.075	
BW16TR-011-0.0-0.15	0.0-0.15	0.12	
BW16TR-011-0.60-0.85	0.5-1.0	2.2	
BW16TR-012-0.0-0.15	0.0-0.15	0.56	
BW16TR-013-0.0-0.15	0.0-0.15	0.10	
BW16TR-014-0.0-0.15	0.0-0.15	0.077	
BW16TR-014-0.15-0.38	0.15-0.5	0.087	
BW16TR-015-0.0-0.15	0.0-0.15	0.088	
BW16TR-015-0.15-0.36	0.15-0.5	0.15	
BW16TR-017-0.0-0.15	0.0-0.15	0.13	
BW16TR-018-0.0-0.15	0.0-0.15	0.12	

J = estimated value

mg/kg = milligrams/kilogram

SQT = Sediment Quality Target

Values highlighted in yellow indicate concentration exceeding SQT Level I (0.18 mg/kg).

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (0.64 mg/kg).

Values highlighted in red indicate concentration exceeding SQT Level II (1.1 mg/kg).

3.2.2 Dioxins/Furans (Sediment)

The following table summarizes dioxin/furan concentrations as TEQ KM Fish for Site sediment samples with respect to the dioxin TEQ KM for aquatic health (fish), calculated as described in **Section 2.6.1** and compared to the respective SQTs.

Sample Name	Sample Interval (meter)	TEQ KM Fish Results	Result Qualifier
BW16TR-001-0.0-0.15	0.0-0.15	17.599	
BW16TR-001-0.15-0.35	0.15-0.50	40.768	
BW16TR-002-0.0-0.15	0.0-0.15	4.2386	J
BW16TR-002-0.30-0.55	0.15-0.50	671.1	J
BW16TR-003-0.0-0.15	0.0-0.15	8.0509	J
BW16TR-003-0.27-0.52	0.15-0.50	9.5693	J
BW16TR-004-0.0-0.15	0.0-0.15	2.7601	J
BW16TR-004-0.21-0.46	0.15-0.50	11.4242	
BW16TR-005-0.0-0.15	0.0-0.15	12.3498	
BW16TR-005-0.23-0.48	0.15-0.50	6.7474	J
BW16TR-006-0.0-0.15	0.0-0.15	5.3182	J
BW16TR-006-0.15-0.28	0.15-0.50	17.678	
BW16TR-007-0.0-0.15	0.0-0.15	4.5554	J
BW16TR-007-0.26-0.51	0.15-0.50	8.4865	J
BW16TR-008-0.0-0.15	0.0-0.15	18.5059	
BW16TR-009-0.0-0.15	0.0-0.15	0.407	J
BW16TR-010-0.0-0.15	0.0-0.15	5.1709	J
BW16TR-010-0.15-0.38	0.15-0.50	4.2465	J
BW16TR-011-0.0-0.15	0.0-0.15	4.443	J
BW16TR-011-0.60-0.85	0.5-1.0	143.536	
BW16TR-012-0.0-0.15	0.0-0.15	134.253	
BW16TR-013-0.0-0.15	0.0-0.15	7.895	
BW16TR-014-0.0-0.15	0.0-0.15	3.0314	J
BW16TR-014-0.15-0.38	0.15-0.50	8.3836	
BW16TR-015-0.0-0.15	0.0-0.15	4.2794	J
BW16TR-015-0.15-0.36	0.15-0.50	13.04	J
BW16TR-017-0.0-0.15	0.0-0.15	5.4032	J
BW16TR-018-0.0-0.15	0.0-0.15	6.1638	

J = estimated value

ng TEQ/kg = nanograms of dioxin toxicity equivalent per kilogram

SQT = Sediment Quality Target

TEQ = dioxin toxicity equivalent

Values highlighted in yellow indicate concentration exceeding SQT Level I (0.85 ng TEQ/kg).

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II (11.2 ng TEQ/kg).

Values highlighted in red indicate concentration exceeding SQT Level II (21.5 ng TEQ/kg).

TEQ values calculated using the USEPA Advanced Kaplan-Meier TEQ Calculator.

Dioxins analyzed by EPA Method SW8290.

For TEQ KM Fish, Level 1 SQT exceedances occurred in multiple samples. Midpoint SQT exceedances occurred in BW16TR-001, BW16TR-004 through BW16TR-006, BW16TR-008, and BW16TR-015 in the 0.0 to 0.15 and 0.15 to 0.50 meter intervals. Level II SQT exceedances occurred in the 0.0 to 0.15-meter interval at BW16TR-012. In the 0.15 to 0.50-meter interval at BW16TR-001 and BW16TR-002. Finally, in the 0.50 to 1.0-meter interval at BW16TR-011. The maximum concentration of TEQ KM FISH (671.1 ng TEQ/kg) was identified in the 0.0 to 0.15 and 0.15 to 0.50 meter intervals at location BW16TR-002.

3.3 Physical Sediment Characterization

Surface sediment samples collected at the Site generally contained dark brown to very dark brown silt loam.

Deeper sediment samples collected at the Site, up to a maximum depth of 0.85 meter, generally contained dark brown to very dark brown silt loam or silt clay, consisting of up to 50% fibrous woody debris. In sample locations BW16TR-001, BW16TR-014, and BW16TR-015 the silty loam was underlain by a peat layer up to a depth of 0.35 meters. A firm dark brown clay to silty clay was observed within the bottommost sediments in core samples collected from locations BW16TR-001, BW16TR-014, and BW16TR-015.

3.3.1 Grain Size

Grain size distribution was analyzed in 100% of sample locations to meet site investigation objectives presented in the FSP. The following table summarizes this grain size analysis. Grain size distribution charts are presented in laboratory analytical reports included in **Appendix D**.

Sample ID (depth	Soil	Percent +3	Perce Grav		F	Percent Sand		_	cent nes	d10
interval [meters])	Classification	inches	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	Percent Finer
BW16TR-001 (0.0–0.15)	Silt	0	0	0	0	3	8	61	28	100
BW16TR-001 (0.15-0.35)	Silt	0	0	0	0	0	2	65	33	100
BW16TR-002 (0.0–0.15)	Silt with Sand	0	0	0	0	1	21	57	21	100
BW16TR-002 (0.30-0.55)	Silt	0	0	0	0	0	5	69	26	100
BW16TR-003 (0.0-0.15)	Silt with Sand	0	0	0	0	2	25	62	11	100
BW16TR-003 (0.27-0.52)	Silt with Sand	0	0	0	0	2	25	62	11	100
BW16TR-004 (0.0-0.15)	Sandy Silt	0	0	0	0	2	16	68	14	100
BW16TR-004 (0.21-0.46)	Silt	0	0	0	0	1	12	70	17	100
BW16TR-005 (0.0–0.15)	Silt	0	0	0	0	1	8	74	17	100
BW16TR-005 (0.23-0.48)	Silt	0	0	0	0	1	6	74	19	100

Sample ID (depth	Soil	Percent +3	Percent Gravel		Percent Sand			Percent Fines		d10
interval [meters])	Classification	inches	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	Percent Finer
BW16TR-006 (0.0-0.15)	Sandy Silt	0	0	0	0	2	38	46	14	100
BW16TR-006 (0.15-0.28)	Silt	0	0	0	0	1	13	69	17	100
BW16TR-007 (0.0-0.15)	Silt with Sand	0	0	0	0	1	17	69	13	100
BW16TR-007 (0.26-0.51)	Sandy Silt	0	0	0	0	8	35	45	12	100
BW16TR-008 (0.0-0.15)	Sandy Silt	0	0	0	0	5	43	41	11	100
BW16TR-009 (0.0-0.15)	Poorly Graded Sand	0	0	0	1	58	37	3	1	99
BW16TR-010 (0.0-0.15)	Silty Sand	0	0	2	2	10	41	36	9	96
BW16TR-010 (0.15-0.38)	Silt with Sand	0	0	0	0	4	22	62	12	100
BW16TR-011 (0.0-0.15)	Silt	0	0	0	0	0	6	73	21	100
BW16TR-011 (0.60-0.85)	Silt	0	0	0	0	0	2	71	27	100
BW16TR-012 (0.0-0.15)	Silt	0	0	0	1	1	2	66	30	99
BW16TR-013 (0.0- 0.15)	Silt	0	0	0	0	1	1	65	33	100
BW16TR-014 (0.0- 0.15)	Silt	0	0	0	0	0	3	72	25	100
BW16TR-014 (0.15- 0.38)	Silt	0	0	0	0	0	3	82	15	100
BW16TR-015 (0.0- 0.15)	Silt	0	0	0	0	0	10	63	27	100
BW16TR-015 (0.15- 0.36)	Silt	0	0	0	0	0	4	71	25	100
BW16TR-017 (0.0- 0.15)	Silt	0	0	0	0	3	5	63	29	100
BW16TR-018 (0.0- 0.15)	Silt with Sand	0	0	0	0	5	19	55	21	100

3.3.1.1 Total Organic Carbon

TOC analyses were performed on all sediment samples collected. A summarized results table is presented as follows, a full table with TOC results summarized can be found in **Table 6**.

TOC results ranged from 3,940 to 50,900 milligrams per kilogram (mg/kg); the average TOC value was 29,448 mg/kg.

Sample Name	Sample Depth Start (meters)	Sample Depth End (meters)	Result (mg/kg)
BW16TR-001-0.0-0.15	0	0.15	25100
BW16TR-001-0.15-0.35	0.15	0.35	31800
BW16TR-002-0.0-0.15	0	0.15	26100
BW16TR-002-0.30-0.55	0.3	0.55	43800
BW16TR-003-0.0-0.15	0	0.15	30400
BW16TR-003-0.27-052	0.27	0.52	27900
BW16TR-004-0.0-0.15	0	0.15	23900
BW16TR-004-0.21-0.46	0.21	0.46	37500
BW16TR-005-0.0-0.15	0	0.15	45700
BW16TR-005-0.23-0.48	0.23	0.48	26600
BW16TR-006-0.0-0.15	0	0.15	19500
BW16TR-006-0.15-0.28	0.15	0.28	50900
BW16TR-007-0.0-0.15	0	0.15	27300
BW16TR-007-0.26-0.51	0.26	0.51	44100
BW16TR-008-0.0-0.15	0	0.15	20500
BW16TR-009-0.0-0.15	0	0.15	3940
BW16TR-010-0.0-0.15	0	0.15	32800
BW16TR-010-0.15-0.38	0.15	0.38	33700
BW16TR-011-0.0-0.15	0	0.15	42500
BW16TR-011-0.60-0.85	0.6	0.85	33000
BW16TR-012-0.0-0.15	0	0.15	19500
BW16TR-013-0.0-0.15	0	0.15	29500
BW16TR-014-0.0-0.15	0	0.15	21300
BW16TR-014-0.15-0.38	0.15	0.38	21400
BW16TR-015-0.0-0.15	0	0.15	22200
BW16TR-015-0.15-0.36	0.15	0.36	23300
BW16TR-017-0.0-0.15	0	0.15	25700
BW16TR-018-0.0-0.15	0	0.15	34600

Notes:

mg/kg = milligrams/kilogram

3.4 Tissue Chemistry Data

The following discussion presents the summarized analytical results from samples obtained from five locations (BW16TR-HD-001, BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018) collected during the September and October 2016 sampling event at the Site.

Laboratory analyses and sampling frequency selected for tissue samples collected at the Site include the following:

- Mercury by SW-846 7471B (100%);
- Methyl Mercury by EPA 1630 (100%); and
- Dioxins and furans by SW-846 8290A (83%).

Tissue samples were either collected from in situ benthic macroinvertebrates from pre-selected sample locations or were grown ex situ in the lab from sediment collected from the sample location. The following tables specify whether tissue was in situ or ex situ and which species of benthic macroinvertebrate was sampled. **Table 1** provides a summary of tissue samples and laboratory analyses selected for each sample. Analytical results are presented in **Table 10** through **Table 12**, and laboratory analytical reports are included in **Appendix D**. **Figure 7** through **Figure 8** present bioaccumulation data. The following sections present a summary of analytical results and calculations.

3.4.1 Mercury and Methylmercury (Tissue)

3.4.1.1 Benthic Macroinvertebrate Tissue

The following table summarizes the sample results for the total observed range of mercury and methylmercury for Site in situ benthic macroinvertebrate tissue samples.

In Situ Benthic Macroinvertebrate Tissue								
Species	Merc	ury (mg/kg)	Methylmercury (μg/kg)					
Species	Range	Average	Range	Average				
Crayfish	0.036	0.036	2.7	2.7				
Macro*	0.036	0.036	34	34				
Site Average	0.036	0.036	18.4	18.4				
Reference Sample – Boulder Lake								
HD ^b Sampler*a	0.032	0.032	4.3	4.3				

Notes:

μg/kg = micrograms per kilogram

Average mercury results for in situ tissue observed for all species as compared to the reference sample appear to be comparable. Average methylmercury results for in situ tissue observed for all species as compared to the reference sample appear to be over double. For the methylmercury, the HD sampler tissue results were observed to have a higher concentration of methylmercury than crayfish or the reference HD sampler tissue. Crayfish tissue at the Site were found to have less methylmercury than the reference HD sampler tissue. The greater variation observed in methylmercury tissue results may be an indication that bioaccumulation of methylmercury is likely impacted by both contaminate distribution and benthic macroinvertebrate species type and possibly life cycle stage. Due to the variety in species and sampling methods between the Site and reference site, a one-way ANOVA test was not performed.

The following table summarizes the sample results for the total observed range of mercury and methylmercury for Site ex situ Lumbriculus variegatus tissue samples.

^aOnly one sample analyzed, data range and average were not applicable

^bHester-Dendy Sampler

^{*}Sample weight was subsidized with additional macroinvertebrates sampled from Boulder Lake by Bay West mg/kg = milligrams per kilogram

Ex Situ Benthic Macroinvertebrate Tissue										
Species	Number of Samples	Duration of Bioaccumulation	Mercur	y (mg/kg)	Methylmercury (µg/kg)					
	Locations	Test (days)	Range	Average	Range	Average				
Lumbriculus variegatus ¹	4	28	0.030- 0.038 0.035		0.19– 0.25	0.22				
	Reference	ce Sample – Boulde	r Lake							
Lumbriculus variegatus ^{2*}	1	28	0.038	0.038	0.15	0.15				
Reference Sample – Background										
Lumbriculus variegatus ^{3*}	1	0	0.038	0.038	0.088	0.088				

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

For ex situ, benthic macroinvertebrate samples life cycle stage and species type are comparable. Mercury concentrations in the in situ samples were all non-detect. As observed in in situ samples, average mercury appears to be comparable between the Site and the reference samples. Methylmercury appears to be an order of magnitude higher than the background sample and comparable to the reference sample. Due to the variety in species and sampling methods between the Site and reference site, a one-way ANOVA test was not performed.

3.4.1.2 Fish Tissue

The following table summarizes mercury and methylmercury results for Site fish tissue samples by fish species.

Mercury and methylmercury concentrations for Site fish samples versus reference samples were observed to be within the same order of magnitude. When comparing mercury concentrations by species, tissue samples appear to have similar average mercury values or in some instances the reference site samples were observed to have larger concentrations of mercury. When comparing methylmercury by species Shiner and Walleye appear to have higher concentrations in the reference samples where White Sucker and Yellow Perch appear to be lower in the reference samples. As observed in benthic macroinvertebrate tissue samples variations may be attributed to fish life cycle stage.

Trophic Level 4, carnivorous fish, appear to have the greatest levels of mercury and methylmercury with the exception of the black clappie from the reference Site. The black clappie has the highest concentration of mercury in comparison to the other fish sampled for Site and reference Site data. The trophic level associated with the black clappie is 3.8, the upper half of trophic Level 3.

Bioconcentration of mercury and methylmercury appears to increase as trophic level increases, consistent with common understanding of bioconcentration in fish trophic levels. Bottom feeding fish, lower trophic levels, accumulate less contaminant. As trophic level increases, fish are more predatory, eating lower trophic level fish and accumulating higher concentrations of contaminant.

^{*}Only one sample analyzed, data range and average were not applicable

¹Lab grown in Site sediment samples

²Lab grown in Boulder Lake sediment samples

³Lab grown in lab supplied sediment samples

	Fish Tissue										
Fish Species	Total Number	Total Weight	Trophic	Mercury (mg/kg)	Methylmercury (μg/kg)					
i isii opecies	of Fish	of Fish (g)	Level	Range	Average	Range	Average				
Walleye ¹	3	932	4.5	0.17	0.17	200	200				
Northern Pike ¹	3	539	4.1	0.066	0.066	78	78				
Yellow Perch	7	1640	3.7	0.053– 0.085	0.074	49–74	65				
Smallmouth Bass	27	5735	3.6	0.078-0.22	0.142	70–220	132				
Rock Bass	11	400	3.4	0.049-0.11	0.080	83–92	88				
White Sucker	9	8441	2.8	0.086-0.12	0.1065	94–110	106				
		Referer	nce Sample	e – Boulder La	ke						
Walleye	10	420	4.5	0.098-0.13	0.120	130–140	136.7				
Black Clappie ¹	6	116	3.8	0.68	0.68	53	53				
Yellow Perch	26	841	3.7	0.068– 0.077	0.073	54–65	58				
Rock Bass ¹	9	208	3.4	0.077	0.077	76	76				
White Sucker	9	9289	2.8	0.051– 0.071	0.059	57–110	82.67				
Shiner Mix	12	467	2.1	0.064– 0.071	0.068	62–65	63				

μg/kg = micrograms per kilogram

A Classical Oneway ANOVA test was completed using fish tissue concentrations to determine if there is a statistically significant difference between tissue concentrations from Site fish and reference area Fish, for any given trophic level. The following table summarizes the mercury and methylmercury Classical Oneway ANOVA test results for Site and reference fish tissue samples by fish species and trophic level, calculated as described in **Section 2.6.1**.

Methylmercury concentrations were observed to have greater statistical variation between trophic levels. Trophic Level 2, bottom feeders, showed statistically significant differences between fish collected from the Site and reference Site. Tropic Level 3 fish appear to be comparable between Site fish tissue samples and reference samples. The fish tissue mercury and methylmercury concentrations within trophic Level 4 were not able to be statistically calculated, due to insufficient data. The Classical Oneway ANOVA statistics tests are included in **Appendix E**.

¹Only one sample analyzed, data range and average were not applicable. mg/kg = milligrams per kilogram

	Fish Tissue										
Fish Species	Trophic Level	Mercury (p-value)	Methylmercury (p-value)								
Walleye	4.5	NC	NO								
Northern Pike ¹	4.1	NC NC	NC								
Black Clappie ²	3.8										
Yellow Perch	3.7	0.242	0.444								
Smallmouth Bass ¹	3.6	0.213	0.114								
Rock Bass	3.4										
White Sucker	2.8	0.00215	0.0070								
Shiner Mix ²	2.1	0.00215	0.0376								

Bold values indicate statistically significant difference between site trophic level species and reference area trophic level species.

NC = Not Calculated. Insufficient data to complete the Classical Oneway ANOVA statistics tests.

3.4.2 Dioxins/Furans (Tissue)

3.4.2.1 Benthic Macroinvertebrate Tissue

The following table summarizes the total observed range of dioxins/furans (as TEQ Fish) for Site ex situ Lumbriculus variegatus tissue samples. In situ tissue samples were not analyzed for dioxins/furans because of insufficient benthic macroinvertebrate volume collected from the Site.

Ex Situ Benthic Macroinvertebrate Tissue									
	Number of	Duration of	TEQ Fish (ng TEQ/kg)						
Benthic Macroinvertebrate Species	Samples Locations	Bioaccumulation Test (days)	Range	Average					
Lumbriculus variegatus ¹	4	28	0.16-0.26	0.22					
Refer	ence Sample – B	oulder Lake							
Lumbriculus variegatus ^{2*}	1	28	0.09	0.09					
Reference Sample – Background									
Lumbriculus variegatus ³	1	0	0.06	0.06					

Notes:

¹Fish species only collected from Thomson Reservoir

²Fish species only collected from Boulder Lake Reservoir

A p-value ≤ 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance

A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

¹Lab grown in Site sediment samples

²Lab grown in Boulder Lake sediment samples

³Lab grown in lab supplied sediment samples

ng TEQ/kg = nanograms of dioxin toxicity equivalency per kilogram

^{*}For TEQ Fish calculations, TEQ values with non-detect values were set to half of the Detection Limit value

Ex situ average TEQ Fish for the Site were observed to be within the same order of magnitude as the reference sample and background Day 0 sample; however, almost double the reference and background Day 0 samples. Ex situ average TEQ Fish for the Site is greater than both the reference sample and background Day 0 sample, indicating that benthic organisms exposed to site sediments likely bioaccumulate dioxins/furans.

3.4.2.2 Fish Tissue

The following table summarizes dioxin/furans concentrations as TEQ calculation results for Fish TEFs (TEQ Fish) and Human Health TEFs (TEQ HH), calculated as described in **Section 2.6.1** detected in Site fish tissue samples and reference site samples.

Fish Tissue													
Fish Species	Total Number of Fish	Total Weight of Fish (g)	tht Trophic (ng TEQ/kg) ² (ng TEQ/kg) ³										
		(0)		Range	Average	Range	Average						
Walleye ¹	3	932	4.5	0.29	0.29	0.32	0.32						
Northern Pike ¹	3	539	4.1	0.25	0.25	0.27	0.27						
Yellow Perch	7	1640 3.7 0.43-		0.43-0.72	0.54	0.46-0.77	0.57						
Smallmouth Bass	27	5735	3.6	0.13-0.73	0.40	0.11-0.66	0.36						
Rock Bass	11	400	3.4	0.08-0.27	0.18	0.09-0.28	0.19						
White Sucker	9	8441	2.8	0.30-0.84	0.61	0.35-1.06	0.70						
		Referer	ce Sample	e – Boulder La	ake								
Walleye	10	420	4.5	0.05-0.16	0.09	0.05-0.18	0.09						
Black Clappie ¹	6	116	3.8	0.05	0.05	0.05	0.05						
Yellow Perch	26	841	3.7	0.05-0.07	0.06	0.04-0.07	0.06						
Rock Bass ¹	9	208	3.4	0.06	0.06	0.06	0.06						
White Sucker	9	9289	2.8	0.06-0.11	0.11	0.06-0.11	0.11						
Shiner Mix	12	467	2.1	0.04-0.49	0.20	0.04-0.50	0.20						

Notes:

Fish tissue samples from the Site for TEQ Fish appear to be slightly higher for Site TEQ Fish versus reference sample TEQ Fish. TEQ HH appears to generally be an order of magnitude larger than TEQ HH values observed for the reference sample. TEQ Fish values for fish tissue samples from the Site are typically greater than TEQ Fish values for fish tissue samples from the reference site. Dioxin/furan concentrations in trophic Level 2 species exceeds concentrations in Level 3 and Level 4 species at the Site and the reference site. TEQ HH values for the Site are greater than those at the reference site by an order of magnitude. For the Site and the reference site, trophic Level 2 exceeds Level 3 and Level 4 values.

^{*}HH = Human Health

¹Only one sample analyzed; data range and average were not applicable.

²For TEQ Fish calculations, the TEQ values with non-detect values were set half the detection limit value.

³For TEQ HH calculations, the TEQ values with non-detect values were set to half the detection limit value.

ng TEQ/kg = nanograms of dioxin toxicity equivalent per kilogram

Overall, dioxin/furan concentrations in fish collected from the Site are greater than reference site, indicating conditions at the Site are resulting in the bioaccumulation of dioxins/furans in fish at the Site.

A Classical Oneway ANOVA test was completed using fish tissue concentrations to determine if there is a statistically significant difference between tissue concentrations from Site fish and reference area Fish, for any given trophic level. The following table summarizes the TEQ Fish and TEQ HH Classical Oneway ANOVA test results for Site and reference fish tissue samples by fish species and trophic level, calculated as described in **Section 2.6.1**.

Fish Tissue										
Fish Species	Trophic Level	TEQ Fish (p-value)	TEQ HH (p-value)							
Walleye	4.5	NC	NC							
Northern Pike ¹	4.1	NC	NC							
Black Clappie ²	3.8									
Yellow Perch	3.7	0.01	0.00916							
Smallmouth Bass ¹	3.6	0.01	0.00910							
Rock Bass	3.4									
White Sucker	2.8	0.00598	0.0045							
Shiner Mix ²	2.1	0.00390	0.0045							

Notes:

Bold values indicate statistically significant difference between site trophic level species and reference area trophic level species.

NC = Not Calculated. Insufficient data to complete the Classical Oneway ANOVA statistics tests.

Concentrations of dioxins/furans in fish tissue have a statistically significant difference between fish collected from the Site and reference Site in tropic Level 2 and 3. Although, fish tissue dioxin/furans concentrations within trophic Level 4 were not able to be statistically calculated, due to insufficient data, the significant differences between fish collected from the Site and reference Site indicate that conditions at the Site are resulting in the bioaccumulation of dioxins/furans in fish at the Site. The Classical Oneway ANOVA statistics tests are included in **Appendix E**.

3.5 Community Assessment Comparison Data

Community assessments were completed as described in **Section 2.4**. A summarized results table is presented as follows, the full table with specific benthic macroinvertebrate species identified can be found in **Table 7**.

¹Fish species only collected from Thomson Reservoir

²Fish species only collected from Boulder Lake Reservoir

A p-value ≤ 0.05 (or some other selected level) suggests that there are significant differences in mean/median characteristics of the various groups at 0.05 or other selected level of significance

A p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.

Thomson Reservoir - Carleton, MN

Location	Date	Number of Ponar Grabs	Approximate Collection Area ¹ (cm)	Community Assessment Duration (min)	Biotic Index Score ²	Biotic Health Score ³						
BW16TR-008	9/27/2016	3	675	15	1.7	Poor						
BW16TR-013	9/27/2016	3	675	15	0.0	Poor						
BW16TR-016	9/27/2016	3	675	15	1.0	Poor						
BW16TR-017	9/27/2016	3	675	15	0.0	Poor						
BW16TR-018	9/27/2016	3	675	15	0.0	Poor						
Boulder Lake Reservoir (Reference Sample)												
BW16BLR-001	9/20/2016	3	675	15	0.0	Poor						

Notes:

cm = centimeters min = minutes

¹Each grab = 15.2 cm x 15.2 cm (225 cm²)

²Biotic Index Score Calculation: http://watermonitoring.uwex.edu/pdf/level1/datasheets/data-Biotic2014.pdf

³Biotic Health Score: Good: 2.6–2.5, Fair: 2.1–2.5, and Poor: 2.0–1.0

4.0 DATA QUALITY REVIEW

4.1 Analytical Data QA/QC Review

In accordance with the St. Louis River Sediment Area of Concern QAPP dated July 2014 and the QAPP Addendum dated February 2015, data verification was performed on the following organic and inorganic analyses: mercury, methylmercury, dioxin/furans, and TOC. A cursory review was performed on grain size. All data was collected and samples were analyzed by Pace, Axys, or GLEC, Minnesota Department of Health (MDH) Environmental Laboratory Accreditation Program (ELAP)-accredited laboratories. The following table describes methods and percentage of total samples for each parameter.

Parameter	Media ^b	Total Samples	Percentage of Total Sampled	Analytical Method
Mercury	Sediment	28	100%	SW-846 Method 7471B
Dioxins/Furans	Sediment	28	100%	SW-846 Method 8290A
TOC	Sediment	28	90%	SW-846 Method 9060A
Grain size	Sediment	28	100%	ASTM D422
Percent Moisture	Sediment	28	from BW16BR- 002 through 005 from BW16BR-002 through 005	ASTM D2974-07
Total Mercury	Benthic Tissue	8 ^a	100%	SW-846 7471B
Methylmercury	Benthic Tissue	8 ^a	100%	EPA Method 1630
Dioxins/Furans	Benthic Tissue	6ª	83%	SW-846 Method 8290A

Notes:

In general, the areas covered by the data verification process included reviewing the following:

- CoC records:
- Technical holding times and preservation;
- Laboratory and field QC reporting forms (method blanks, rinsate blanks, surrogates, laboratory control samples [LCSs], laboratory control sample duplicates [LCSDs], and MS/MSDs, as appropriate);
- · Required analytical methods;
- Reporting limits;
- Case narrative;
- Completeness of Results; and
- Data usability (compliance with data quality objectives [DQOs]).

Level II Laboratory reports were provided by the laboratory and reviewed, so the following areas were not covered by the data verification:

- Tune summaries (gas chromatograph/mass spectrometer [GC/MS] only);
- Initial calibrations;
- Continuing calibrations;
- Internal standards;

a = Samples included Macrobenthos composite of samples 008, 013, 016, 017, & 018; Macrobenthos composite included samples BW16BR-002 through 005.

b = Fish samples were not included in this table because the MPCA and USACE collected the fish samples and the USEPA was responsible for the QA/QC for fish tissue analysis.

- Target compound/analyte ID;
- Target Compound/analyte quantitation; and
- System performance.

As per the approved QAPP, data verification was performed by a Bay West Chemist and documented using the MPCA Laboratory Data Review Checklist. Data verification was performed by comparing the contents of the data packages and QA/QC results to the requirements in the QAPP, the respective analytical methods, and the laboratory SOPs. Additional qualifiers were added, as needed, and summarized in the MPCA Laboratory Data Review Checklists, included in **Appendix D**. All metals samples analyzed by SW-846 Method 6020A were analyzed at 20-fold dilution in accordance with the Pace SOP.

Field duplicates, MS/MSDs, method blanks, and rinsate blanks were collected and/or analyzed at required frequencies specified in the approved QAPP as follows. Field duplicates met or exceeded the required frequencies of 10% for the samples analyzed for mercury and dioxin/furans. MS analysis met or exceeded the required frequency of 5% for mercury and dioxin/furans. Rinsate blanks were collected daily (see **Section 2.5.2** for additional discussion), for mercury only as discussed in Section 4.6.4 of the FSP. Analytes detected in samples at concentrations less than 10% of the method blank or rinsate blank concentrations were qualified "U" as undetected.

Samples results were considered estimated if the sample results were associated with LCS/LCSD or MS/MSD recoveries outside QC limits. When LCS or MS/MSD recoveries were biased low, both detected and undetected sample results were flagged with a "J" or "UJ" to indicate that the concentration or reporting limit is considered estimated. When LCS or MS/MSD recoveries were biased high, only the detected results were qualified "J" as estimated. Only detected results were qualified "J" when relative percent differences were high in field duplicates, MS/MSDs, and LCS/LCSDs. All non-detect values were flagged with a "U."

4.2 Interpretation of Concentrations Less Than Detection Limits

The MPCA Guidance: Laboratory Quality Control and Data Policy requires concentrations less than the reporting limit but above the method detection limits (MDLs) to be qualified with a "J" because they are considered estimated. Samples below the MDL were qualified with a "U." Bay West replaced all "E," "I," and "P" Pace qualifiers with a "J" flag to indicate that the sample concentrations are considered estimated.

Since guidance for calculations of toxicity quotients do not prescribe which scaling factor for non-detect results should be used, non-detection values were set equal to the reporting limit for mercury and dioxin/furans.

4.3 Summary

Overall, no significant data quality discrepancies were observed. All data were verified and found acceptable, as qualified, and met DQOs. Additional information regarding data verification can be found in Laboratory Data Review Checklists in **Appendix D**.

5.0 DISCUSSION AND CONCLUSION

The following section describes the results obtained during the limited field activities.

All Community Assessment comparisons completed for BW16TR-008, BW16TR-013, BW16TR-016 through BW16TR-018 and BW16BLR-001 (reference site) surface sediments indicated that the benthic community health at these locations was poor to fair. Macroinvertebrate species diversity was low and species consisted only of pollutant tolerant and semi-tolerant macroinvertebrates for the Site and the reference Site. This assessment was completed at the very end of the organism growing season which likely skewed the outcome of the assessment; therefore, this data is considered inconclusive. Additional assessments would need to be completed during the growing season to develop a more definitive conclusion of benthic community quality at these locations.

Sediment samples were collected and analyzed for Site COCs to gather additional chemical data for delineation of extent and depth of contamination at the Site. Mercury sediment concentrations exceeded Midpoint and Level 2 SQTs in three samples, or 10% of the samples indicating mercury contamination appears to be occurring throughout the Site. Dioxin/furan sediment concentrations exceeded Midpoint and Level II SQTs in ten samples, or 32% of the samples, focused within the northeastern portion and western half of Thomson Reservoir. mercury exceedances were observed at depth in the 0.15–0.5 and 0.5–1.0 meter intervals and dioxin/furan exceedances were observed in the 0.0–0.15, 0.15–0.50, and 0.5-1.0 meter intervals indicating that deposition of contaminated sediment occurred historically and may still be occurring, or that sediment deposition in this area is minimal.

Two in situ macroinvertebrate tissue samples (macrobenthos and crayfish) were collected at one location BW16TR-HD-001. Sufficient in situ tissue volume could not be collected from BW16TR-008, BW16TR-013, BW16TR-017, and BW16TR-018; therefore, ex situ laboratory bioaccumulation testing was completed using the sediment collected from these four locations.

Benthic macroinvertebrates do not appear to bioaccumulate mercury due to exposure to Site sediments significantly more compared to reference samples. Benthic macroinvertebrate tissue results for mercury for both in situ and ex situ samples were also not observed to vary greatly between Site samples and reference/background samples. Based on these results, it appears that mercury would not migrate up the food chain to higher trophic levels significantly more than reference sites.

Benthic macroinvertebrates appear to bioaccumulate methylmercury due to exposure to Site sediments comparably more than the reference samples. The Site average for in situ methylmercury tissue concentration was almost double the reference Site. Additionally, concentrations varied between in situ species sampled, indicating that some organisms are bioaccumulating methylmercury more than others; however, methylmercury concentration variations in in situ tissue may be attributed to contaminant distribution, benthic species type and lifecycle, and age. Methylmercury in tissue from organisms exposed to Site sediments under controlled laboratory conditions (ex situ tissue) appears to be greater than the background day 0 sample and the reference sample, indicating that benthic organisms may be bioaccumulating methylmercury due to exposure to Site sediments. Methylmercury in site sediments appear to bioaccumulate in benthic tissue, indicating that this contaminant may migrate up the food chain to higher trophic levels significantly more than reference sites; however, there is limited data for methylmercury concentrations in sediment at the Site.

Fish tissue collection and testing of eight fish species within trophic Level 2 through 4, was completed by the MCPA, at the Site and reference site. Concentrations of mercury in fish tissue

were not observed to vary greatly between the Site and the reference Site. Statistically, mercury concentrations appear to be comparable to the reference sample and coincide trophic level for both Site fish tissue samples and reference samples. Concentrations of methylmercury in fish tissue were observed to have a statistically significant difference between fish collected from the Site and the reference site within tropic Level 2 only. Bioconcentration of mercury and methylmercury appear to increase as trophic level increases.

Benthic macroinvertebrates appear to bioaccumulate dioxins/furans due to exposure to Site sediments significantly more compared to reference samples. The dioxins/furans concentration in ex situ tissue is almost double the reference and background samples. These results indicate that dioxins/furans may migrate up the food chain to higher trophic levels significantly more than reference sites.

Fish tissue results for dioxins/furans, at the Site and the reference Site, showed trophic Level 2 exceeding Level 3 and Level 4 in fish tissue concentrations at both the Site and the reference site. This may be attributed to a preferential uptake of dioxin/furans in fish species at trophic Level 2. Dioxins/furans concentrations in fish tissue were greater in tissue collected from the Site compared to the reference site and concentrations have a statistically significant difference in trophic Level 2 and 3 between Site samples and reference Site samples. Bioconcentration of dioxins/furans appear to increase as trophic level increases and dioxins/furans are bioconcentrating significantly more at the Site compared to the reference site.

Based on the sediment and tissue testing results, dioxins/furans should be retained as a COC for the Site. Methylmercury also appears to be bioconcentrating in tissue at the Site significantly more than reference site and/or reference samples; however, there is insufficient analytical data to determine whether methylmercury should be considered a COC for the Site. Additionally, future sediment investigations and/or potential Site remedies may require analysis of methylmercury.

6.0 REFERENCES

- Advanced Environmental Management Group (AEM Group), 2017. 2016 Tissue Analysis Project Plan for Duluth Reservoirs, Draft Report, prepared for United States Army Corps of Engineers (USACE), March.
- Bay West LLC (Bay West), 2014. Final Quality Assurance Project Plan, St. Louis River Sediment Areas of Concern, Version 00. July.
- Bay West, 2016. FINAL Focused Feasibility Study, Thomson Reservoir, St. Louis River, Duluth, St. Louis County, Minnesota. (Bay West, 2016), June.
- Bay West, 2016. FINAL Data Gap Investigation Field Sampling Plan, Thomson Reservoir, St. Louis River, Duluth, St. Louis County, Minnesota. (Bay West, 2016), September.
- Crane, J.L., D.D. MacDonald, C.G. Ingersoll, D.E. Smorong, R.A. Lindskoog, C.G. Severn, T.A. Berger, and L.J. Field. 2000. Development of a framework for evaluating numerical sediment quality targets and sediment contamination in the St. Louis River Area of Concern. United States Environmental Protection Agency (USEPA), Great Lakes National Program Office, Chicago, IL. EPA-905-R-00-008.
- International Joint Commission, 2013. http://www.ijc.org/rel/boards/annex2/buis.htm#table1
- Schubauer-Berigan, M., and J.L. Crane, 1996. "Preliminary Contaminant Assessment of the Thomson, Forbay, and Fond Du Lac Reservoirs"; USEPA, Region V, Great Lakes National Program Office; Chicago, Illinois.
- Somat Engineering (Somat), 2012. Sediment Investigation Report, Lower St. Louis River, Fond Du Lac Dam to Kingsbury Bay, Duluth, St. Louis County, Minnesota. (Somat, 2012), August.
- USEPA, 2000. Instructions on the Preparation of a Superfund Division Quality Assurance Project Plan. Region V USEPA, Revision 0. (USEPA, 2000), June 5.
- USEPA, 2001. *EPA Requirements for Quality Assurance Project Plans*, EPA/240/B-01/003. (USEPA, 2001), March.
- USEPA, 2016. https://www.epa.gov/land-research/proucl-software

Tables

June 2017 BWJ160749

Table 1 - Sample Analysis Summary Thomson Reservoir

St. Louis River Area of Concern Carlton, Minnesota

Authors Part		Sediment																				
Finalists												Tissue Tissue										
## MISSING OF 16-25	Location	Sample ID	iterval	e (G or	furans by SW-846 8290A	SW-846 7471B	by SW-846 9060A	ASTM	moisture by ASTM D221				,	Situ (Mayfly, Dragonfly, & Crawfi	Situ Hester Dendy (Macrobenthos Crawfish)	osed (Lumbriculu	ams	furansby	SW-846 747	ercury EPA 1	% LIPIDS	Туре
Marith Registral Coloration Control Cont		BW16TR-001-0.0-0.15	0.0-0.15	G	X	X	X	X	X												8,	51
March Marc					Х				Х													
March Marc	BW16TR-001				Х																	
By WITE NO OLD C															Macrobenthos		4		Х	Х		Composite (016, 017, 013, 008, & 018)
## Section Sec																				Х		
MYTHER CORN			_		Х	Х	Х	Х	Х													, and the second
997161R-003 997161R-003-09-015 9	BW161R-002																					
## PATRICAGE MYATEROSA DATA DATA DATA DATA DATA DATA DATA DA	DIAM (TD 000						1															
WHITE ROAD	BW161R-003		_	-																		
SYTOTIC SYTO																						
BWIRRORS 0.0 15	BW16TR-004		_				1															
BW16R005 BW16R005 023 048 0.23 048 0.5			_																			
BWHSR-196-02-04-8	BW16TR-005																					
### SWITER 006 SWITER 006 SP 28 SWITER 015 SWITER	211 10111 000																					
SWITEROOF SWIT							Y	Y														
BW/16R007 0.0 15	BW16TR-006																	1				
BWT6R007 BWT6R008 BWT6R008 O26-051 O																						
BW16TR-070 BV16TR-070 6-0.0-15 C	BW16TR-007		_																			
BW16TR-008 BW16TR-009-0-0-15 0,0-0.15 G	DW TOTAL GOT						Α	Α										1				
BW16TR-070 BW16TR-070-0.0-15 G X X X X X X X X X	RW16TP-008		_				Y	Y				Y	ν			V		Y	Y	Υ	Y	
BW16TR-010-0-0.15												٨	^			^		^	٨	۸	^	
BW16FR-010-0.15-0.38 0.15-0.38 G X X X X X X X X X							1											1				
BW16TR-011	BW16TR-010		_																			
BW16TR-011																						
BW16TR-012 BW16TR-012-0.0-0.15 O.0-0.15 C X X X X X X X X X	BW16TR-011											-				-	-	-				
BW16TR-013 BW16TR-015-0.0-0.15 0.0-0.1	DW16TD 012		_													+		1			-	
BW16TR-014												V	V			V	+	V	V	V	V	
BW16TR-014-0.15-0.38	V1014-013											λ	Λ			λ		λ	٨	Λ	Α	
BW16TR-015 D.0-0.15 D.0-0.1	BW16TR-014																					
BW16TR-015 BW16TR-015-0.15-0.36 O.15-0.36 G X X X X X X X X X												-			+	-		1				
BW16TR-016 BW16TR-016 D.0-0.15 G	BW16TR-015		_	-								-				-	-	-				
BW16TR-017 BW16TR-018 D.0-0.15 G X X X X X X X X X	DW/1/TD 01/				Х	Х	Х	Х	Х				V			 		1			-	
BW16TR-018 BW16TR-018-0.0-0.15 G X X X X X X X X X	DW161K-U16				V	V	V	V	V			V	X			V		V	V	V	V	
BW16BR-001 BW16BR-HD-001-MCRS 0.0-0.15 C C C C C C C C C						1							X							X		
BW16BR-001	RM101K-018	DVV101K-U18-U.U-U.15	0.0-0.15	<u>l</u> G	Х	Х	X	X	X				X X	foronce Commited		Х		Х	X	Х	Х	
BW16BR-001 - 0.0-0.15		DIAM (DD LID 201 1100)	00015							1	1	Boulde	r Lake Reservoir (Re	ererence Sample)					.,	v		O
BW16BR-002 BW16BR-002 0.0-0.15 C X X X X X X X X X X X X X X X X X X	BW16BR-001					V	V	V				V	V		Macrobenthos	V	17			X		
BW16BR-003 BW16BR-003 0.0-0.15 C BW16BR-004 BW16BR-004 0.0-0.15 C BW16BR-004					Х	Х	Х	Х				Х	X			Х		Х	Х	Х	Х	Chemistry Composite from BW16BR-002 through 005
BW16BR-004 BW16BR-004 0.0-0.15 C	BW16BR-002				1		1		1									1				
					ļ			ļ	ļ							ļ		ļ				
BW16BR-005 BW16BR-005 0.0-0.15 C					ļ			ļ	ļ							ļ		ļ				
Notes:		BW16BR-005	0.0-0.15	C																		

Sampled
Summary does not include fish tissue or EPA-collected benthic tissue

Grab (G)

Composite (C)

Table 2 - Sample Locations Thomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

Location	Sample ID	Poling L	ocation	Water Depth (ft)	Date Sampled	
		Longitude	Latitude	Doptii (it)	Jampied	
	BW16TR-001-0.0-0.15					
	BW16TR-001-0.15-0.35					
BW16TR-001	BW16TR-101-0.15-0.35	-92.416279	46.673537	6.0	9/27/2016	
	BW16TR-HD-001-C					
	BW16TR-HD-001-MCRS					
BW16TR-002	BW16TR-002-0.0-0.15	-92.413273	46.67111	10.2	9/27/2016	
DVV 101K-002	BW16TR-002-0.30-0.55	-72.413273	40.07111	10.2	9/2//2010	
BW16TR-003	BW16TR-003-0.0-0.15	-92.413558	46.669569	7.1	9/27/2016	
DVV TOTK-003	BW16TR-003-0.27-0.52	-92.413330	40.009309	7.1	9/2//2010	
BW16TR-004	BW16TR-004-0.0-0.15	-92.414145	46.667646	2.6	9/27/2016	
DVV 101K-UU4	BW16TR-004-0.21-0.46	-92.414145	40.00/040	2.0	9/2//2010	
	BW16TR-005-0.0-0.15					
BW16TR-005	BW16TR-005-0.23-0.48	-92.408346	46.667397	8.1	9/27/2016	
	BW16TR-105-0.23-0.48					
DW1/TD 00/	BW16TR-006-0.0-0.15	02.402070	4/ /70/51	4.0	10/4/2014	
BW16TR-006	BW16TR-006-0.15-0.28	-92.402078	46.672651	4.2	10/6/2016	
	BW16TR-007-0.0-0.15					
BW16TR-007	BW16TR-007-0.26-0.51	-92.401366	46.671843	5.1	10/6/2016	
	BW16TR-107-0.26-0.51					
DW/1/TD 000	BW16TR-008	02 41/1/7	4/ /72022	201	0/27/201/	
BW16TR-008	BW16TR-008-0.0-0.15	-92.416167	46.672033	20 ¹	9/27/2016	
BW16TR-009	BW16TR-009-0.0-0.15	-92.403498	46.669742	2.3	10/6/2016	
BW16TR-010	BW16TR-010-0.0-0.15	-92.400407	46.667956	0.8	10/6/2016	
DVV IOIK-UIU	BW16TR-010-0.15-0.38	-92.400407	40.007930	0.6	10/0/2010	
BW16TR-011	BW16TR-011-0.0-0.15	-92.395398	46.670441	5.0	10/6/2016	
DWIOIK-UII	BW16TR-011-0.60-0.85	-92.393390	40.070441	5.0	10/6/2016	
BW16TR-012	BW16TR-012-0.0-0.15	-92.392195	46.670553	3.1	10/6/2016	
BW16TR-013	BW16TR-013	-92.392617	46.669583	5.6	9/27/2016	
DVV TOTK-013	BW16TR-013-0.0-0.15	-92.392017	40.007363	5.0	712112010	
BW16TR-014	BW16TR-014-0.0-0.15	-92.396198	46.668093	4.5	10///201/	
DWIOIK-014	BW16TR-014-0.15-0.38	-92.390190	40.000073	4.5	10/6/2016	
BW16TR-015	BW16TR-015-0.0-0.15	-92.396876	46.666873	2.08	10/4/2014	
DVV IOI VIO	BW16TR-015-0.15-0.36	-92.390070	40.000873	2.08	10/6/2016	
BW16TR-016	BW16TR-016	NR	NR	20 ¹	9/27/2016	
DW4 (TD 047	BW16TR-017	00.4000	4/ //00/7	1		
BW16TR-017	BW16TR-017-0.0-0.15	-92.4083	46.668867	21 ¹	9/27/2016	
DM4 (TD 040	BW16TR-018	00.44477	47 770744	1	0.407.4004.4	
BW16TR-018	BW16TR-018-0.0-0.15	-92.411667	46.668611	19.5 ¹	9/27/2016	
	Boulder Lake Reservoir	(Reference Samp	le)			
DW4 (DD 004	BW16BR-HD-001-MCRS	00.000110	47.05/000	NR	NR	
BW16BR-001	BW16BLR-001-0.0-0.15	-92.208112	47.056288	8.0	9/20/2016	
BW16BR-002	BW16BR-002	-92.183069	47.076127	14.2	9/20/2016	
BW16BR-003	BW16BR-003	-92.201496	47.070839	7.5	9/21/2016	
BW16BR-004	BW16BR-004	NR	NR	NR	NR	
BW16BR-005	BW16BR-005	NR	NR	NR	NR	

NR- Not recorded

¹Water depth derived from 2016 Minnesota Power Bathymetry Survey

Table 3 - Core Summary
Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

Location	Sample ID	Date Sampled	Sample Method	Depth of Push (m)	Depth of Push (ft)	Recovery (m)	Recovery (ft)	Percent Recovery
	BW16TR-001-0.0-0.15							
BW16TR-001	BW16TR-001-0.15-0.35	9/27/2016	Check Valve	0.61	2	0.38	1.25	63
	BW16TR-101-0.15-0.35							
BW16TR-002	BW16TR-002-0.0-0.15	9/27/2016	Check Valve	0.76	2.5	0.58	1.9	76
5W 101K 002	BW16TR-002-0.30-0.55	772772010	oriook varvo	0.70	2.0	0.00	,	7.0
BW16TR-003	BW16TR-003-0.0-0.15	9/27/2016	Check Valve	1.22	4	0.58	1.9	48
BW TOTA GGS	BW16TR-003-0.27-0.52	772772010	oriook varvo		•	0.00	,	10
BW16TR-004	BW16TR-004-0.0-0.15	9/27/2016	Check Valve	0.91	3	0.52	1.7	57
BW TOTA GOT	BW16TR-004-0.21-0.46	772772010	Officer valve	0.71	J	0.02	1.7	37
	BW16TR-005-0.0-0.15							
BW16TR-005	BW16TR-005-0.23-0.48	9/27/2016	Check Valve	0.91	3	0.52	1.7	57
	BW16TR-105-0.23-0.48							
BW16TR-006	BW16TR-006-0.0-0.15	10/6/2016	Check Valve	0.37	1.2	0.30	1	83
BW TOTK-000	BW16TR-006-0.15-0.28	10/0/2010	Officer valve					03
	BW16TR-007-0.0-0.15		Check Valve					
BW16TR-007	BW16TR-007-0.26-0.51	10/6/2016		0.91	3.0	0.55	1.8	60
	BW16TR-107-0.26-0.51							
BW16TR-008	BW16TR-008-0.0-0.15	9/27/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16TR-009	BW16TR-009-0.0-0.15	10/6/2016	Check Valve	0.30	1.0	0.24	0.8	80
BW16TR-010	BW16TR-010-0.0-0.15	10/6/2016	Check Valve	0.40	1.3	0.40	1.3	100
DW TOTK-010	BW16TR-010-0.15-0.38	10/0/2010	Officer valve	55	1.0	5.10	1.5	100
BW16TR-011	BW16TR-011-0.0-0.15	10/6/2016	Check Valve	0.76	2.5	0.49	1.6	64
BW 101K-011	BW16TR-011-0.60-0.85						1.0	04
BW16TR-012	BW16TR-012-0.0-0.15	10/6/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16TR-013	BW16TR-013-0.0-0.15	9/27/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16TR-014	BW16TR-014-0.0-0.15	10/6/2016	Check Valve	0.40	1.3	0.40	1.3	100
DW TOTK-014	BW16TR-014-0.15-0.38	10/0/2010	Officer valve	0.40	1.5	0.40	1.5	100
BW16TR-015	BW16TR-015-0.0-0.15	10/6/2016	Check Valve	0.43	1.4	0.37	1.2	86
BW TOTK-013	BW16TR-015-0.15-0.36		Officer valve	0.43		0.37	1.2	00
BW16TR-016	BW16TR-016-0.0-0.15	9/27/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16TR-017	BW16TR-017-0.0-0.15	9/27/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16TR-018	BW16TR-018-0.0-0.15	9/27/2016	Ponar	0.15	0.5	0.15	0.5	100
		Boulde	er Lake Reservoir (Reference Sample))			
BW16BR-001	BW16BLR-001-0.0-0.15	9/20/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16BR-002	BW16BR-002-0.0-0.15	9/20/2016	Ponar	0.15	0.5	0.15	0.5	100
BW16BR-003	BW16BR-003-0.0-0.15	9/21/2016	Ponar	0.15	0.5	0.15	0.5	100

Table 4 - Poling LocationsThomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

Location	Date Sampled	Poling ID Location	Poling I	Latitude	Depth of Water (cm)	Depth of Water (ft)	Depth to Resistance (cm)	Depth to Refusal (cm)	Depth to Refusal (ft)	Soft Sediment Thickness (cm)	Refusal Type	Sediment Type Approaching Refusal	Sediment Surface Elevation (ft AMSL)	Refusal Elevation (ft AMSL)
PL-01	6/1/2016	NA	-92.39241	46.66886	190	6.2	230	260	8.5	70	Sediment	Silt/clay	1057.8	1055.5
PL-02	6/1/2016	NA	-92.39193	46.66969	190	6.2	210	240	7.9	50	Sediment	Silt/clay	1057.8	1056.1
PL-03	6/1/2016	NA	-92.39292	46.66980	200	6.6	240	250	8.2	50	Rock	Silt/clay	1057.4	1055.8
PL-04	6/1/2016	NA	-92.39305	46.67074	190	6.2	220	220	7.2	20	Rock	Silt/clay	1057.8	1056.8
PL-04	6/1/2016	NA	-92.39557	46.67040	190	6.2	260	260	8.5	70	Sediment	Silt/clay	1057.8	1055.5
PL-05	6/1/2016	NA	-92.39731	46.67001	210	6.9	290	320	10.5	110	Sediment	Silt/clay	1057.1	1053.5
PL-06	6/1/2016	NA	-92.39912	46.67153	190	6.2	240	370	12.1	180	Sediment	Silt/clay	1057.8	1051.9
PL-07	6/1/2016	NA	-92.40575	46.67176	250	8.2	350	360	11.8	110	Sediment	Silt/clay	1055.8	1052.2
PL-08	6/1/2016	NA	-92.40749	46.67096	490	16.1	540	600	19.7	110	Sediment	Granular	1047.9	1044.3
PL-09	6/1/2016	NA	-92.41076	46.67122	380	12.5	480	480	15.7	110	Rock	Granular	1051.5	1048.3
PL-10	6/1/2016	NA	-92.41443	46.67167	290	9.5	370	370	12.1	90	Sediment	Granular	1054.5	1051.9
PL-11	6/1/2016	NA	-92.41369	46.66995	290	9.5	330	330	10.8	40	Rock	Granular	1054.5	1053.2
PL-12	6/1/2016	NA	-92.41596	46.66986	170	5.6	260	300	9.8	130	Sediment	Silt/clay	1058.4	1054.2
PL-13	6/1/2016	NA	-92.41507	46.66725	250	8.2	340	400	13.1	150	Sediment	Silt/clay	1055.8	1050.9
PL-14	6/1/2016	NA	-92.41223	46.66781	120	3.9	140	210	6.9	90	Sediment	Silt/clay	1060.1	1057.1
PL-15	6/1/2016	NA	-92.41012	46.66864	100	3.3	150	170	5.6	70	Sediment	Silt/clay	1060.7	1058.4
PL-16	6/1/2016	NA	-92.40420	46.66854	250	8.2	330	430	14.1	180	Sediment	Silt/clay	1055.8	1049.9
PL-17	6/1/2016	NA	-92.39916	46.66689	490	16.1	620	620	20.3	130	Sediment	Silt/clay	1047.9	1043.7
PL-18	6/1/2016	NA	-92.39553	46.66664	70	2.3	90	90	3.0	20	Sediment	Silt/clay	1061.7	1061.0
PL-19	6/1/2016	NA	-92.39150	46.66680	200	6.6	290	310	10.2	110	Sediment	Silt/clay	1057.4	1053.8
PL-20	6/1/2016	NA	-92.39158	46.66652	140	4.6	230	250	8.2	110	Sediment	Silt/clay	1059.4	1055.8
BW16TR-001	9/27/2016	PL-01	-92.41628	46.67354	182	6.0	277	277	9.1	95	Sediment	NA	1058.0	1054.9
BW16TR-002	9/27/2016	PL-01	-92.41327	46.67111	311	10.2	429	457	15.0	146	Sediment	Silt Loam	1053.8	1049.0
BW16TR-003	9/27/2016	PL-01	-92.41356	46.66957	216	7.1	442	442	14.5	226	Sediment	Silt Loam	1056.9	1049.5
BW16TR-004	9/27/2016	NA	-92.41415	46.66765	79.2	2.6	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-005	9/27/2016	PL-01	-92.40835	46.66740	247	8.1	419	419	13.7	172	Sediment	Gravel	1055.9	1050.3
BW16TR-006	10/6/2016	PL-01	-92.40208	46.67265	128	4.2	182	182	6.0	54	Sediment	Gravel	1059.8	1058.0
BW16TR-007	10/6/2016	PL-01		46.67184	155	5.1	198	251	8.2	96	Sediment	Gravel	1058.9	1055.8
BW16TR-008	9/27/2016	NA	-92.41617	46.67203	NA	NC	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-009	10/6/2016	PL-01	-92.40350	46.66974	81	2.7	173	173	5.7	91	Sediment	Coarse Sand	1061.3	1058.3
BW16TR-010	10/6/2016	PL-01	-92.40041	46.66796	24	0.8	46	107	3.5	83	Sediment	Silt Loam	1063.2	1060.5
BW16TR-011	10/6/2016	PL-01	-92.39540	46.67044	152	5.0	243	259	8.5	107	Sediment	Silt Loam	1059.0	1055.5
BW16TR-012	10/6/2016	NA	-92.39220	46.67055	NA	NC	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-013	9/27/2016	NA	-92.39262		NA	NC	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-014	10/6/2016	PL-01		46.66809	137	4.5	180	287	9.4	150	Sediment	Silt Loam	1059.5	1054.6
BW16TR-015	10/6/2016	PL-01		46.66687	71	2.3	132	142	4.7	71	Sediment	Silt Loam	1061.7	1059.3
BW16TR-016	9/27/2016	NA	NA	NA	6126.5	20 ¹	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-017	9/27/2016	NA	-92.4083	46.668867	6431.3	21 ¹	NA	NA	NC	NA	NA	NA	NC	NC
BW16TR-018	9/27/2016	NA	-92.41167	46.668611	594.7	19.5 ¹	NA	NA	NC	NA	NA	NA	NC	NC
					Bould	er Lake Rese	ervoir (Referenc	e Sample)						
BW16BR-001	9/20/2016	PL-01	-92.20811	47.056288	254	NC	289	315	NC	61	Woody Debris	Silt Loam	NC	NC
BW16BR-002	9/20/2016	PL-01	-92.18307	47.076127	432	NC	549	605	NC	173	Sediment	Silt	NC	NC
BW16BR-003	9/21/2016	PL-01	-92.2015	47.070839	239	NC	249	272	NC	33	Sediment	Silt Loam	NC	NC

Water elevation = Average of Low Water Line (1059 ft) and High Water Line (1069 ft)

NC- Not Calculated

NA-Not Available

¹Water depth derived from 2016 Minnesota Power Bathymetry Survey

Table 5 - Analytical Parameters Summary

Thomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

Analytical Parameters	Chemical Abstract Number or Analyte Code	Analytical Method
Metals	·	
Mercury	7439-97-6	SW-846 7471B
Polychlorinated Dibenzo-p-dioxins (Dioxins)/Polychlorinated Dibe	enzofurans (Furans)	
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	1746-01-6	SW-846 8290A
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	40321-76-4	SW-846 8290A
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	57653-85-7	SW-846 8290A
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	39227-28-6	SW-846 8290A
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	19408-74-3	SW-846 8290A
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	35822-46-9	SW-846 8290A
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	3268-87-9	SW-846 8290A
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	51207-31-9	SW-846 8290A
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	57117-41-6	SW-846 8290A
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	57117-31-4	SW-846 8290A
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	57117-44-9	SW-846 8290A
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	72918-21-9	SW-846 8290A
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	70648-26-9	SW-846 8290A
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	60851-34-5	SW-846 8290A
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	67562-39-4	SW-846 8290A
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	55673-89-7	SW-846 8290A
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	39001-02-0	SW-846 8290A
TCDD Equivalent		
General Chemistry	•	
Total Organic Carbon		SW-846 9060A
Physical Testing	·	
Grain Size		ASTM D422

Table 6 - Total Organic Carbon Results

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

Sample Name	Sample Depth Start (m)	Sample Depth End (m)	Result (mg/kg)	Result Qualifier
BW16TR-001-0.0-0.15	0	0.15	25100	
BW16TR-001-0.15-0.35	0.15	0.35	31800	
BW16TR-002-0.0-0.15	0	0.15	26100	
BW16TR-002-0.30-0.55	0.3	0.55	43800	
BW16TR-003-0.0-0.15	0	0.15	30400	
BW16TR-003-0.27-052	0.27	0.52	27900	
BW16TR-004-0.0-0.15	0	0.15	23900	
BW16TR-004-0.21-0.46	0.21	0.46	37500	
BW16TR-005-0.0-0.15	0	0.15	45700	
BW16TR-005-0.23-0.48	0.23	0.48	26600	
BW16TR-006-0.0-0.15	0	0.15	19500	
BW16TR-006-0.15-0.28	0.15	0.28	50900	
BW16TR-007-0.0-0.15	0	0.15	27300	
BW16TR-007-0.26-0.51	0.26	0.51	44100	
BW16TR-008-0.0-0.15	0	0.15	20500	
BW16TR-009-0.0-0.15	0	0.15	3940	
BW16TR-010-0.0-0.15	0	0.15	32800	
BW16TR-010-0.15-0.38	0.15	0.38	33700	
BW16TR-011-0.0-0.15	0	0.15	42500	
BW16TR-011-0.60-0.85	0.6	0.85	33000	
BW16TR-012-0.0-0.15	0	0.15	19500	
BW16TR-013-0.0-0.15	0	0.15	29500	
BW16TR-014-0.0-0.15	0	0.15	21300	
BW16TR-014-0.15-0.38	0.15	0.38	21400	
BW16TR-015-0.0-0.15	0	0.15	22200	
BW16TR-015-0.15-0.36	0.15	0.36	23300	
BW16TR-017-0.0-0.15	0	0.15	25700	
BW16TR-018-0.0-0.15	0	0.15	34600	

Notes:

TOC - Total organic carbon

J - estimated value

U - indicates non-detet because of TOC contamination in the method blank

m - meters

TOC analyzed by EPA Method SW9060

Table 7 - Community Assessment Thomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

		Collection	Information							Benthic I	Macroinvertebra	tes					
Location	Date	Number of Ponar Grabs	Approximate Collection Area (cm²)¹	Community Assessment Duration (min)	Alderfly (Sensitive)	Mayfly (Semi- Sensitive)	Fingernail Clam (Semi- Senstive)	Non-Red Midge (Semi- Tolerent)	Horsefly (Tolerant)	Horsehair Worm (Tolerant)	Thread Worm (Tolerant)	Snails (Semi- Tolerant)	Bloodworm (Tolerant)	Tubifex Worm (Tolerant)	Needleworm (Tolerant)	Biotic Index Score ²	Biotic Health Score ³
BW16TR-008	9/27/2016	3	675	15	1	3	0	4	0	0	0	6	3	1	0	1.7	Poor
DWIOTK-000			Weigh	ted Group Score	4	9	0	8	0	0	0	6	3	1	0	1.7	1 001
BW16TR-013	9/27/2016	3	675	15	0	0	0	0	0	0	0	0	0	0	0	0.0	Poor
DW101K-013			Weigh	ted Group Score	0	0	0	0	0	0	0	0	0	0	0	0.0	1 001
BW16TR-016	9/27/2016	3	675	15	0	0	0	0	2	0	0	0	2	0	6	1.0	Poor
DW IOIK-OIO			Weigh	ted Group Score	0	0	0	0	2	0	0	0	2	0	6	1.0	1 001
BW16TR-017	9/27/2016	3	675	15	0	0	0	0	0	0	0	0	0	0	0	0.0	Poor
DVV TOTK-UT/			Weigh	ted Group Score	0	0	0	0	0	0	0	0	0	0	0	0.0	POOI
BW16TR-018	9/27/2016	3	675	15	0	0	0	0	0	0	0	0	0	0	0	0.0	Poor
DWIOTK-010			Weigh	ted Group Score	0	0	0	0	0	0	0	0	0	0	0	0.0	1 001
							Boulder Lake	Reservoir (Refer	rence Sample)								
BW16BLR-001	9/20/2016	3	675	15	0	0	0	0	0	0	0	0	0	0	0	0.0	Poor
DVV TODER-OUT		•	Weigh	ted Group Score	0	0	0	0	0	0	0	0	0	0	0	0.0	F00I

¹Each grab = 15.2 cm x 15.2 cm (225 cm2)

³Biotic Health Score:

2.6-3.5

Good 2.1-2.5 Fair

Poor 1.0-2.0

²Biotic Index Score Calculation: http://watermonitoring.uwex.edu/pdf/level1/datasheets/data-Biotic2014.pdf

Table 8 - Metals Results

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

		Sample	e Name		BW16TF 0.0-0		-	5TR-001- 5-0.35	BW16TR 0.0-0.		BW16TR 0.30-0		BW16TR 0.0-0.		BW16TR 0.27-0		BW16TR 0.0-0.		BW16TF 0.21-0		BW16TR 0.0-0		BW16TI 0.23-		BW16TR 0.0-0.	
Chemical	Sa	ample Inte	rval (meter	rs)	0.0-0	.15	0.1	5-0.50	0.0-0.	15	0.15-0).50	0.0-0.	15	0.15-0).50	0.0-0.	15	0.15-0	0.50	0.0-0	.15	0.15-	0.50	0.0-0.	15
	SQT Level	SQT Midpoint	SQT Level 2	Result unit	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Mercury	0.18	0.64	1.1	mg/kg	0.13		0.65	J	0.096		1.1	J	0.072		0.13		0.054		0.50		0.13		0.10		0.098	

Notes:

Q - Qualifiers

J - estimated value

NE - not estabilshed

SQT - Sediment Quality Target

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

Level II

Values highlighted in red indicate concentration exceeding SQT Level II

For Metals PEC-Q calculation, half the laboratory reporting limit was used for results flagged with U Mercury was anlayzed by EPA Method SW7471B

Table 8 - Metals Results

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

		Sampl	e Name		BW16TI 0.15-		BW16TR 0.0-0.		BW16TR 0.26-0		BW16TF 0.0-0		BW16T 0.0-		BW16TI 0.0-0		BW16T 0.15-		BW16TF 0.0-0		BW16TR 0.60-0	-	BW16TR 0.0-0		BW16TR 0.0-0	
Chemical	Sa	ample Inte	rval (meter	s)	0.15-	0.50	0.0-0.	15	0.15-0	.50	0.0-0).15	0.0-	0.15	0.0-0).15	0.15-	0.50	0.0-0	.15	0.5-1	.0	0.0-0	.15	0.0-0	.15
	SQT Level	SQT Midpoint	SQT Level 2	Result unit	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Mercury	0.18	0.64	1.1	mg/kg	0.39		0.050		0.38		0.050		0.055		0.068		0.075		0.12		2.2		0.56		0.10	

Notes:

Q - Qualifiers

J - estimated value

NE - not estabilshed

SQT - Sediment Quality Target

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

Level II

Values highlighted in red indicate concentration
exceeding SQT Level II

For Metals PEC-Q calculation, half the laboratory reporting limit was used for results flagged with U Mercury was anlayzed by EPA Method SW7471B

Table 8 - Metals Results

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

		Sampl	e Name		BW16TR 0.0-0.		BW16TR 0.15-0		BW16TF 0.0-0		BW16TF 0.15-0		BW16T 0.0-0		BW16TI 0.0-0		BW16TI 0.15-		BW16T 0.23-		BW16TR 0.26-0	_
Chemical	emical Sample Interval (meters)		rs)	0.0-0.	15	0.5-0.	15	0.0-0	.15	0.15-0	0.50	0.0-	0.15	0.0-0	0.15	0.15-	0.50	0.15-	0.50	0.15-0	0.50	
	SQT Level	SQT Midpoint	SQT Level	Result unit	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Mercury	0.18	0.64	1.1	mg/kg	0.077		0.087		0.088		0.15		0.13		0.12		1.3	J	0.074		0.53	

Notes:

Q - Qualifiers

J - estimated value

NE - not estabilshed

SQT - Sediment Quality Target

U - concentration did not exceed laboratory reporting

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

Level II

Values highlighted in red indicate concentration exceeding SQT Level II

For Metals PEC-Q calculation, half the laboratory reporting limit was used for results flagged with U Mercury was anlayzed by EPA Method SW7471B

Table 9 - Dioxin Results (Sediment)

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

			:	Sample Name	BW16TR-00 0.15		BW16TI 0.15-		BW16TF 0.0-0			ΓR-002- -0.55	BW16TF 0.0-		BW16TF 0.27-0		BW16T 0.0-	R-004- 0.15	BW16T 0.21	R-004- -0.46	BW16TR 0.0-0		BW16TI 0.23-	
Chemical			Sample Inte	erval (meters)	0.0-0.1	15	0.15-	0.50	0.0-0	.15	0.15	-0.50	0.0-0).15	0.15-0	0.50	0.0-	0.15	0.15	-0.50	0.0-0	.15	0.15-	0.50
	SQT Level I	SQT Midpoint	SQT Level II	Result unit	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1,2,3,4,6,7,8-HpCDD	NE	NE	NE	ng/Kg	320		1300	J	81		3900	J	170		90		38		370		150		110	
1,2,3,4,6,7,8-HpCDF	NE	NE	NE	ng/Kg	530		850	J	110		28000	J	240		280		100		110		470		180	
1,2,3,4,7,8,9-HpCDF	NE	NE	NE	ng/Kg	5.4	J	17		1.6	J	200		2.4	J	2.4	J	0.85	J	3.9	J	3.6	J	2.1	J
1,2,3,4,7,8-HxCDD	NE	NE	NE	ng/Kg	2	J	5.3	J	0.55	J	40		0.79	J	0.78	J	0.42	J	1	J	0.87	J	0.63	J
1,2,3,4,7,8-HxCDF	NE	NE	NE	ng/Kg	6.9	J	12		2	J	310		3.6	J	5	J	1.4	J	2.6	J	5	J	2.9	J
1,2,3,6,7,8-HxCDD	NE	NE	NE	ng/Kg	17		58		4.5	J	330		7.6		9.6		2.1	J	13		9.1		6.9	
1,2,3,6,7,8-HxCDF	NE	NE	NE	ng/Kg	16		23	J	3.6	J	1100	J	8.7		8.8		3	J	3.2	J	11		5.7	J
1,2,3,7,8,9-HxCDD	NE	NE	NE	ng/Kg	8		19		1.5	J	170	J	3.2	J	3.9	J	0.9	J	3.3	J	3.7	J	3.2	J
1,2,3,7,8,9-HxCDF	NE	NE	NE	ng/Kg	2	J	3.7	J	0.59	J	96		1.2	J	0.98	J	0.4	J	0.74	J	1.5	J	0.85	J
1,2,3,7,8-PeCDD	NE	NE	NE	ng/Kg	1.8	J	3.1	J	0.52	J	71		0.92	J	1.2	J	0.26	J	0.62	J	0.9	J	0.77	J
1,2,3,7,8-PeCDF	NE	NE	NE	ng/Kg	1.3	J	2.5	J	0.46	J	84		0.74	J	0.81	J	0.26	J	0.54	J	0.86	J	0.67	J
2,3,4,6,7,8-HxCDF	NE	NE	NE	ng/Kg	5.2	J	10		1.2	J	200		2.2	J	2.6	J	0.96	J	1.7	J	2.9	J	1.9	J
2,3,4,7,8-PeCDF	NE	NE	NE	ng/Kg	2.3	J	4.9	J	0.66	J	47		1.1	J	1.4	J	0.54	J	0.85	J	1.6	J	0.95	J
2,3,7,8-TCDD	NE	NE	NE	ng/Kg	1.1	J	6.7	J	0.42	J	19	J	0.47	J	0.68	J	0.19		1.2	J	0.56	J	0.52	J
2,3,7,8-TCDF	NE	NE	NE	ng/Kg	4.2		22	J	1.8		40	J	1.7		2		0.61	J	5.6		2.1		1.8	J
OCDD	NE	NE	NE	ng/Kg	3700		22000	J	1100		47000	J	1300		1300		450		4400		1600		1100	J
OCDF	NE	NE	NE	ng/Kg	300		1200	J	91		15000	J	110		130		39		200		170		76	J
Total HpCDD	NE	NE	NE	ng/Kg	690		2900		180		9000		370		210		82		740		310		230	J
Total HpCDF	NE	NE	NE	ng/Kg	1000		870	J	240		55000	J	480		550		190		350		890		360	J
Total HxCDD	NE	NE	NE	ng/Kg	140		410		34		2600		61		75		21		88		79		62	J
Total HxCDF	NE	NE	NE	ng/Kg	320		240	J	81		14000		170		200		67		96		270		130	
Total PeCDD	NE	NE	NE	ng/Kg	24		53		10		490		14		14		5.9		12		16		15	
Total PeCDF	NE	NE	NE	ng/Kg	38		84		10		880		15		19		6.6		11		22		16	
Total TCDD	NE	NE	NE	ng/Kg	12		31		5.5		160		7.5		9.9		2		7.9		8.4		8.3	
Total TCDF	NE	NE	NE	ng/Kg	17		51		5.4		86		4.6		6		1.6		18		9.8		9.2	J
TEQ KM Fish	0.85	11.2	21.5	ng TEQ/Kg	17.599		40.768		4.2386	J	671.1	J	8.0509	J	9.5693	J	2.7601	J	11.4242		12.3498		6.7474	J

Notes:

Q - Qualifier

J - estimated value

NE - not estabilshed

NA - Not Established

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

ng/kg - nanograms per kilogram

SQT - Sediment Quality Target

TEQ - dioxin toxicity equivalency

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between

SQT Level I and SQT Level II

Values highlighted in red indicate concentration exceeding SQT Level II

TEQ values calculated using the US EPA Advanced Kaplan Meier TEQ Calculator Dioxins analyzed by EPA Method SW8290

Table 9 - Dioxin Results (Sediment)

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

			5	Sample Name	BW16TR- 0.0-0.		BW16TR- 0.15-0		BW16TR 0.0-0.		BW16TF 0.26-0		BW16TR- 0.0-0.		BW16TR 0.0-0.		BW16TR 0.0-0		BW16TF 0.15-0		BW16T		BW16TF 0.60-0		BW16TR 0.0-0	-
Chemical			Sample Inte	erval (meters)	0.0-0.1	15	0.15-0	.50	0.0-0.	15	0.15-	0.50	0.0-0.	15	0.0-0.	.15	0.0-0.	.15	0.15-0	0.50	0.0-0	0.15	0.5-1	1.0	0.0-0	.15
	SQT Level I	SQT Midpoint	SQT Level II	Result unit	Result	Q	Result	О	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1,2,3,4,6,7,8-HpCDD	NE	NE	NE	ng/Kg	130		470		62		130		91		11		71		57		54		2100		1200	
1,2,3,4,6,7,8-HpCDF	NE	NE	NE	ng/Kg	130	J	340		190		210	J	260		8.4		170		120		160		4400		4500	J
1,2,3,4,7,8,9-HpCDF	NE	NE	NE	ng/Kg	2.3	J	6.2	J	1.4	J	2.7	J	2	J	0.19		1.6	J	1.3	J	1.3	J	59		38	
1,2,3,4,7,8-HxCDD	NE	NE	NE	ng/Kg	0.72	J	2.1	J	0.46	J	1.1	J	0.5		0.12		0.37	J	0.36	J	0.56	J	9.6		8.3	
1,2,3,4,7,8-HxCDF	NE	NE	NE	ng/Kg	1.9	J	5.5	J	2.2	J	2.8	J	3.3	J	0.17	J	2.2	J	1.8	J	1.5	J	75		96	
1,2,3,6,7,8-HxCDD	NE	NE	NE	ng/Kg	6.3		23		3.4	J	9.7		75		0.5	J	4.1	J	4.3	J	3.6	J	100		68	
1,2,3,6,7,8-HxCDF	NE	NE	NE	ng/Kg	3.8	J	12		3.1	J	6.3	J	3.3	J	0.24	J	5.7	J	2.8	J	2.9	J	220		200	
1,2,3,7,8,9-HxCDD	NE	NE	NE	ng/Kg	2.7	J	9.1		1.3	J	4.4	J	26		0.2	J	1.8	J	2	J	1.8	J	39		33	
1,2,3,7,8,9-HxCDF	NE	NE	NE	ng/Kg	0.53	J	1.8	J	0.95	J	0.96	J	0.82	J	0.11		0.73	J	0.46	J	0.49	J	17		14	
1,2,3,7,8-PeCDD	NE	NE	NE	ng/Kg	0.55		2.1	J	0.41	J	1.2	J	0.35	J	0.058		0.53	J	0.54	J	0.42	J	15		10	
1,2,3,7,8-PeCDF	NE	NE	NE	ng/Kg	0.44	J	1.4	J	0.36	J	0.69	J	0.44		0.061		0.43	J	0.38	J	0.35	J	20		14	
2,3,4,6,7,8-HxCDF	NE	NE	NE	ng/Kg	1.4	J	4.5	J	1.4	J	2.1	J	2.2	J	0.099		1.6	J	1.2	J	1	J	57		52	
2,3,4,7,8-PeCDF	NE	NE	NE	ng/Kg	0.77	J	2.1	J	0.64	J	0.94	J	0.97	J	0.052	J	0.74	J	0.62	J	0.7	J	19		22	
2,3,7,8-TCDD	NE	NE	NE	ng/Kg	0.47	J	2.2		0.26	J	0.71	J	0.54		0.087	J	0.34	J	0.32	J	0.32	J	8.6		9	
2,3,7,8-TCDF	NE	NE	NE	ng/Kg	2.1		11		0.99	J	2.6		0.74	J	0.37	J	1.2	J	1.1		1.4	J	36		30	
OCDD	NE	NE	NE	ng/Kg	1400	J	5700		610		1500	J	320		170		890		550		610		32000	J	18000	J
OCDF	NE	NE	NE	ng/Kg	100		250		73		110	J	87		8	J	57		49		69		2500		2100	
Total HpCDD	NE	NE	NE	ng/Kg	260		980		130		290		190		30		160		120		120		5300		3000	
Total HpCDF	NE	NE	NE	ng/Kg	280		810		360		410		470		20		330		230		280		9500	J	8700	J
Total HxCDD	NE	NE	NE	ng/Kg	55		200		33		78		520		4.6		46		37		32		1000		700	
Total HxCDF	NE	NE	NE	ng/Kg	87		270		110		140		150		5.5		130		72		73		3200		2600	
Total PeCDD	NE	NE	NE	ng/Kg	8		31		9.6		17		26		0.058		12		11		7.5		130		110	
Total PeCDF	NE	NE	NE	ng/Kg	12		34		9		14		9.4		0.43	J	12		8.8		8.5		270		280	
Total TCDD	NE	NE	NE	ng/Kg	6.5		20		6.4		6		2.2		0.19	J	6.8		6		5.3		54		42	
Total TCDF	NE	NE	NE	ng/Kg	6		34		4.5	J	9.7		2.5		0.79	J	6.9		5.2		7		99		130	
TEQ KM Fish	0.85	11.2	21.5	ng TEQ/Kg	5.3182	J	17.678		4.5554	J	8.4865	J	18.5059		0.407	J	5.1709	J	4.2465	J	4.443	J	143.536		134.253	

Notes:

Q - Qualifier

J - estimated value

NE - not established NA - Not Established

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

ng/kg - nanograms per kilogram SQT - Sediment Quality Target

TEQ - dioxin toxicity equivalency

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between

SQT Level I and SQT Level II

Values highlighted in red indicate concentration exceeding SQT Level II

TEQ values calculated using the US EPA Advanced Kaplan Meier TEQ Calculator Dioxins analyzed by EPA Method SW8290

Table 9 - Dioxin Results (Sediment)

Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

			S	Sample Name	BW16TI 0.0-0		BW16TR 0.0-0		BW16TR 0.15-0		BW16TR 0.0-0		BW16TI 0.15-		BW16TR 0.0-0.		BW16TR- 0.0-0.	
Chemical			Sample Inte	erval (meters)	0.0-0	0.15	0.0-0	.15	0.15-0	0.50	0.0-0	.15	0.15-	0.50	0.0-0.	15	0.0-0.	15
	SQT Level I	SQT Midpoint	SQT Level II	Result unit	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1,2,3,4,6,7,8-HpCDD	NE	NE	NE	ng/Kg	85		40		79		56		610		95		74	
1,2,3,4,6,7,8-HpCDF	NE	NE	NE	ng/Kg	320		97	J	400		130		170		140		230	
1,2,3,4,7,8,9-HpCDF	NE	NE	NE	ng/Kg	2.3	J	1.1	J	3.6	J	1.3	J	6.6		1.8	J	1.6	J
1,2,3,4,7,8-HxCDD	NE	NE	NE	ng/Kg	0.73	J	0.54	J	0.66	J	0.74	J	2.2	J	0.67	J	0.53	J
1,2,3,4,7,8-HxCDF	NE	NE	NE	ng/Kg	4	J	1.4	J	4.3	J	2.1	J	4	J	2.8	J	2.6	J
1,2,3,6,7,8-HxCDD	NE	NE	NE	ng/Kg	6.1		2.8	J	4.3	J	3.8	J	19		5.2	J	5.3	J
1,2,3,6,7,8-HxCDF	NE	NE	NE	ng/Kg	8.9		2.2	J	7.2		3.6	J	6		4.4	J	5.6	
1,2,3,7,8,9-HxCDD	NE	NE	NE	ng/Kg	2.3	J	1.5	J	2	J	1.9	J	4.4	J	2.3	J	2.2	J
1,2,3,7,8,9-HxCDF	NE	NE	NE	ng/Kg	0.86	J	0.46	J	0.95	J	0.81	J	1.4	J	0.88	J	0.62	J
1,2,3,7,8-PeCDD	NE	NE	NE	ng/Kg	0.8	J	0.31	J	0.73	J	0.56	J	2	J	0.65	J	0.62	J
1,2,3,7,8-PeCDF	NE	NE	NE	ng/Kg	0.78	J	0.27	J	0.56	J	0.5	J	1.2	J	0.57	J	0.49	J
2,3,4,6,7,8-HxCDF	NE	NE	NE	ng/Kg	2.8	J	0.85	J	2	J	1.3	J	3.3	J	1.8	J	1.7	J
2,3,4,7,8-PeCDF	NE	NE	NE	ng/Kg	1.2	J	0.55	J	1	J	0.74	J	1.8	J	0.84	J	0.91	J
2,3,7,8-TCDD	NE	NE	NE	ng/Kg	0.31		0.26		0.35	J	0.29		2.4		0.35	J	0.3	J
2,3,7,8-TCDF	NE	NE	NE	ng/Kg	1.4		0.67	J	1.2		0.89	J	13		2.1		1.2	
OCDD	NE	NE	NE	ng/Kg	1100		430	J	900		660		7400	J	1300		910	
OCDF	NE	NE	NE	ng/Kg	160		51	J	160		69		320		100		130	
Total HpCDD	NE	NE	NE	ng/Kg	190		89		180		140		1300		220		160	
Total HpCDF	NE	NE	NE	ng/Kg	600		190		770		250		180		280		440	
Total HxCDD	NE	NE	NE	ng/Kg	55		27		48		40		170		47		44	
Total HxCDF	NE	NE	NE	ng/Kg	190		50		180		75		140		90		140	
Total PeCDD	NE	NE	NE	ng/Kg	9.7		8.4		16		16		23		12		8.7	
Total PeCDF	NE	NE	NE	ng/Kg	16		6.8		13		8.7		20		14		12	
Total TCDD	NE	NE	NE	ng/Kg	6.4		6.1		9.8		8.1		14		5.1		5.6	
Total TCDF	NE	NE	NE	ng/Kg	5.6		4.2		6.8		6		41		9.7		5	
TEQ KM Fish	0.85	11.2	21.5	ng TEQ/Kg	7.895		3.0314	J	8.3836		4.2794	J	13.04	J	5.4032	J	6.1638	

Notes:

Q - Qualifier

J - estimated value

NE - not estabilshed

NA - Not Established

ng TEQ/kg - nanograms of dioxin toxicity equivalency per kilogram

ng/kg - nanograms per kilogram

SQT - Sediment Quality Target

TEQ - dioxin toxicity equivalency

U - concentration did not exceed laboratory reporting limit

Values highlighted in yellow indicate concentration exceeding SQT Level I

Values highlighted in orange indicate concentration exceeding the midpoint between SQT Level I and SQT Level II

Values highlighted in red indicate concentration exceeding SQT Level II

TEQ values calculated using the US EPA Advanced Kaplan Meier TEQ Calculator Dioxins analyzed by EPA Method SW8290

Table 10 - Benthic Macroinvertibrate Tissue Summary - Macrobenthos Thomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

	Sample Informat	ion			An	alytical Re	sults	
Reservoir	Sample ID	Benthic Macroinvertebrate	Weight (g)	Total Mercury (mg/kg)	Results Qualifier	Methyl Mercury (µg/kg)	% Lipids (%)	TEQ Fish
Thomson	EPA16TR-HD-001-MRCS	Macroinvertebrate mixutre*	5.8	0.036	U	2.7	NA	NA
Thomson	EPA16TR-HD-001-C	Crawfish	10.2	0.036	J	34	NA	NA
		Boulder Lake Reservoir (Reference	e Sample)					
Boulder	EPA16BR-HD-001-MRCS	Macrobenthos	23.7	0.032	U	4.3	0.72	0.11 J

Notes:

*combine EPA and BW samples into one sample

U - Not Detected

g - gram

mg/kg - miligram per kilogram

ug/kg - microgram per kilogram

ng TEQ/kg - nanogram per kilogram

NA- Not Applicable

Table 11 - Benthic Macroinvertibrate Tissue Summary - Lumbriculus Thomson Reservoir St. Louis River Area of Concern Carlton, Minnesota

	Sample Information				Ar	nalytical Re	sults	
Reservoir	Sample ID	Benthic Macroinvertebrate	Duration of Test (Days)	Total Mercury (mg/kg)	Results Qualifier	Methyl Mercury (µg/kg)	% Lipids (%)	TEQ Fish ¹
Thomson	BW16TR-008	Lumbriculus	28	0.038	U	0.19	0.74	0.16
Thomson	BW16TR-013	Lumbriculus	28	0.038	U	0.22	0.68	0.24
Thomson	BW16TR-017	Lumbriculus	28	0.033	U	0.23	0.61	0.26
Thomson	BW16TR-018	Lumbriculus	28	0.030	U	0.25	0.62	0.22
	Bo	ulder Lake Reservoir (Ref	erence Samp	le)				
Boulder	BW16BLR-001 ¹²	Lumbriculus	28	0.038	U	0.15	0.63	0.09
		Background Sam	ple					
Background	Background Day 0	Lumbriculus	0	0.038	U	0.088	1.2	0.06

Notes:

U - Not Detected

g - gram

mg/kg - miligram per kilogram

ug/kg - microgram per kilogram

ng TEQ/kg - nanogram per kilogram

NA- Not Applicable

^{*}combine EPA and BW samples into one sample

¹ For TEQ Fish calculations, the TEQ values with non-detect values were set half the detection limit value.

² For TEQ HH calculations, the TEQ values with non-detect values were set to half the detection limit value.

Table 12 - Fish Tissue Summary
Thomson Reservoir
St. Louis River Area of Concern
Carlton, Minnesota

	Sample Information Total Date													Analytical Results							
Reservoir	Sample ID	Fish	Fish Trophic Level*	Date Collected	Time Collected	No of Fish	Total Weight (g)		Date Received by GLEC	Sex	Otolith	Total Mercury	Results Qualifier	Methyl Mercury	% Lipids	TEQ Fish ¹	Results Qualifier	TEQ HH ²	Results Qualifier		
Thomson	MN16+TR-WS-B	White Sucker	2.8	10/11/2016	1225	3	2708		10/27/2016	Yes	Yes	0.086	J	94	2.7	0.30	J	0.35	J		
Thomson	MN16+TR-WS-C	White Sucker	2.8	10/11/2016	1245	3	2321		10/27/2016	Yes	Yes	0.1	J	110	2.2	0.70	J	0.70	J		
Thomson	MN16+TR-WS-A	White Sucker	2.8	10/11/2016	1225	3	3412		10/27/2016	Yes	Yes	0.12	J	110	3.1	0.84	J	1.06	J		
Thomson	MN16+TR-WAL-A	Walleye	4.5	10/11/2016	1500	3	932	MS/MSD	10/27/2016	Yes	Yes	0.17	В	200	0.6	0.29	J	0.32	J		
Thomson	MN16+TR-RB-A	Rock Bass	3.4	10/11/2016	1530	3	250		10/27/2016	Yes	Yes	0.11	J	92	0.48	0.27	J	0.28	J		
Thomson	MN16+TR-RB-B	Rock Bass	3.4	10/11/2016	1530	8	150		10/27/2016	No	No	0.049	JB	83	0.96	0.08	J	0.09	J		
Thomson	MN16+TR-SMB-A	Smallmouth Bass	3.6	10/11/2016	1305	10	394		10/27/2016	No	No	0.078	J	70	0.73	0.19	J	0.19	J		
Thomson	MN16+TR-SMB-B	Smallmouth Bass	3.6	10/11/2016	NL	3	1945		10/27/2016	Yes	Yes	0.17		140	1.3	0.53	J	0.50	J		
Thomson	MN16+TR-SMB-C	Smallmouth Bass	3.6	10/11/2016	NL	3	3038		10/27/2016	Yes	Yes	0.22		220	1.1	0.73	J	0.66	J		
Thomson	MN16+TR-SMB-D ¹	Smallmouth Bass	3.6	10/11/2016	NL	9	358		10/27/2016	No	No	0.1	JB	99	1.3	0.13	J	0.11	J		
Thomson	MN16+TR-NP-A	Northern Pike	4.1	10/11/2016	NL	3	539		10/27/2016	Yes	Yes	0.066	J	78	0.071	0.25	J	0.27	J		
Thomson	MN16+TR+YP-A	Yellow Perch	3.7	10/11/2016	1300	3	859		10/27/2016	Yes	Yes	0.085	J	74	1.8	0.43	J	0.46	J		
Thomson	MN16+TR+YP-B	Yellow Perch	3.7	10/11/2016	1515	4	781		10/27/2016	Yes	Yes	0.053	J	49	1.1	0.72	J	0.77	J		
						Boulder La	ake Reservo	oir (Referen	ce Sample)												
Boulder	MN16+BR+RB-A ¹²	Rock Bass	3.4	10/6/2016	1445	9	208		10/27/2016	No	No	0.077	JB	76	1.2	0.06		0.06			
Boulder	MN16+BR+BLC-A ¹²	Black Clappie	3.8	10/6/2016	1450	6	116		10/27/2016	No	No	0.068	JB	53	1	0.05		0.05			
Boulder	MN16+BR+YP-A	Yellow Perch	3.7	10/6/2016	1230	13	378		10/27/2016	No	No	0.073	JB	56	0.52	0.05	J	0.07	J		
Boulder	MN16+BR+YP-B ¹²	Yellow Perch	3.7	10/6/2016	1245	13	311		10/27/2016	No	No	0.068	JB	54	0.27	0.07		0.06			
Boulder	MN16+BR+YP-C ¹²	Yellow Perch	3.7	10/6/2016	1500	NL	152		10/27/2016	No	No	0.077	JB	65	1.8	0.05		0.04			
Boulder	MN16+BR+GSH-A ¹²	Shiner Mix	2.1	10/6/2016	1505	NL	152		10/27/2016	No	No	0.064	JB	62	1.8	0.06		0.05			
Boulder	MN16+BR+GSH-B	Shiner Mix	2.1	10/6/2016	1510	NL	163		10/27/2016	No	No	0.071	JB	65	0.52	0.49	J	0.50	J		
Boulder	MN16+BR+GSH-C	Shiner Mix	2.1	10/6/2016	1430	12	294		10/27/2016	No	No	0.068	JB	62	2	0.04		0.04			
Boulder	MN16+BR+WAL-A	Walleye	4.5	10/6/2016	1100	5	NL		10/27/2016	Yes	Yes	0.13	JB	140	2	0.16	J	0.18	J		
Boulder	MN16+BR-WAL-B ¹²	Walleye	4.5	10/6/2016	1410	3	424		10/27/2016	Yes	Yes	0.098	JB	120	0.28	0.06		0.05			
Boulder	MN16+BR+WAL-C ¹²	Walleye	4.5	10/6/2016	1415	5	420		10/27/2016	Yes	Yes	0.11	JB	130	0.27	0.05		0.05			
Boulder	MN16+BR+WS-B	White Sucker	2.8	10/6/2016	1335	3	3052		10/27/2016	Yes	Yes	0.071	JB	81	2.5	0.11	J	0.11	J		
Boulder	MN16+BR+WS-C	White Sucker	2.8	10/6/2016	1345	3	4390		10/27/2016	Yes	Yes	0.051	JB	110	3.5	0.06	J	0.06	J		

Notes:

NR-Not Reported

J- The reported result is an estimation

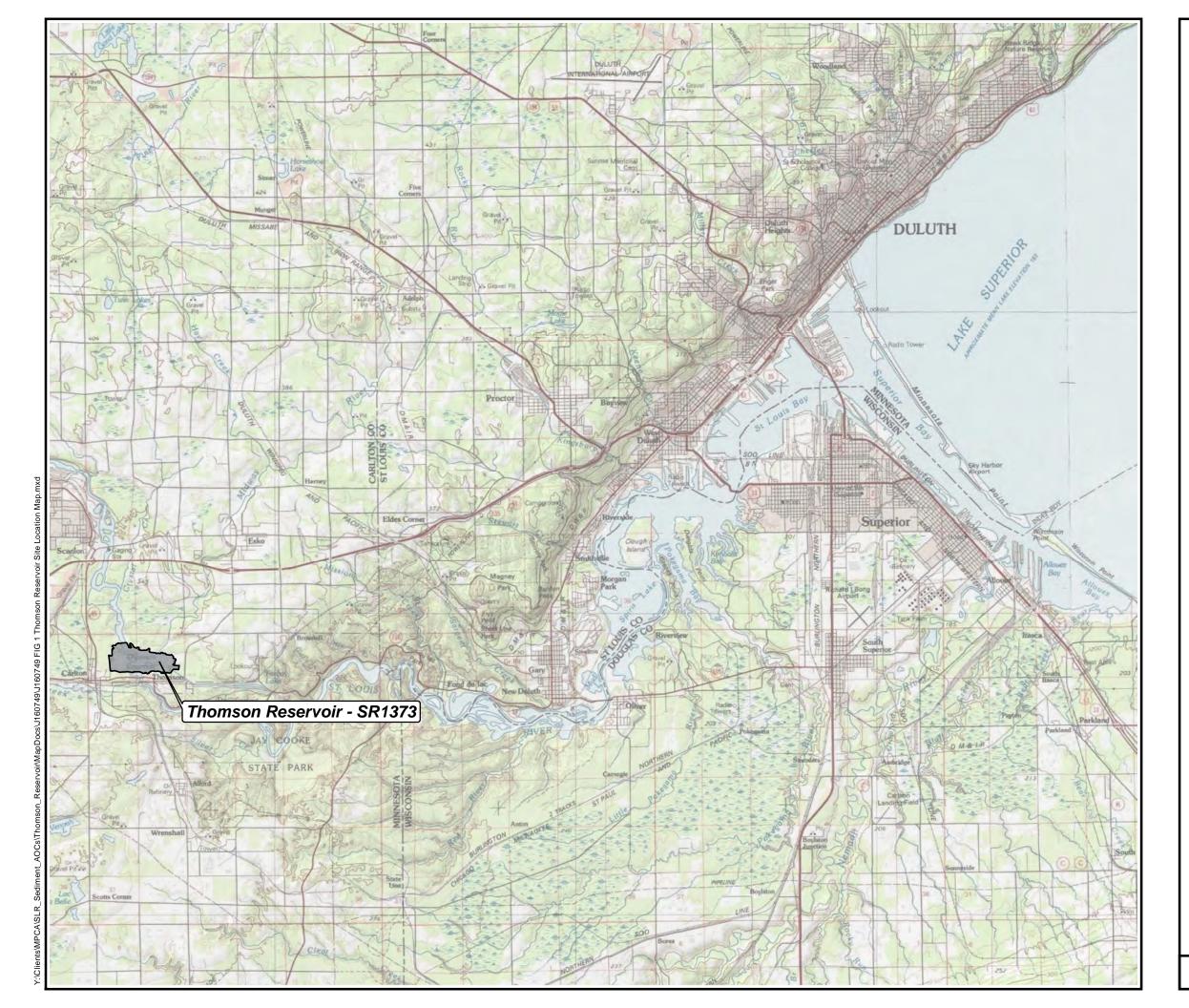
B - The analyte is present in the assocaited method blank at a detectable level

MS/MSD - Matrix spike/Matrix spike duplicate

g - gram

mg/kg - miligram per kilogram

ug/kg - microgram per kilogram


ng TEQ/kg - nanogram per kilogram

*http://fishbase.org/search.php

¹ For TEQ Fish calculations, the TEQ values with non-detect values were set half the detection limit value.

² For TEQ HH calculations, the TEQ values with non-detect values were set to half the detection limit value.

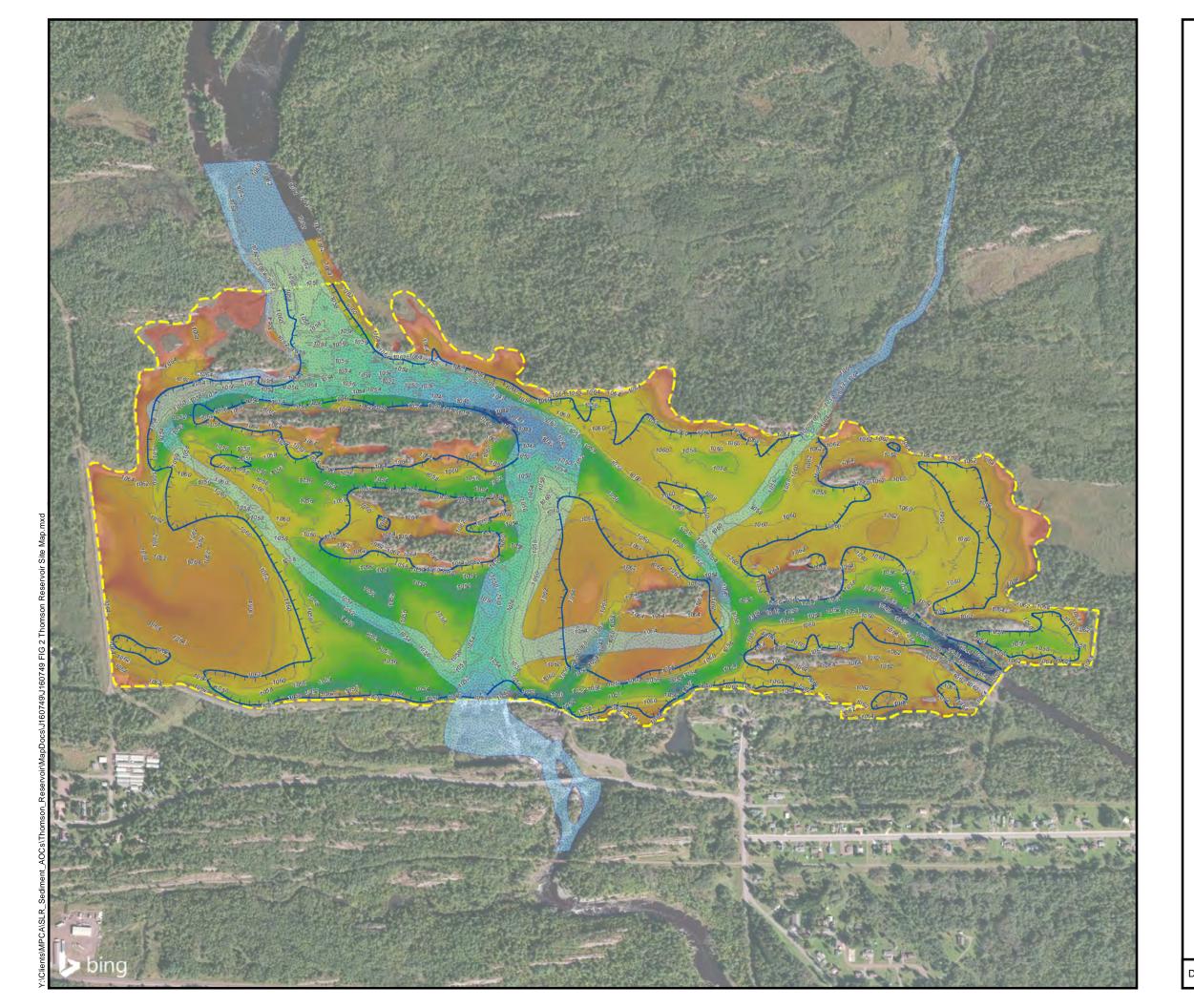
June 2017 BWJ160749

Site Location Map

Scanlon Reservoir SLR Sediment AOCs

Thomson, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: National Geographic Society, i-cubed



Thomson Reservoir Site Location

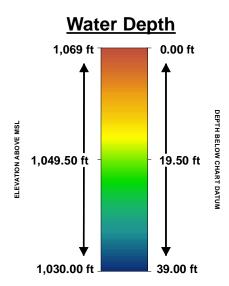
Date Drawn/Revised:3/21/2017 Project No.J160749

Site Map

Thomson Reservoir SLR Sediment AOCs

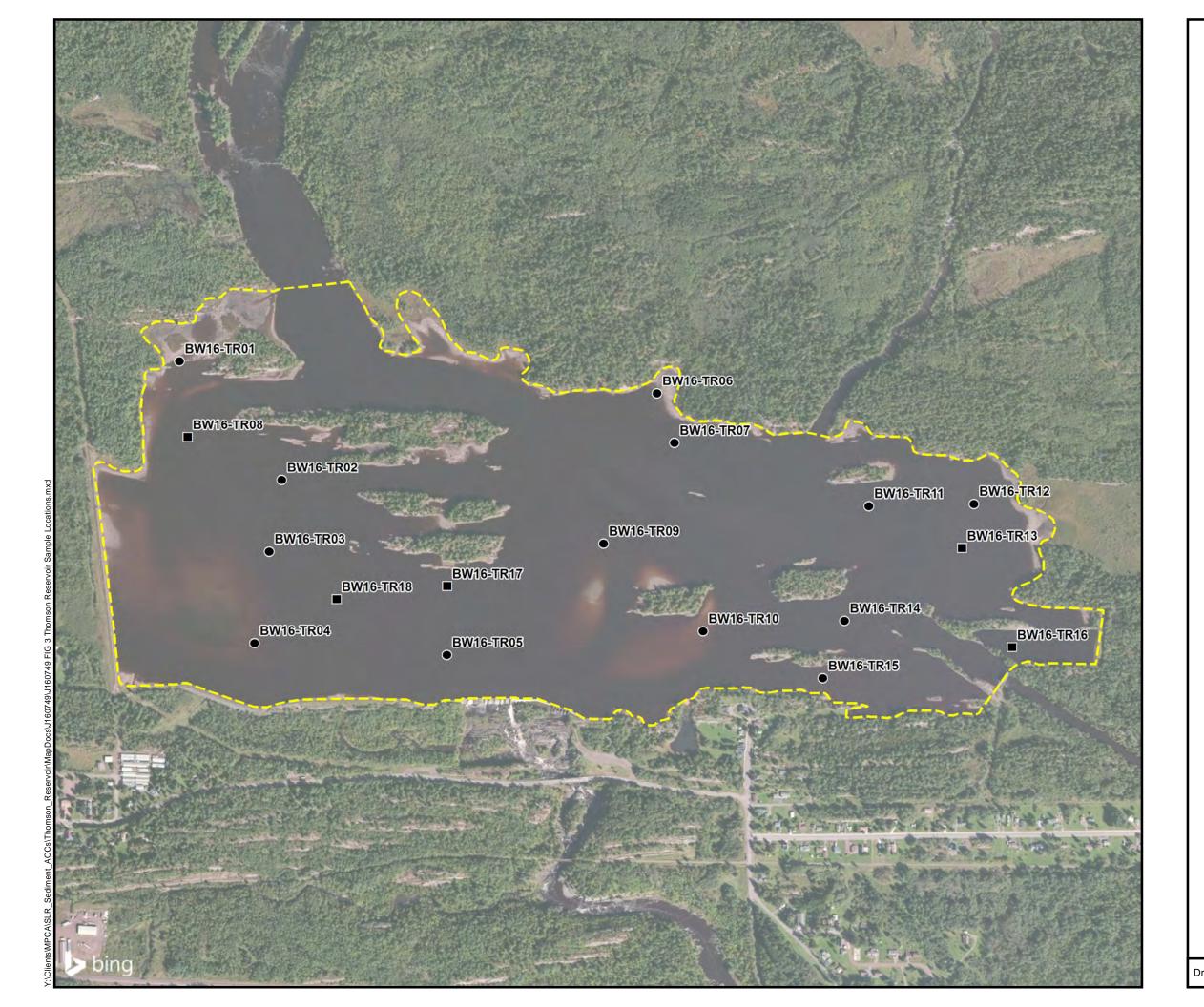
Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)



Low Water Line (1059ft)

Bathymetry Contour Line (2ft Intervals)


Thomson Reservoir Site Boundary and High Water Line (1069ft)

Historical Stream Area (Carlton County Map, 1948)

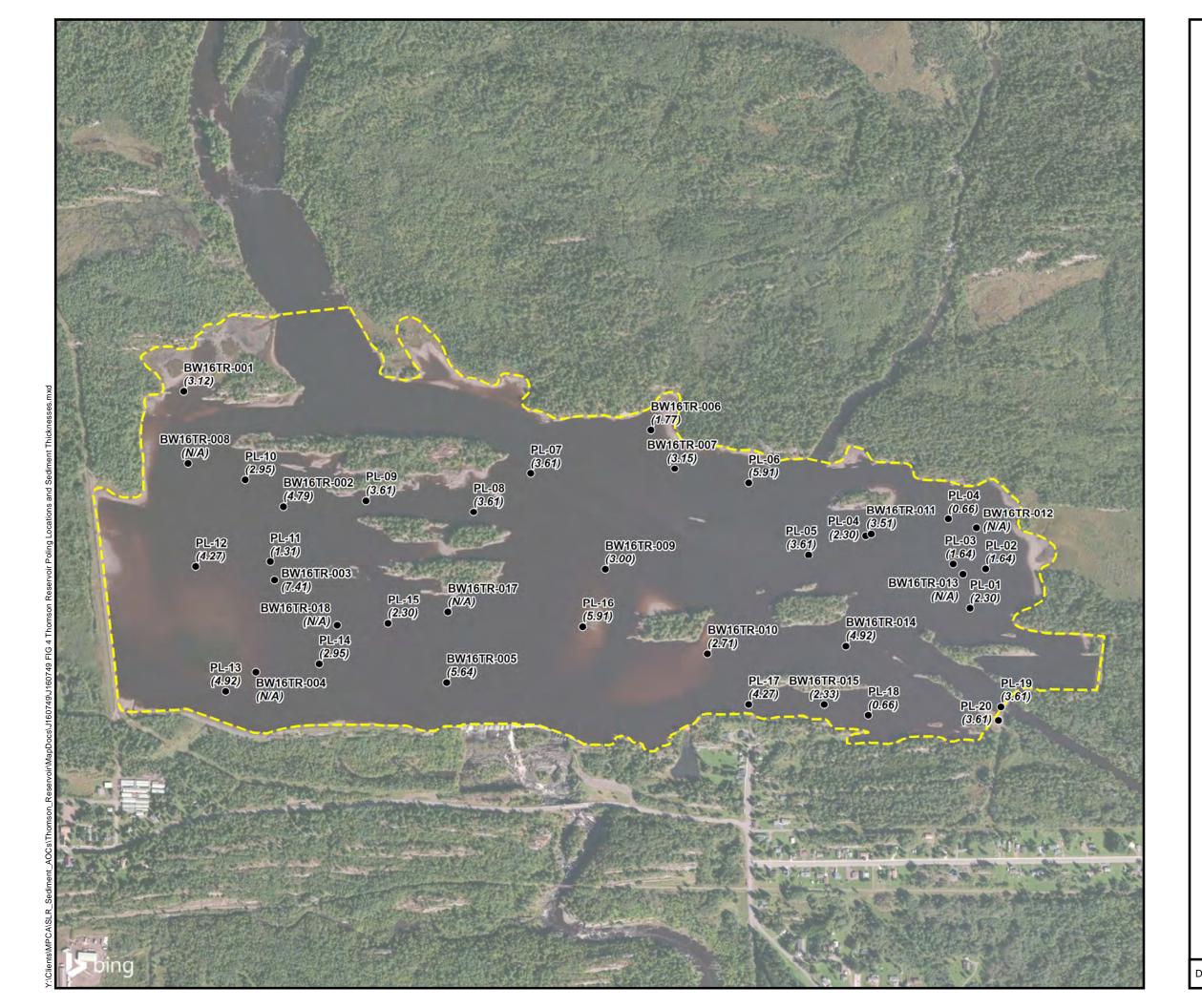

Drawn By: S.G. Date Drawn/Revised:6/15/2017 Project No.J160749

Sample Locations

Thomson Reservoir SLR Sediment AOCs

Thomson, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)


- 2016 Sediment Sample Locations
- 2016 Toxicity/Bioaccumulation Testing and Community Assessment Locations

Thomson Reservoir Site Boundary

Date Drawn/Revised:3/21/2017 Project No.J160749

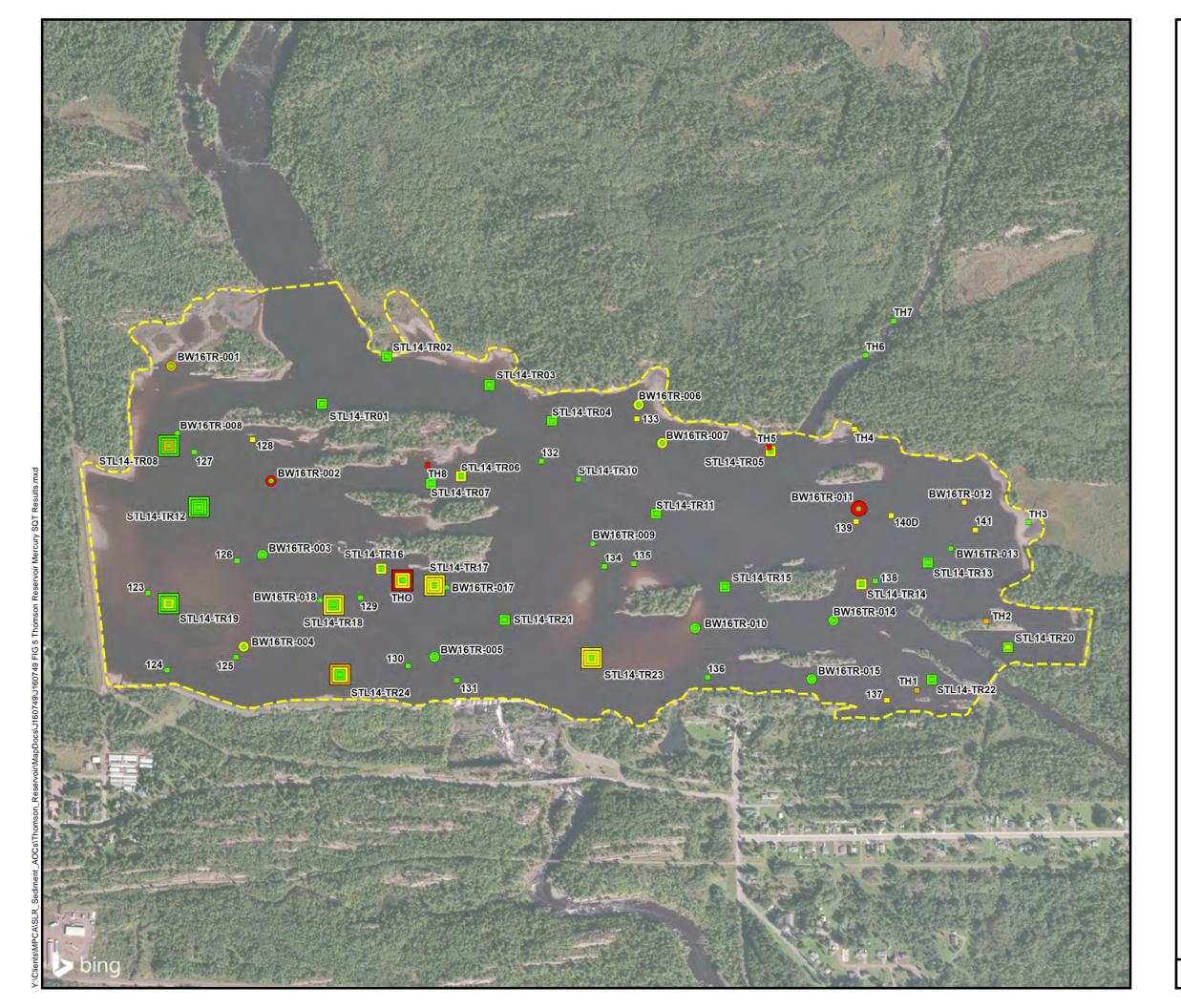
Poling Locations and Sediment Thicknesses

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Poling/Sample Location



Thomson Reservoir Site Boundary

(0.66)Sediment Thickness in Feet

Date Drawn/Revised:6/21/2017 Project No.J160749

Mercury SQT Results

Thomson Reservoir SLR Sediment AOCs

Thomson, MN

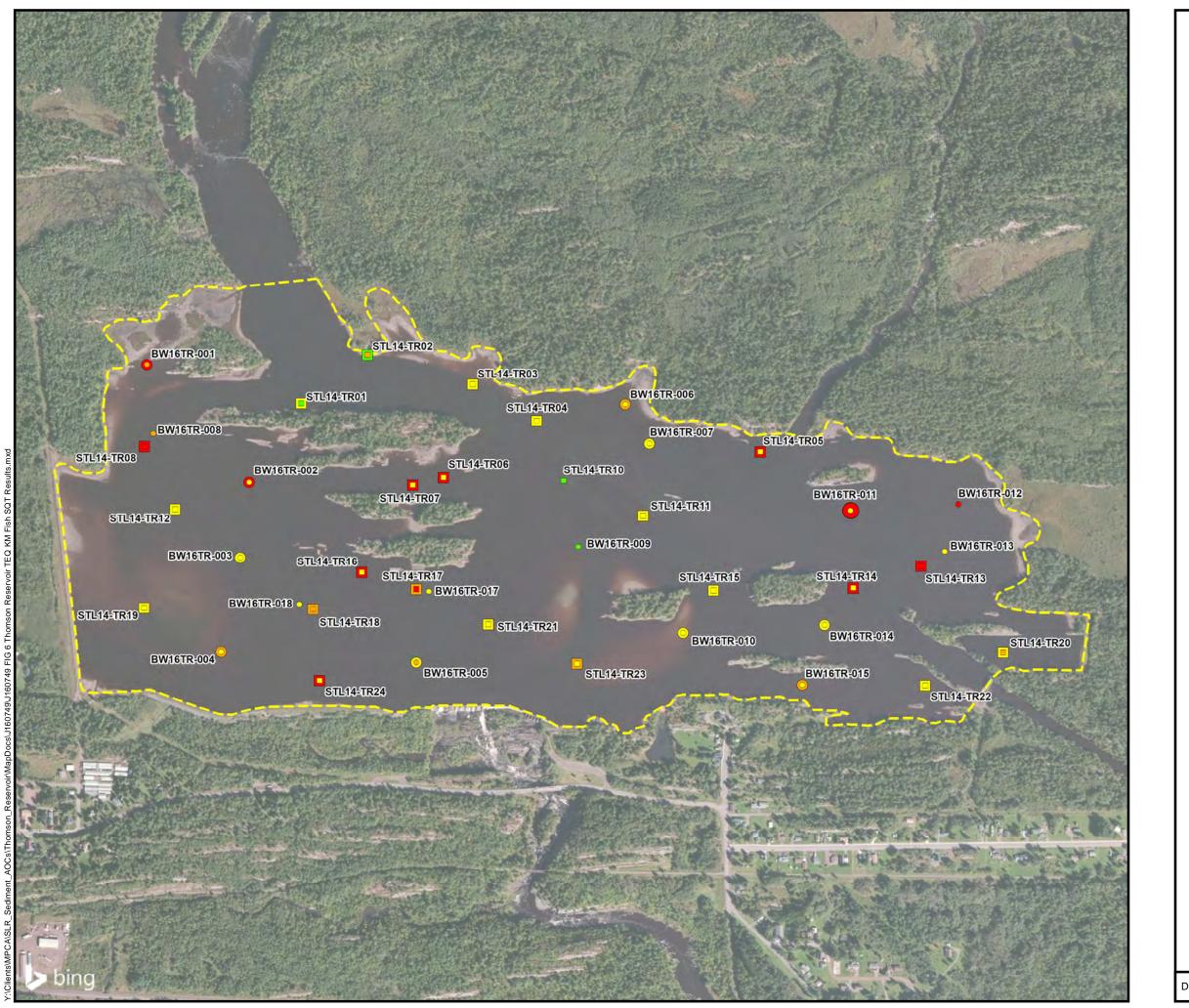
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Thomson Reservoir Site Boundary

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval


- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Mercury SQT Comparison

- Does not exceed Level 1 SQT (0.18 mg/kg)
- Exceeds Level 1 SQT (0.18 mg/kg)
 - Exceeds Midpoint SQT (0.64 mg/kg)
- Exceeds Level 2 SQT (1.1 mg/kg)

Date Drawn/Revised:6/13/2017 Project No.J160749

TEQ KM Fish SQT Results

Thomson Reservoir SLR Sediment AOCs

Duluth, MN

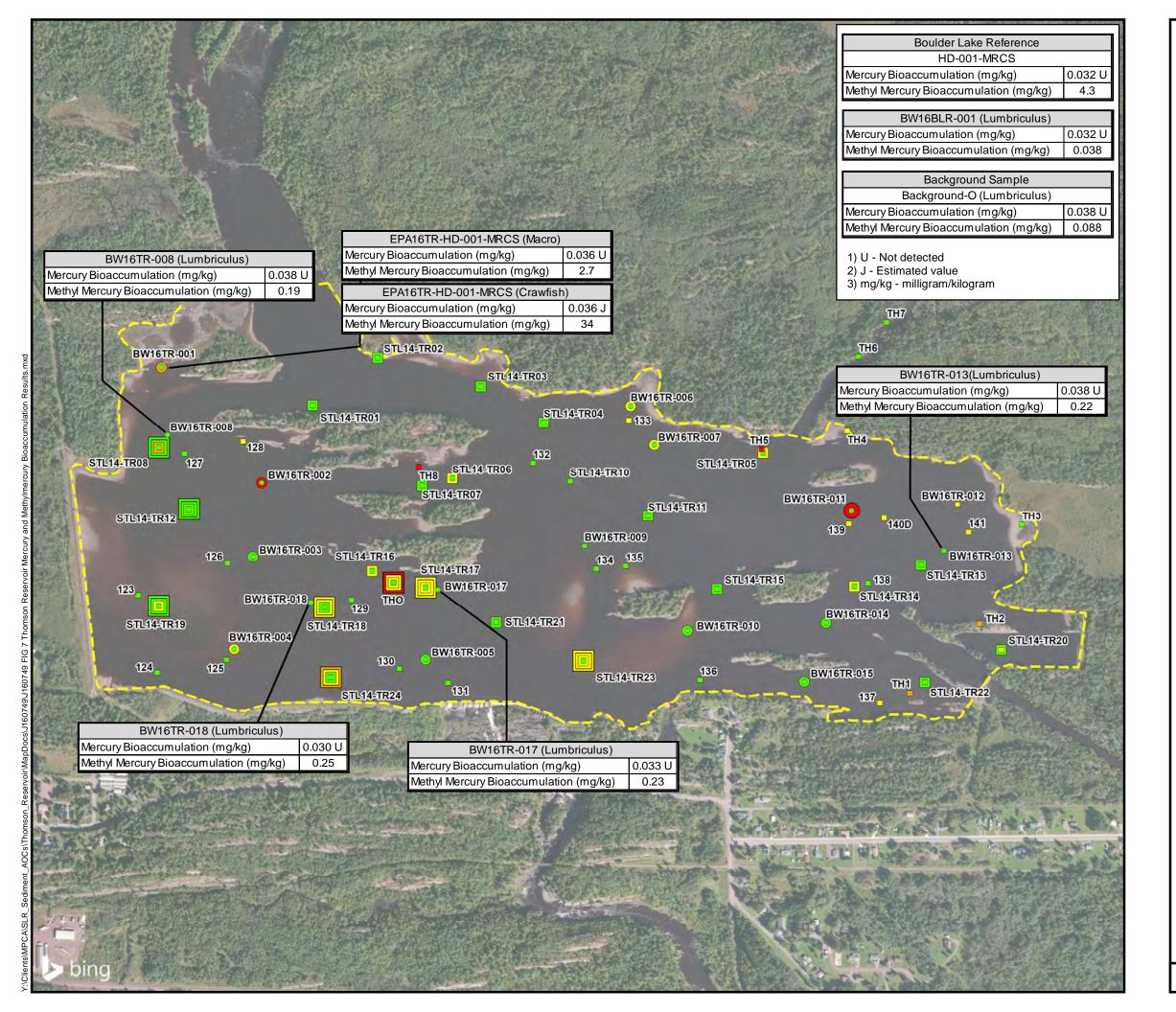
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Thomson Reservoir Site Boundary

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval


- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

TEQ KM Fish SQT Comparison

- Does not exceed Level 1 SQT (0.85 ng TEQ/kg)
- Exceeds Level 1 SQT (0.85 ng TEQ/kg)
 - Exceeds Midpoint SQT (11.2 ng TEQ/kg)
 - Exceeds Level 2 SQT (21.5 ng TEQ/kg)

Date Drawn/Revised:6/13/2017 Project No.J160749

Mercury and Methyl Mercury In Situ and Ex Situ **Bioaccumulation Results**

Thomson Reservoir SLR Sediment AOCs

Thomson, MN

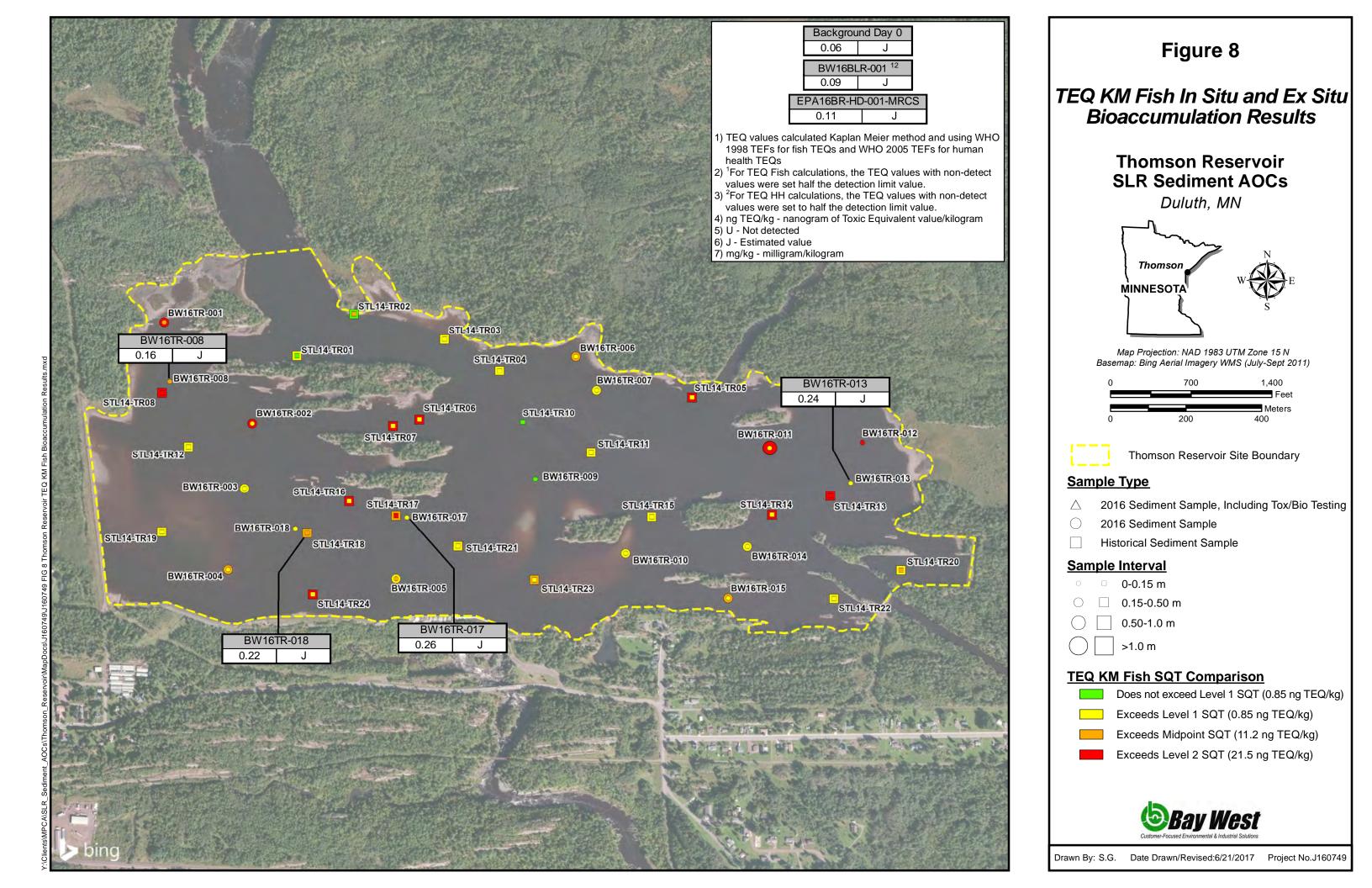
Map Projection: NAD 1983 UTM Zone 15 N Basemap: Bing Aerial Imagery WMS (July-Sept 2011)

Thomson Reservoir Site Boundary

Sample Type

- 2016 Sediment Sample, Including Tox/Bio Testing
- 2016 Sediment Sample
- Historical Sediment Sample

Sample Interval


- 0-0.15 m
- 0.15-0.50 m
- 0.50-1.0 m
- >1.0 m

Mercury SQT Comparison

- Does not exceed Level 1 SQT (0.18 mg/kg)
- Exceeds Level 1 SQT (0.18 mg/kg)
- Exceeds Midpoint SQT (0.64 mg/kg)
- Exceeds Level 2 SQT (1.1 mg/kg)

Date Drawn/Revised:6/21/2017 Project No.J160749

Appendix A Field Notes, Core Logs, and Photos

June 2017 BWJ160749

Sediment Collection & Characterization Core Log

Project/Si	ite In	format	ion													
Project Nam	ne:	SLR			Client:	М	PCA				Contrac	ctor:	Bay	West		
Project #:	J160	139		Site Loca	ition:	Boulde	er La	ke Reservo	oir	Loc	ation IE): B\	W16B	ILR-001	I	
Core & Po	olling	Colle	ctio	n Inform	nation		San	nple Collec	tors:	 :	ACB	SN	ис	JMI	 B	
Date Collected:	Septe	ember 2	0, 20	16 Tin	ne Collec	ted:	12:	16 PM		Above	/Below L	L WD (ft): 			
Water Elevat	ion (ft)	:			Water Do	epth (ft	:):	8.0		Se	diment E	Elevatio	n (ft):			
Poling Col	llectic	n Infor	mat	ion	Equipm	ient:	Ro	ds								
Location ID	Location Water Res				h to Depth t tance Refusa n) (cm)			"Soft" Sediment Thickness (cm)			fusal Ty	pe	Ap	Sedime proach		
PL-01	PL-01 74 90			90 289	315			27 61 0			Sedimen Pody Deb —				/ Clay	
Core Colle		Inform Push tempts	atio	n C Push De	ollection	ı	Pι	Ponar/Gr ush very (ft)	l	% Reco	overy	Re	etaine	d?		
- - - - - - - - - -									0 0 0 0		_ _ _ _					
Core Processing Information					Sample Processors: ACB			СВ ЈМВ СЈМ								
Length of Co	Length of Core (m): 0.15				e Process	sed:	Sep	tember 20,	2016	Time Processed: 12:10 PM						

Sedime	ent C	Charac	terizati	ion L	og	Loc	ation ID:	E	3W16BLR-001		Bay M	lest
Layer 1	:	St	tart Depth	(m): 0.0)	Er	nd Depth (r	m):	0.15]		
Primary C	Color:	Very Dark E	Brown (10YR	2/2)	Seconda	ry Co	olor: Dark B	rowr	n (10YR 3/3)			
USCS:	PT		USDA:	Peat	-		Grains:	Ro	unded	3		
Organics:	W	oody/		%:	75 - 100		Odor:	No	Odor		A	1/2
Rocks:	Nor	ie		%:	N/A		Moisture	: [Saturated	100	* The second	
Petrocher	mical:	None			Cohesiver	ness	Loose	_				
Description Notes:	on/	Very woo	dy, 90%, s	ome sil	t, <5%.							
Layer 2	::	St	tart Depth	(m):		Er	nd Depth (r	n):				
Primary C	Color:	_			Seconda	ry Co	olor: —]		
USCS:	_		USDA:	_			Grains:					
Organics:		_		%:	_		Odor:	_				
Rocks:				%:	_		Moisture	:: [-	_]		
Petrocher	mical:				Cohesiver	ness	: —					
Description Notes:	on/											
Layer 3):	St	tart Depth	(m):		Er	nd Depth (r	n):]		
Primary C	Color:	_			Seconda	ry Co	olor: —					
USCS:	_		USDA:		_		Grains:					
Organics:		-		%:			Odor:					
Rocks:				%:	_		Moisture	:: [-	_]		
Petrocher	mical:				Cohesiver	ness	: <u> </u>					
Description Notes:	on/											

Benthic Macroinvertebrate Worksheet

Project/S	Site	Infor	rmation														
Project Na	ame:	SLR	₹	Proje	ect #:	J	160139		CI	lient:	MP	CA	Cor	ntractor:	Ва	y Wes	st
Site Name	ə:	Bould	ler Lake R	eservoi	ir		Sample	e/Lc	ocation	Name:	: В	W16BLR-	001				
Processo	rs:	Α	.CB	- JN	MB				Da	ate:	Sep	otember 2	0, 2016	Time	e: [1	10:49 <i>F</i>	ΔM
Weather:	Ten	npera	ture (deg	F): 70)		Skies:	Р	artly Clo	oudy		Wind S	peed (mp	oh) & Direc	ction: 5	5-10	
Sample	Coll	ectic	n Infori	matio	n					•••••					•••••		
Method:		P	Ponar														
Number o	of Gra	bs:	3		I	Αŗ	pproxima	ate	Collecti	on Are	ea (c	:m2):	675				
Notes:					Eacl	h g	ırab = 15.	.2 c	m x 15.	2 cm (225	cm2)					
Habitat I			i on y Dark Bro		 DYR 2/2	 2)			Seco	ndary	Colo	r: Dark B	rown (10	 DYR 3/3)			
USCS: P			-	USDA:	· ·					1	rains		Well Rounded				
L Organics:		oody			%:	$\overline{}$	75 - 100	_	$\overline{\ \ }$			r: No Odo					
Rocks:	None	===== e		$\overline{}$	%:	N	J/A	_	\dashv	Mois	sture	: Satura	ted				
Petrochem	ical:	Non	 ne		7	Co	ohesivene	ess:	Loose								
Description	Description/Notes: Natural sheen, woody, 90%, some silt (<5%)																
Notes:																	
Very woo	dy org	Janics	s, 90%, wi	th some	э silt.												

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)
Alderfly	Caddisfly	Black Fly	Bloodworm Midge
Dobsonfly	Crane Fly	Non-Red Midge	Isopod/Sowbug
Stonefly	Crawfish	Scud	Leech
Water Snipe Fly	Damselfly	Snails	Tubifex Worm
	Dragonfly		
	Fingernail Clam		
	Mayfly		
	Riffle Beetle		
	Water Penny		
Total # of Organisms:	Total # of Organisms:	Total # of Organisms:	Total # of Organisms:
Total # of Taxa:	Total # of Taxa:	Total # of Taxa:	Total # of Taxa:
Miscellaneous Benthic Macro	pinvertebrates	Other	Total # of Organisms:
Other		Other	Total # of Taxa:
Notes:		TOTAL # of	<u>:</u> ΓΑΧΑ: 0
15 minute assessment perform	ned no macroinvertebrates four	TOTAL # of ORG	GANISMS: 0

Benthic Macroinvertebrate Sample Collection

Sample Location:	BW16BLR-001	Target Macroinvertebrate Organism: Other (See notes)							
Date: September 2	20, 2016	•							
	Organism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)					
	Large (>/= 20 mm)			0					
	Medium (10-19 mm)			0					
	Small (< 9 mm)			0					
		Total	Total	Average					
		0	0	0					
Sample Proces Start Date/Time: Duration (hours):	sing - Depuration		End Date/Time:						
Laboratory San	nple Analysis								
Sample ID:	Samp	le Date/Time:		Laboratory:	_				
PAHs 17	VOCs Dioxins	PCBs	☐ pH ☐ Mois	ture	Grain Size				
Select Metals	Ar Cd	Cr Cu	☐ Hg ☐ Ni	☐ Pb					
☐ MS/MSD			Othe	r Compound:					
Duplicate	— San	nple ID:		Dup Time:					
Notes:									

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 20, 2016

Sample Location:

BW16BLR-001

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

v.082016

Sediment Collection & Characterization Core Log

Project/Si	ite In	formatio	on								
Project Nam	ne:	SLR			Client:	MF	PCA		Contractor	:	Bay West
Project #:	J160	139	Si	te Locat	ion:	Boulde	r Lake Reservoir	<u> </u>	ocation ID:	BW	/16BLR-002
Core & Po	olling	Collec	tion I	nform	ation		Sample Collecto	ors:	ACB	sc	; Јмв
Date Collected:	Sept	ember 20,	2016	Tim	e Collec	ted:	1:25 PM	Ab	ove/Below LWD) (ft):	
Water Elevati	ion (ft)	:			Water De	epth (ft)	14.2		Sediment Eleva	ation	(ft):
Poling Col	lectio	n Inforn	nation	1	Equipm	ent:	Rods				
Location ID	ID (cm) (cm				Ref	oth to fusal cm)	"Soft" Sediment Thickness (cm)		Refusal Type		Sediment Type Approaching Refusal
PL-01	PL-01 74 90 PL-01 432 549				ollection	ı	27 173 0 Ponar/Grab Push ecovery (ft)		Sediment Sediment ecovery 0 0	Ret	Silty Clay Silt — ained?
Core Processing Information				on		umple D	rococcerc	ACB	0 -	- - - - -	
Length of Core (m): 0.15					Process	· 	September 20, 20		JMB Time Processe	I	2:10 PM

Sedime	nt C	harac	terizati	ion L	.og	Loca	ntion ID:	BW16BLR-00	02	Bay West
Layer 1:	:	St	art Depth	(m): 0.	0	End	d Depth (r	m): 0.15		
Primary C	olor:	Very Dark B	Brown (10YR	2/2)	Seconda	ry Col	or: Black (10YR 2/1)		
USCS:	ЛL		USDA:	Silt Lo	_ am		Grains:	Rounded		
Organics:	W	oody		%:	0 - 5		Odor:	No Odor		
Rocks:	Non	е		%:	N/A		Moisture	: Saturated		
Petrochen	nical:	None			Cohesiver	ness:	Loose			
Descriptio Notes:	n/	Soft claye	ey silt, loos	e.						
Layer 2:	:	St	art Depth	(m):		End	d Depth (r	m):		
Primary C	olor:	_			Seconda	ry Col	or: —			
USCS:	_		USDA:				Grains:	_		
Organics:				%:	_		Odor:	_		
Rocks:	_			%:			Moisture	: —		
Petrochen	nical:				Cohesiver	ness:	_			
Descriptio Notes:	n/									
Layer 3:	 :	St	art Depth	(m):		Enc	d Depth (r	m):		
Primary C	ſ				Seconda	J				
uscs: -	<u> </u> 		USDA:				Grains:	_		
Organics:				%:	_		Odor:	_		
Rocks:				%:		\dashv	Moisture	: —		
Petrochen	nical:			<u>'</u>	Cohesiver	ness:				
Descriptio Notes:	n/									

Photographic Log

Project Name: SLR Project Number: J160139 Photographs taken on: September 20, 2016 Location ID: BW16BLR-002

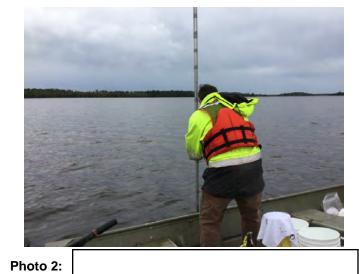


Photo 1:

Photo 4:

Photo 5: Photo 6:

Sediment Collection & Characterization Core Log

Project/Si	ite Inf	ormat	ion										
Project Nam	ne:			Client:	MF	PCA		Contracto	r:	Bay West			
Project #:	J160′	139		Site Locati	on: B	oulde	r Lake Reservoi	r L	ocation ID:	BW	/16BLR-003		
Core & Po	olling	Collec	ction	Informa	ation		Sample Collecte	ors:	ACB	JMI	B SC		
Date Collected:	Septe	ember 2	1, 201	6 Time	e Collecte	ed:	10:17 AM	Ab	ove/Below LW	D (ft):			
Water Elevat	ion (ft):	:		V	Vater Dep	oth (ft)	: 7.5		Sediment Elev	/ation	(ft):		
Poling Col	lectio	n Infor	matio	n	Equipme	nt:	Rods						
Location ID	11410. 1100.014					n to sal n)	"Soft" Sediment Thickness (cm)		Refusal Type		Sediment Type Approaching Refusa		
PL-01					10	1	27		Sediment	_	Silty Clay		
PL-01	239 249				272	2	33		Sediment		Silt Loam		
							0		_		_		
						<u> </u>				-			
							0		_		_		
Core Colle	ection	Inform	ation	Col	llection M	ethod	: Ponar/Gra	b					
		Push	1		I	_	Push		 				
	Att	tempts		Push Dep	th (ft)	Re	ecovery (ft)	% R	ecovery	Ret	ained?		
		_							0	_			
		_							0 -	_			
		_							0				
		_	i					0 –					
	_							0					
Core Prod	cessii	ng Info	rmat	ion	Sam	ple P	rocessors:	ACB	JMB		:JM		
Longth of Co	oro (m)).15	☐ Doto	Processe	· 	September 20, 2		Time Process		10:30 AM		
Length of Co	ગા લ (III)	٠ ١ ـ ١	າ. ເວ	Date	riocesse	u.	September 20, 2	010	Time Process	eu.	10.30 AIVI		

Sedimen	t Charac	terizati	on L	og	Loc	ation ID:	BW16BLR	-003	la Bay W	est
Layer 1:	St	art Depth ((m): 0.0)] En	ıd Depth (ı	m): 0.15		A	
Primary Col	lor: Very Dark E	Brown (10YR :	2/2)	Seconda	ry Co	olor: Black ((10YR 2/1)			
USCS: ML	<u> </u>	USDA:	Silt Loa	m T		Grains:	Rounded			
Organics:	Fibrous		%:	10 - 25		Odor:	No Odor			
Rocks:	None		%:	N/A		Moisture	e: Saturated			1
Petrochemio	cal: None			Cohesiver	ness:	Loose				
Description/ Notes:	/ Silty with	some fine	sand, lo	oose with lo	ong f	ibrous wo	ody material.			
Layer 2:	Si	art Depth ((m):		En	id Depth (i	m):			
Primary Col	lor: —			Seconda	ry Co	olor: —				
USCS: _		USDA:	_	_						
Organics:	_		%:	_		Odor:	_			18
Rocks: -			%:	_		Moisture	e:			
Petrochemio	cal:			Cohesiver	ness:	_				
Description/ Notes:	/									
Layer 3:	Sı	art Depth ((m):		En	ıd Depth (ı	m):			
Primary Col	lor: —			Seconda	ry Co	olor: —				
USCS: _		USDA:		_		Grains:	_			
Organics:	_		%:			Odor:	_			
Rocks:	_		%:	_		Moisture	»:			
Petrochemic	cal:			Cohesiver	ness:	_				
Description/ Notes:	/									

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 21, 2016

Location ID:

BW16BLR-003

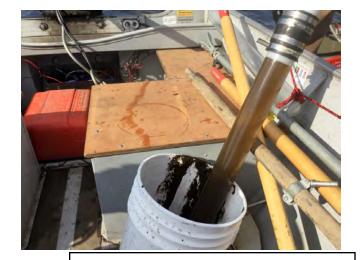


Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Benthic Macroinvertebrate Worksheet

Project/S	Site I	Infor	rmation	I												
Project Na	ame:	₹	Proj	ect #:	J	160139		Client:	MP	CA	Cont	tractor:	Вау	West		
Site Name):	Tho	mson Res	servoir		_	Sample	/Loca	_ ation Name:	: B'	W16TR-008	<u>-</u> 3				_
Processor	rs:	Α	СВ	А	CB		CJM		Date:	Sep	tember 27,	2016	Time	: 11	:09 AM	
Weather:	Tem	npera	ture (deg	F): 62	2		Skies:	Clo	udy		Wind Spe	ed (mph	ı) & Direct	tion: 15	5-20	
Sample (Colle	ectic	n Infor	matio	n								,	•••••		•••
Method:		P	onar													
Number of	f Gral	bs:	3			۸ţ	oproxima	te Co	ollection Are	ea (c	m2):	675				
Notes:					Eacl	h g	rab = 15.	2 cm	x 15.2 cm (225	cm2)					
Habitat I			i on k Brown (3/3)				Secondary	Colo	r: Brown (1	0YR 5/3	3)			
USCS: M	 1L			USDA:	A: Silt Loam				Gı	rains	: Well Rou	Well Rounded				
Drganics:	Wo	oody			%:	2	5 - 50			Odor	No Odor					
Rocks:	None				%:	N	I/A		Mois	sture	: Saturated	d				
Petrochem	nical:	Non	ie]	Cc	ohesivene	ss:	Loose							_
Description	Very woody lots of fibrous plant material.															
Notes:								•••••								
BW16TR- TOC, Diox 5 jars					oisture											

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4			
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)			
1 Alderfly	Caddisfly	Black Fly	3 Bloodworm Midge			
Dobsonfly	Crane Fly	4 Non-Red Midge	Isopod/Sowbug			
Stonefly	Crawfish	Scud	Leech			
Water Snipe Fly	Damselfly	6 Snails	1 Tubifex Worm			
	Dragonfly					
	Fingernail Clam					
	3 Mayfly					
	Riffle Beetle					
	Water Penny					
Total # of 1	Total # of 3 Organisms:	Total # of 10 Organisms:	Total # of 4 Organisms:			
Total # of Taxa: 1	Total # of Taxa: 1	Total # of Taxa: 2	Total # of Taxa: 2			
Miscellaneous Benthic Macro	oinvertebrates	Other	Total # of Organisms:			
Other		Other	Total # of Taxa:			
Notes:		TOTAL # of 1	<u>Γ</u> ΑΧΑ: 6			
15 minute assessment		TOTAL # of ORG				
		TOTAL # 01 ORG	GANISMS: 18			

Benthic Macroinvertebrate Sample Collection

			1							
Sample Location:	BW16	6TR-008	Target Macroinvertebrate Organism: Other (See notes)							
Date: September	27, 2016									
	Orga	anism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)					
	Large	(>/= 20 mm)			0					
	Mediur	m (10-19 mm)			0					
	Sma	ıll (< 9 mm)			0					
			Total	Total	Average					
			0	0	0					
Notes:			l []	l						
Sample Proces	ssing -	Depuration								
Start Date/Time:				End Date/Time:						
Duration (hours):										
Laboratory Sai	nple An	alysis								
Sample ID:		Samp	le Date/Time:		Laboratory	r				
PAHs 17 VOCs Dioxins PCBs pH Moisture TOC Grain Size										
Select Metals	☐ Ar	☐ Cd ☐	Cr Cu	☐ Hg ☐ Ni	Pb					
MS/MSD	_			Othe	r Compound: —					
☐ Duplicate	_	Sar	nple ID:		Dup Time:					
Notes:										

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 27, 2016

Sample Location:

BW16TR-008

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Benthic Macroinvertebrate Worksheet

Project/S	3ite I	nfor	rmatior	1													
Project Na	ıme:	SLR	₹	Pro	oject #	# : [J160139		Cli	ent:	MPC	Α	Con	ntractor:	В	Bay We	st
Site Name	:	Tho	mson Re	= eservo	ir	-	Sampl	e/Lo	cation N	lame:	: BW	/16TR-0	= 13		_		
Processor	s:	A	СВ		JMB		CJM	1	Da	ite:	Septe	ember 27	, 2016	Time	e:	10:44	AM
Weather:	Tem	ıpera	ture (deg	ر F):	59		Skies:	Rí	ainy			Wind S	peed (mp	h) & Direc	ction	: 15-20	
Sample (Colle	∍ctic	n Infor	rmati	on			•••••			,						
Method:		P	onar														
Number of	Number of Grabs: 3 Approximate Collection Area (cm2): 675																
Notes:					E	ach	grab = 15	5.2 CI	m x 15.2	cm (2	225 cı	m2)					
Habitat Information Primary Color: Dark Brown (10YR 3/3) Secondary Color: Very Dark Brown (10YR 2/2)																	
USCS: M	L			USD	A:	Silt I	Loam			Gr	rains:	Well Ro	unded				
Organics:	Fib	rous			%:	ٳ	0 - 5			(Odor:	No Odd	ır				
Rocks:	None	;			% :		N/A			Mois	sture:	Saturat	ed				
Petrochem	ical:	Non	ıe				Cohesiven	iess:	Loose	<u>.</u>							
Description	ı/Note	:S:	Silty loar	m with	very f	fine s	sand, very	few	fibrous	woody	/ debri	is <5%					
Notes:				***************************************	,			••••••									
BW16TR- TOC, Diox 5 jars					noistu	re											

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)
Alderfly	Caddisfly	Black Fly	Bloodworm Midge
Dobsonfly	Crane Fly	Non-Red Midge	Isopod/Sowbug
Stonefly	Crawfish	Scud	Leech
Water Snipe Fly	Damselfly	Snails	Tubifex Worm
	Dragonfly		
	Fingernail Clam		
	Mayfly		
	Riffle Beetle		
	Water Penny		
Total # of Organisms:	Total # of Organisms:	Total # of Organisms:	Total # of Organisms:
Total # of Taxa:	Total # of Taxa:	Total # of Taxa:	Total # of Taxa:
Miscellaneous Benthic Macro	pinvertebrates	Other	Total # of Organisms:
Other		Other	Total # of Taxa:
Notes:		TOTAL # of T	Γ ΑΧΑ : 0
15 minute assessment no ma	croinvertebrates found.	TOTAL # of ORG	ANISMS: 0

Benthic Macroinvertebrate Sample Collection

			7							
Sample Location:	BW1	6TR-013	Target Macroinvertebrate Organism: Other (See notes)							
Date: Septembe	r 27, 2016									
	Org	anism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)					
	Large	(>/= 20 mm)			0					
	Mediu	m (10-19 mm)			0					
	Sma	all (< 9 mm)			0					
			Total	Total	Average					
			0	0	0					
Notes:			1	l						
Sample Proce	essing -	Depuration								
Start Date/Time:				End Date/Time:						
Duration (hours):										
Laboratory Sa	ample An	alysis								
Sample ID:		Samp	ole Date/Time:		Laboratory	/:				
PAHs 17	VOCs	Dioxins	PCBs	☐ pH ☐ Mois	ture	Grain Size				
Select Metals	☐ Ar	☐ Cd	Cr Cu	☐ Hg ☐ Ni	Pb					
MS/MSD				Othe	r Compound: —					
Duplicate		Sar	mple ID:		Dup Time:					
Notes:										

Photographic Log

Project Name:	SLR	Project Number:	J160139	Photographs taken on:	September 30, 2016

Sample Location:

BW16TR-013

Photo 2:

Photo 3:	Photo 4:	

Photo 5: Photo 6:

Benthic Macroinvertebrate Worksheet

Project/Si	te Inf	ormation	1											
Project Nam	ne: S	LR	Pro	ject #:	J	160139	Cli	ent:	MP	CA	Con	tractor:	В	ay West
Site Name:	Т	homson Re	eservoii			Sample/Lo	ocation N	lame:	: B\	W16TR-0	16			
Processors	: [ACB		JMB		CJM	Da	te:	September 27, 2016 Time: 10:26 AM				10:26 AM	
Weather:	Tempe	erature (deg	F): 6	3		Skies:	ainy			Wind S _l	peed (mp	h) & Direc	tion:	15-20
Sample C	ollec	tion Info	matio	on										
Method:		Ponar												
Number of (Grabs:	: 3	<u> </u>		Αŗ	oproximate	Collection	n Are	ea (c	m2):	675			
Notes:				Eac	h g	rab = 15.2 c	m x 15.2	cm (225 d	:m2)				
Habitat Information Primary Color: Dark Brown (10YR 3/3) Secondary Color: Light Brown (10YR 6/3) USCS: CL-ML USDA: Silty Clay Grains: Well Rounded Organics: None %: N/A Odor: No Odor Rocks: None %: N/A Moisture: Saturated														
Petrochemic	al: N	one		<u>,</u>	Co	ohesiveness	Loose							
Description/Notes: Silty clay no plant material, Notes:														
BW16TR-0° TOC, Dioxir 5 jars				oisture										

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4			
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)			
Alderfly	Caddisfly	Black Fly	2 Bloodworm Midge			
Dobsonfly	Crane Fly	Non-Red Midge	Isopod/Sowbug			
Stonefly	Crawfish	Scud	Leech			
Water Snipe Fly	Damselfly	Snails	Tubifex Worm			
	Dragonfly					
	Fingernail Clam					
	Mayfly					
	Riffle Beetle					
	Water Penny					
Total # of Organisms:	Total # of Organisms:	Total # of Organisms:	Total # of Organisms: 2			
Total # of Taxa:	Total # of Taxa:	Total # of Taxa:	Total # of Taxa:			
Miscellaneous Benthic Macro	Dinvertebrates 6	Other Needle worm	Total # of 8 Organisms:			
2 Other Ho	orse tail	Other	Total # of Taxa:			
Notes:		TOTAL # of T	<u>:</u> ΓΑΧΑ: 0			
15 minute assessment		TOTAL # of ORG	GANISMS: 10			

Benthic Macroinvertebrate Sample Collection

			1							
Sample Location:	BW16	6TR-016	Target Macroinvertebrate Organism: Other (See notes)							
Date: September 2	27, 2016									
	Orga	anism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)					
	Large	(>/= 20 mm)			0					
	Mediur	m (10-19 mm)			0					
	Sma	ıll (< 9 mm)			0					
			Total	Total	Average					
			0	0	0					
Notes:				·						
No macroinverteb		Depuration								
Start Date/Time:			E	End Date/Time:						
Duration (hours):										
Laboratory Sar	nple An	alysis								
Sample ID:		Samp	le Date/Time:		Laboratory	r:				
PAHs 17	VOCs	Dioxins	PCBs	☐ pH ☐ Mois	ture TOC	Grain Size				
Select Metals	☐ Ar	☐ Cd ☐	Cr Cu	☐ Hg ☐ Ni	Pb					
MS/MSD	_			Othe	r Compound: —					
☐ Duplicate	_	Sar	nple ID:		Dup Time:					
Notes:										

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

September 27, 2016

Sample Location:

BW16TR-016

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Benthic Macroinvertebrate Worksheet

Project/Si	ite In	formatio	n										
Project Nan	ne:	SLR	Pr	oject #:	J	160139	C	lient:	MPC	;A	Con	tractor:	Bay West
Site Name:	-	Thomson Re	eservo	ir		Sample/L	ocation	Name:	: BV	V16TR-0	17		
Processors	: [ACB		JMB		СЈМ] D:	ate:	Sept	ember 27	7, 2016	Time	e:
Weather:	Temp	erature (deç	g F):	59		Skies: F	Rainy			Wind S _l	peed (mp	h) & Direc	etion: 15-20
Sample C	olle	ction Info	rmati	on					•••••				
Method:		Ponar											
Number of	umber of Grabs: 3 Approximate Collection Area (cm2): 675												
Notes:				Ead	ch g	rab = 15.2 d	cm x 15.	2 cm (225 c	m2)			
Habitat Information Primary Color: Dark Brown (10YR 3/3) Secondary Color: Very Dark Brown (10YR 2/2) USCS: ML USDA: Silt Loam Grains: Well Rounded Organics: Fibrous %: 0 - 5 Odor: No Odor													
Rocks:	lone			%:	N	I/A		Mois	sture:	Saturat	ed		
Petrochemic	al:	None			Co	ohesiveness	: Loos	е					
Description/Notes: Silty loam with very fine sand, very few fibrous woody debris <5%													
Notes:	•••••				•••••								
		0-0.15 @12 ² ain size, Mer		moisture)								

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)
Alderfly	Caddisfly	Black Fly	Bloodworm Midge
Dobsonfly	Crane Fly	Non-Red Midge	Isopod/Sowbug
Stonefly	Crawfish	Scud	Leech
Water Snipe Fly	Damselfly	Snails	Tubifex Worm
	Dragonfly		
	Fingernail Clam		
	Mayfly		
	Riffle Beetle		
	Water Penny		
Total # of Organisms:	Total # of Organisms:	Total # of Organisms:	Total # of Organisms:
Total # of Taxa:	Total # of Taxa:	Total # of Taxa:	Total # of Taxa:
Miscellaneous Benthic Macro	pinvertebrates	Other	Total # of Organisms:
Other		Other	Total # of Taxa:
Notes:		TOTAL # of ⁻	ΓΑΧΑ: 0
15 minute assessment, no ma	croinvertebrates found.	TOTAL # of ORG	GANISMS: 0

Benthic Macroinvertebrate Sample Collection

Sample Location:	BW16TR-017	Target Macro	oinvertebrate Organis	m: Other (See not	Other (See notes)			
Date: September 2	27, 2016							
	Organism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)				
	Large (>/= 20 mm)			0				
	Medium (10-19 mm)			0				
	Small (< 9 mm)			0				
		Total	Total	Average				
		0	0	0				
Sample Proces Start Date/Time: Duration (hours):	sing - Depuration	E	End Date/Time:					
Laboratory San	nple Analysis							
Sample ID:	Samp	le Date/Time:		Laboratory:	_			
PAHs 17	VOCs Dioxins	PCBs	☐ pH ☐ Mois	ture	Grain Size			
Select Metals	Ar Cd	Cr Cu	☐ Hg ☐ Ni	Pb				
☐ MS/MSD	_		Othe	r Compound: —				
Duplicate	— San	nple ID:		Dup Time:				
Notes:								

Photograpl	hic	Log				Bay West
Project Name:	SLF	₹	Project Number:	J160139	Photographs taken on:	September 30, 2016
Sample Location	n:	BW16TR-017	,			
Photo 1:	1			Photo	2:	
Photo 3:				Photo	o 4:	

Photo 5: Photo 6:

Benthic Macroinvertebrate Worksheet

Project/S	Site	Infor	rmation	ſ												
Project Na	ame:	SLR	₹	Proje	ect #:	J	160139		Client:	MPC	CA	Conf	tractor:	Ва	y West	
Site Name) :	Tho	mson Re	servoir			Sample	/Loc	_ ation Name:	: B\	W16TR-01	8				
Processo	rs:	A	СВ	Jľ	MB		CJM		Date:	Sep	tember 27,	, 2016	Time	»: [12:11 PM	
Weather:	Ten	npera	ture (deg	F): 59			Skies:	Rai	ny		Wind Spe	eed (mph	n) & Direct	tion:	15-20	
Sample	Sample Collection Information															
Method:																
Number o	umber of Grabs: 3 Approximate Collection Area (cm2): 675															
Notes:																
Habitat I			i on k Brown (3/3)				Secondary (Color	·: Very Dar	rk Browr	n (10YR :	2/2)		
USCS: M	ΛL			USDA:	Sil	t Lo	oam		Gı	rains:	Well Rou	Well Rounded				
Drganics:	Fib	orous			%:	5	i - 10			Odor	: No Odor					
Rocks:	None				%:	N	I/A		Mois	sture:	Saturate	:d				
Petrochem	nical:	Non	ie			Cc	ohesivenes	ss:	Loose							
Description	n/Note	∋ s:	Silty Ioan	າ with v	ery fine	sa	and, very fo	ew fil	brous woody	/ deb	ris <5%					
Notes:														•••••		
BW16TR- TOC, Dio: 5 jars					oisture											

Benthic Macroinvertebrate Community Assessment

Each grab = 15.2 cm x 15.2 cm (225 cm2)

Group 1	Group 2	Group 3	Group 4			
(Sensitive)	(Semi-Sensitive)	(Semi-Tolerant)	(Tolerant)			
Alderfly	Caddisfly	Black Fly	Bloodworm Midge			
Dobsonfly	Crane Fly	Non-Red Midge	Isopod/Sowbug			
Stonefly	Crawfish	Scud	Leech			
Water Snipe Fly	Damselfly	Snails	Tubifex Worm			
	Dragonfly					
	Fingernail Clam					
	Mayfly					
	Riffle Beetle					
	Water Penny					
Total # of Organisms:	Total # of Organisms:	Total # of Organisms:	Total # of Organisms:			
Total # of Taxa:	Total # of Taxa:	Total # of Taxa:	Total # of Taxa:			
Miscellaneous Benthic Macro	pinvertebrates	Other	Total # of Organisms:			
Other		Other	Total # of Taxa:			
Notes:		TOTAL # of ⁻	ΓΑΧΑ: 0			
15 minute assessment, no ma	croinvertebrates found.	TOTAL # of ORG	GANISMS: 0			

Benthic Macroinvertebrate Sample Collection

Samp	le Location:	BW1	6TR-018	Target Macr	oinvertebrate Organis	m: Other (See no	otes)
Date:	September 2	7, 2016		-			
		Orga	anism Size	Quantity	Wet Weight (g)	Individual Wet Weight (g)	
		Large	(>/= 20 mm)			0	
		Mediur	m (10-19 mm)			0	
		Sma	all (< 9 mm)			0	
				Total	Total 0	Average 0	
Notes	:			[]			
	ple Proces	sing -	Depuration				
Start	Date/Time:				End Date/Time:		
Durati	on (hours):						
Labo	ratory Sam	nple An	alysis				
Samp	le ID:		Samp	le Date/Time:		Laboratory:	_
☐ PA	AHs 17	VOCs	Dioxins	PCBs	pH Moist	ture TOC	Grain Size
☐ Se	elect Metals	☐ Ar	Cd C	Cr Cu	☐ Hg ☐ Ni	Pb	
□ м	S/MSD -				Othe	r Compound:	
☐ Di	uplicate -	_	Sar	nple ID:		Dup Time:	
Notes							

Photographic Log

Project Name:	SLR	Project Number:	J160139	Photographs taken on:	September 30, 2016
-		-			

Sample Location:

BW16TR-018

Photo 2:

Photo 3:		Photo 4:	
----------	--	----------	--

Photo 5: Photo 6:

Project/S	ite In	format	ion														
Project Nam	ne:	SLR			Client	:	MP	CA			Co	ontract	or:	Bay V	Vest		
Project #:	J160	139		Site Loca	ition:	The	omso	on Reservo	oir	ı	_ocati	on ID:	BV	V16TR	R-001		
Core & Po	olling	Colle	ctio	n Inform	nation			Sample Co	ollecto	ors:	AC		CJ	м		 	
Date Collected:	Septe	ember 2	7, 20	16 Tin	ne Colle	cted	:	1:31 PM		Ab	L ove/Be	elow LV	VD (ft)	_ :			
Water Elevat	ion (ft)	:			Water Depth (ft): 6.0						Sediment Elevation (ft):						
Poling Col	llectic	n Infor	mat	ion	Equipr	nent	:	Rods									
Location ID	w	pth of /ater cm)		Depth to esistance (cm)	Re	pth fusi cm)	al	"Soft Sedimo Thickno (cm)	ent ess		Refus	al Type	9		Sedime roachi		
PL-01		74 182		90 277		<u>101</u> 277		95 0			Sed -	liment — —			Silty - -	<i>Clay</i> - -	
Core Colle		Inform Push tempts	1	n C Push De	ollection	ı		Chec	k Valv		Recove	ry		l tained	?		
		1		2			1.2	5			62.5 0 0 0		Yes				
Core Prod	cessi	ng Info	orma	ation	S	amp	le Pr	ocessors:		ACB		ЈМВ		СЈМ			
Length of Co	ore (m); (0.35	Date	e Proces	sed	. Г	October	5, 2010	6	Time	Proces	sed:	2:2	1 PM]	

Sedime	ent (Charac	terizati	ion L	og Lo	cation ID:	BW16TR-00	1	Bay West
Layer 1	:	St	art Depth	(m): 0.0) E	End Depth (i	m): 0.05		
Primary (Color:	Dark Brown	(10YR 3/3)		Secondary 0	Color: Brown	(10YR 5/3)	6	
USCS:	ML		USDA:	Silt Loa	m	Grains:	Well Rounded	13	
Organics:	N	one		%:	N/A	Odor:	No Odor		
Rocks:	Nor	ne		%:	N/A	Moisture	e: Saturated		
Petroche	mical:	None			Cohesivenes	s: Loose			
Description Notes:	on/	Silty loam	ı, loose						10" 2" 3dmi
Layer 2	: ::	St	art Depth	(m): 0.0)5 E	End Depth (m): 0.10		
Primary 0	Color:	Dark Brown	(10YR 3/3)		Secondary (Color: Brown	(10YR 5/3)		
USCS:	PT		USDA:	Peat		Grains:	Well Rounded		
Organics:	V	loody		%:	75 - 100	Odor:	No Odor		4 3 100
Rocks:	Nor	ne		%:	N/A	Moisture	e: Saturated		
Petroche	mical:	None			Cohesivenes	s: Loose		10	20 - 20
Description Notes:	on/	Woody la	yer						
Layer 3):	St	art Depth	(m): 0.1	0 E	End Depth (m): 0.35		
Primary C	Color:	Dark Brown	(10YR 3/3)		Secondary (Color: Brown	(10YR 5/3)	F- 0	
USCS:	CL-M	L	USDA:	Clay Lo	am	Grains:	Well Rounded	Sec.	1
Organics:	N	one		%:	N/A	Odor:	No Odor	The state of the s	
Rocks:	Nor	ne		%:	N/A	Moisture	e: Moist		3 On Mandaudin M
Petroche	mical:	None			Cohesivenes	s: Stiff			**************************************
Description Notes:	on/		semi-firm fine woody	/ materia	al @ 0.33m				

Project/Si	ite Inf	ormat	ion								
Project Nam	ne:	SLR			Client:	М	PCA		Contracto	r:	Bay West
Project #:	J1601	139		Site Loc	ation:	Thom	son Reservoir		ocation ID:	BW	/16TR-002
Core & Po	olling	Colle	ctio	n Inforn	nation		Sample Collector	rs:	ACB	CJI	м П
Date Collected:	Septe	ember 2	7, 20	16 Ti	me Collect	ted:	1:49 PM	Abo	ve/Below LW	D (ft):	
Water Elevati	ion (ft):				Water De	epth (f	10.2	Sediment Elev	vation	n (ft):	
Poling Col	lectio	n Infor	mat	ion	Equipmo	ent:	Rods				
Location ID	w	oth of ater cm)		Depth to esistance (cm)	Ref	th to usal m)	"Soft" Sediment Thickness (cm)	I	Refusal Type		Sediment Type Approaching Refusal
PL-01		74		90	1 _ 1	01	27		Sediment	[Silty Clay
PL-01	311 429		429]	57	146		Sediment		Silt Loam	
							0		_	\exists	_
										_	
							0		_		_
Core Colle	ection	Inform	atio	n C	Collection I	Metho	d: Check Valve				
		Push tempts		Push De	epth (ft)	R	Push ecovery (ft)	% Re	ecovery	Ret	tained?
		1	1	3		1.	9	6	3.33	No	
		2		2.5		1.	9		76	Yes	
		2							0		
] 						──┤│ ├		<u></u>
									0		
		_							0	_	
Core Prod	cessii	ng Info	orma	ation	Saı	mple F	Processors: A	СВ	СЈМ	J	MB
Length of Co	ore (m)	: (0.55	Dat	e Process	ed:	October 5, 2016		Time Process	ed:	3:00 PM

Sedime	ent	CI	narac	terizati	ion L	og	Loc	ation ID:	I	3W16TR-002			Bay I	Vest
Layer 1	1:		St	art Depth ((m): 0.0)	En	ıd Depth (r	n):	0.13	3			
Primary (Colo	r: D	ark Brown	(10YR 3/3)		Secondar	ry Co	olor: Brown	(10	/R 5/3)				
USCS:	ML			USDA:	Silt Loa	m		Grains:	We	ell Rounded	8			300
Organics:		Nor	ne		%:	N/A		Odor:	No	Odor	97			68
Rocks:	N	one			%:	N/A		Moisture	: [Saturated				
Petroche	emic	al:	None			Cohesiver	ness:	Loose			3/	TANK THE		
Descripti Notes:	ion/		ilt loam hin wood	dy layers (@ 0.05 ı	m and 0.01	m <1	cm thick)_	(D	
Layer 2	2:		St	art Depth	(m): 0.	13	En	nd Depth (r	n):	0.25		vet.		
Primary	Colo	r: D	ark Brown	(10YR 3/3)		Secondar	ry Co	olor: Brown	(10	(R 5/3)		TO THE	STATE OF	Des la
USCS:	CL-	ML		USDA:	Silty Cl	ay		Grains:	We	ell Rounded				
Organics:		Nor	ne		%:	N/A		Odor:	No	Odor				
Rocks:	Ν	one			%:	N/A		Moisture	: [Moist	╛			
Petroche	emic	al:	None			Cohesiver	ness:	Medium	De	ensity	_			
Descripti Notes:	ion/	S	ilty clay											
Layer 3	3:		St	art Depth	(m): 0.2	25	En	nd Depth (r	n):	0.28				
Primary (Colo	r: D	ark Brown	(10YR 3/3)		Secondar	ry Co	olor: Brown	(10	(R 5/3)				1
USCS:	SM			USDA:	Sandy	Loam		Grains:	We	ell Rounded	117411111111111111111111111111111111111	**2 000		
Organics:		Wo	ody		%:	50 - 75		Odor:	No	Odor			30	-Andreader A
Rocks:	N	one			%:	N/A		Moisture	: [Moist		7747W		
Petroche	emic	al:	None			Cohesiver	ness:	Loose						
Descripti Notes:	ion/	N	ledium g	grained Sa	ndy loa	m with Woo	ody la	ayer mediu	ım t	o small pieces				

Sediment Ch	aracterizat	ion Lo	og	Loca	ation ID:	В	W16TR-002	Ы В	ay West
Layer 4:	Start Depth	(m): 0.2	8	En	d Depth (n	n):	0.55	and all the same of the same o	
Primary Color: Da	rk Brown (10YR 3/3)		Secondar	ry Co	lor: Brown	(10Y	R 5/3)	on 30	ow own
USCS: CL-ML	USDA:	Silty Cla	ny		Grains:	We	ll Rounded		
Organics: Fibro	ous	%:	0 - 5		Odor:	No	Odor		
Rocks: None		%:	N/A		Moisture	: N	loist		
Petrochemical:	None		Cohesiver	ness:	Stiff			30.4	
Description/ Notes:	e sand layer <1cr	m thick (҈0.31m, <	5% fi	orous mate	erial			
Layer 5:	Start Depth	(m):		En	d Depth (n	n):			
Primary Color: -			Secondar	ry Co	lor: —				
USCS:	USDA:	_			Grains:	_			
Organics:		%:	_		Odor:	_			
Rocks: —		%:	_		Moisture	: [_			
Petrochemical:	_		Cohesiver	ness:	_				
Description/ Notes:									
Layer 6:	Start Depth	(m):	1	En	d Depth (n	n):			
Primary Color:			Secondar	ry Co	lor:				
USCS:	USDA:	<u></u>			Grains:	_			
Organics: —		% :	_		Odor:	_			
Rocks: —		% :	_		Moisture	: -	-		
Petrochemical:	_		Cohesiver	ness:	_				
Description/ Notes:									

Project/Si	ite Inf	ormati	on												
Project Nam	ne:	SLR			Client:	M	IPC/	A		C	ontractor	:	Bay W	/est	
Project #:	J1601	39	,	Site Loca	tion:	Thom	son	Reservoir		Location	on ID:	BW	16TR	-003	
Core & Po	olling	Collec	tion	Inform	ation		 Sa	mple Colle	ctors	s: AC		CJN	л []
Date Collected:	Septe	mber 27	', 201	6 Tim	ne Collec	cted:	2	:15 PM		Above/Be	elow LWE) (ft):			<u></u>
Water Elevati	ion (ft):				Water D	epth (f	t):	7.1		Sedim	ent Elev	ation	(ft):		
Poling Col	lectio	n Inforr	matic	on	Equipm	nent:	R	ods							
Location ID	w	oth of ater cm)	Res	epth to sistance (cm)	Re	oth to fusal cm)		"Soft" Sediment Thickness (cm)		Refus	al Type			Sediment roaching	Type g Refusal
PL-01						101		27	,	Sea	liment	$\neg \mid$		Silty C	lay
PL				442		142		226	$\rfloor $	Sed	iment	┚╽		Silt Loa	ım
								0	7		_	$\exists $		_	
									-			-			
								0]						
Core Colle	ction	Informa	ation	ı Co	ollection	Metho	d:	Check V	alve						
		Push empts	1	Buch Do	nth (ft)			Push overy (ft)		9/ Pacaya		Pot	ained'	2	
	T	<u> </u>	+	Push De	pin (ii)	╁┌			 	% Recove	-		ameu	<u>'</u>	
		1		1		1.				47.5	╡╽╞	es_		_	
		2				1.	.4			46.67	_ [es		_	
										0		_			
										0		_			
		_								0		_			
Core Prod	cessii	ng Info	rma	tion	Sa	ample I	Proc	essors:	AC	СВ	СЈМ	JI	МВ		
Length of Co	ore (m)	: 0	.52	Date	Proces	sed:		October 5, 2	016	Time	Processe	ed:	3:28	8 PM	

Sedime	nt C	harac	terizati	on Lo	og L	_oc	ation ID:	BW16TR	2-003		Bay We	st
Layer 1:	:	Sta	art Depth ((m): 0.0		Er	nd Depth (r	n): 0.23			P	
Primary C	olor:	Dark Brown	(10YR 3/3)		Secondary	/ Cc	olor: Brown	(10YR 5/3)			1	1
USCS:	<u> </u>		USDA:	Silt Loai	m		Grains:	Well Round	ded			1
Organics:	Wo	oody		%:	25 - 50		Odor:	No Odor				
Rocks:	None)		%:	N/A		Moisture	: Moist				
Petrochen	nical:	None			Cohesivene	ess:	Stiff					
Descriptio Notes:	'11/	-	with 30% yer (2cm tl									7
Layer 2:	:	Sta	art Depth ((m): 0.2	3	Er	nd Depth (r	n): 0.33				
Primary C	olor:	Dark Brown	(10YR 3/3)		Secondary	/ Cc	olor: Brown	(10YR 5/3)				
USCS:	SM		USDA:	Sandy L	.oam		Grains:	Angular				
Organics:	Wo	oody		%:	25 - 50		Odor:	No Odor		STOCK OF THE PARTY		
Rocks:	None	9		%:	N/A		Moisture	: Moist		and the same of	kusn1511114141513.01	
Petrochen	nical:	None			Cohesivene	ess:	Stiff				30	
Descriptio Notes:	n/ ľ	Medium g	rained sar	ndy loam	n with wood	y la	yer (2 cm t	hick) @ 0.2	5m			
Layer 3:	:	Sta	art Depth ((m): 0.3	3	Er	nd Depth (r	n): 0.52				
Primary C	olor: [Dark Brown	(10YR 3/3)		Secondary	/ Cc	olor: Brown	(10YR 5/3)		-	-	7
USCS:	ML		USDA:	Silt Loai	m		Grains:	Well Round	ded	2	1000	
Organics:	Fik	rous		%:	0 - 5		Odor:	No Odor		40	50	in Think
Rocks:	None	e 		%:	N/A		Moisture	: Moist			sylvency and	
Petrochen	nical:	None			Cohesivene	ess:	Stiff				(c. V)	
Descriptio Notes:	n/	Silty Ioam	with <5%	fibrous	material, <5	5% v	ery fine sa	and				

Project/S	ite In	format	ion												
Project Nan	ne:	SLR			Client	:	MP	CA			Contrac	tor:	Bay W	/est	
Project #:	J160	139		Site Loc	ation:	Tho	msc	on Reservoir	•	Loc	ation ID:	: BW	/16TR	-004	
Core & Po	olling	Colle	ctio	n Infori	mation			Sample Coll	ector	s:	ACB	CJI	м		
Date Collected:	Septe	ember 2	7, 20	16 T	ime Colle	cted:		2:34 PM		Above	e/Below L\	ND (ft):	<u>_</u>		
Water Elevat	tion (ft)	:			Water D	epth	ı (ft):	2.6		Se	ediment El	evation	n (ft):		
Poling Co	llectic	n Infor	mat	ion	Equipn	nent:		N/A							
Location ID	W	pth of /ater cm)		Depth to esistanc (cm)	e Re	pth t fusa cm)		"Soft" Sedimen Thicknes (cm)		Re	efusal Typ)e		Sediment roaching	
PL-01	(cm) (cm) 74 90					101		0			Sediment — —			Silty Cl	<u>ау</u>
Core Colle		Push	atio		Collection	Met		Check Push	1	% Rec	overv	Rei	tained	-	
	Push Attempts Pi 1 2 —						1.7			56.	67				
Core Pro	 cessi	— — na Info		ation						0		<u>-</u> -			
30101100	JJ001	e			Sa	ampl	e Pr ⊏	ocessors:	A	СВ	CJM]	IMB		
Length of C	ore (m): (0.46	Da	te Proces	sed:		October 7,	2016	Ti	me Proces	ssed:	10:2	23 AM	

Sedime	nt	Charac	terizati	ion I	Log	Loc	ation ID:	BW16TR-004	1	6	Bay West
Layer 1	:	St	art Depth	(m): 0).0	Eı	nd Depth (r	m): 0.03			0
Primary C	Colo	r: Dark Brown	(10YR 3/3)		Seconda	ary Co	olor: Brown	(10YR 5/3)			0.5.0
USCS:	SM		USDA:	Sandy	y Loam		Grains:	Well Rounded			
Organics:		None	l	%:	N/A		Odor:	No Odor			La Carlo
Rocks:	No	one		%:	N/A		Moisture	: Moist			
Petrochei	mica	al: None			Cohesive	eness	: Stiff				
Description Notes:	on/	Fine sand	dy loam							>10 · 5dah	2 20
Layer 2	:	St	art Depth	(m): 0).03	Eı	nd Depth (r	m): 0.46			
Primary C	Colo	r: Dark Brown	(10YR 3/3)		Seconda	ary Co	olor: Brown	(10YR 5/3)			
USCS:	ML		USDA:	Silt Lo	oam		Grains:	Well Rounded			Mark.
Organics:		Fibrous		%:	0 - 5		Odor:	No Odor		_	
Rocks:	No	one		%:	N/A		Moisture	: Moist		* * * 30 T * * * * *	* * 0 = 40 * * * * *
Petroche	mica	al: None			Cohesive	eness	: Stiff			NA PARK	1 / X
Description Notes:	on/	Silt loam thick)	with Fine v	voody	layers @0.	15cm	0.33cm,	and 0.39cm (<1	cm		
Layer 3	:	St	art Depth	(m):		Eı	nd Depth (r	m):		-	
Primary C	Colo	r:			Seconda	ary Co	olor:				
USCS:			USDA:	_			Grains:	_			
Organics:		_		%:	_		Odor:				
Rocks:				%:	_		Moisture	:			
Petrochei	mica	al:			Cohesive	eness	:		<u> </u>		
Description Notes:	on/										

Project/Si	ite In	format	ion								
Project Nam	ne:	SLR			Client:	MF	PCA		Contracto	r:	Bay West
Project #:	J160	139		Site Locat	ion: T	homs	on Reservoir		Location ID:	BW	/16TR-005
Core & Po	olling	Colle	ction	Informa	ation		Sample Collecte	ors:	ACB	CJN	м Јмв
Date Collected:	Septe	ember 2	7, 201	6 Tim	e Collecte	d:	2:50 PM	Ak	oove/Below LWI	D (ft):	
Water Elevati	ion (ft)	:		V	Vater Dep	th (ft)	: 8.1		Sediment Elev	/ation	(ft):
Poling Col	lectio	n Infor	matio	on	Equipmer	nt:	Rods				
Location ID	W	pth of later cm)		epth to sistance (cm)	Depth Refus (cm	sal	"Soft" Sediment Thickness (cm)		Refusal Type		Sediment Type Approaching Refusa
PL-01		74	▎┌	90	10	1	27	_	Sediment	_	Silty Clay
PL-01	247 419				419	9	172		Sediment		Gravel
							0		_		_
						<u> </u>				<u> </u>	
							0		_		_
Core Colle	ection	Inform	ation	n Co	llection M	ethod	: Check Val	ve			
		Push tempts	ı	D D		D.	Push ecovery (ft)	0/ 5		5.4	-1 10
		tempts	+	Push Dep	otn (ft)				Recovery		ained?
		1		3		1.7			56.67	Yes	
			֓֡֓֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֡֓֓֓֡֓֡֓֡֡֡֡֡֡֡֡֡						0 -		
									0	_	
									0 -		
		_							0 -		
Core Prod	cessi	ng Info	orma	tion	Sam	ple P	rocessors:	ACB	СЈМ		
Length of Co	ore (m)): (0.48	Date	Processe	d:	October 7, 201	6	Time Process	ed:	10:55 AM

Sedime	nt C	Charac	terizati	ion Lo	og	Loc	ation ID:	F	3W16TR-005			b Bay	West
Layer 1	:	St	art Depth	(m): 0.0		En	ıd Depth (r	m):	0.06		N		
Primary C	Color:	Very Dark B	rown (10YR	2/2)	Secondar	у Сс	olor: Dark B	rowi	n (10YR 3/3)		(0		
USCS:	ML		USDA:	Silt Loa	m		Grains:	We	ell Rounded		20		
Organics:	N	one		%:	N/A		Odor:	No	Odor	8	8		The sales
Rocks:	Nor	ne		%:	N/A		Moisture	e: [Moist		100 mg	10/1	1
Petrocher	mical:	None			Cohesiver	ness:	Loose			196			1
Description Notes:	on/	Silt loam	with clay								No.		- 1
Layer 2	:	St	art Depth	(m): 0.0	6	En	nd Depth (r	m):	0.11		20		
Primary C	Color:	Dark Brown	(10YR 3/3)		Secondar	у Сс	olor: Brown	(10	/R 5/3)				Mil.
USCS:	ОН		USDA:	Other (s	ee Notes)		Grains:	We	ell Rounded		140		
Organics:	W	oody/		%:	75 - 100		Odor:	No	Odor		2.56		
Rocks:	Nor	ne		%:	_		Moisture	e: [Moist		and a	Dia .	Maria
Petrocher	mical:	None			Cohesiver	ness:	Loose			1			
Description Notes:	on/	Woody la	yer, 4 cm	thick									
Layer 3	1		art Depth	` ′	1	J	nd Depth (r					10	Turi or
Ī		Very Dark B	rown (10YR			y Co	olor: Dark B						
USCS: [ML		USDA:	Silt Loa	m 	_	Grains:	We	ell Rounded	-		A Maria	
Organics:	N	one		%:	N/A		Odor:	No	Odor		, proper	e e	
Rocks:	Nor	ne		%: 	N/A		Moisture	e: [Moist				
Petrocher	mical:	None			Cohesiver	iess:	Loose			_	The second		
Description Notes:	on/	SAA Silt loam	with clay w	vith thin	fine woody	laye	er @ 0.23c	m (<1 cm thick)		20	dwallnalinalin	30

Project/S	ite In	forma	tion																		
Project Nan	ne:	SLR				Client:		MP	CA				(Contra	acto	r:	Bay	Wes	t		
Project #:	J160	139		Site L	ocati	on:	Th	oms	on R	eservoi	r		Locat	ion II	D:	BV	V16T	R-00)6		
Core & Po	olling	Colle	ctio	n Info	rma	tion			Sam	ple Col	lecto	rs:	A	.CB] [CJ	м]	
Date Collected:	Octo	ber 6, 2	016		Time	Collec	ted	:	2:3	2 PM		Al	bove/E	selow	LW	D (ft)	: [
Water Elevat	tion (ft)	:			V	/ater D	eptl	h (ft)	:	4.2			Sedi	ment	Elev	/atior	า (ft):				
Poling Co	llectio	n Info	rmat	ion		Equipm	ent	:	Roo	ds											
Location ID	W	pth of /ater cm)		Depth tesistar		Dep Ref		al		"Soft" Sedimer Thicknes (cm)			Refu	sal Ty	ype		Αp			Type g Refus	al
PL-01 PL-01 Core Colle		74 128	natio	90 182	Col		Me	thod		27 54 0 0	Valv	e		dimer					Grave		
		Push tempts		Push	Dep	th (ft)		Re		sh ery (ft)		% F	Recov	ery		Re	taine	d?			
		1		1.2				1.0					83.33			Yes					
		2		1.2				0.9	١				75			Yes					
		_											0		<u> </u>						
		_											0		<u> </u>						
		_											0		-	_					
Core Pro	cessi	ng Inf	orm	ation		Sa	ımp	le Pı	roces	ssors:		ACB		СЈМ]			
Length of C	ore (m):	0.28		Date	Proces	sed	: [O	ctober 7,	2016	6	Time	Proc	ess	ed:	11	:23 A		.07201	3

Sediment	Charact	terizati	ion L	og	Loca	ation ID:	I	BW16TR-006		b Ba	y West
Layer 1:	Sta	art Depth	(m): 0.0)	En	d Depth (r	m):	0.13			
Primary Colo	r: Very Dark B	rown (10YR	2/2)	Seconda	ry Co	or: Dark B	row	n (10YR 3/3)			
USCS: ML		USDA:	Silt Loa	m		Grains:	We	ell Rounded	10		1
Organics:	None		%:	N/A		Odor:	No	Odor Odor	20		1 a
Rocks: N	one		%:	N/A		Moisture	e: [Moist			d.
Petrochemica	al: None			Cohesive	ness:	Loose			30		
Description/ Notes:									70 C	er erge	
Layer 2:	Sta	art Depth	(m): 0.1	3	En	d Depth (r	m):	0.15		1	*
Primary Colo	r: Dark Brown	(10YR 3/3)		Seconda	ry Co	or: Brown	(10	YR 5/3)			A .
USCS: SM		USDA:	Sandy I	_oam		Grains:	We	ell Rounded			
Organics:	None		%:	N/A		Odor:	No	Odor Odor		10 40 40	720
Rocks: N	one		%:	N/A		Moisture	e:	Moist	The T		
Petrochemica	al: None			Cohesive	ness:	Loose			19.99 ·	7	
Description/ Notes:	Fine grain	ed sand							N. A.		
Layer 3:	Sta	art Depth	(m): 0.1	5	En	d Depth (r	m):	0.28			AT
Primary Colo	r: Very Dark B	rown (10YR	2/2)	Seconda	ry Co	or: Dark B	row	n (10YR 3/3)		U. 21 31 41 54	on on
USCS: ML		USDA:	Silt Loa	m		Grains:	We	ell Rounded			
Organics:	None		%:	N/A		Odor:	No	Odor			
Rocks: N	one		%:	N/A		Moisture	e: I	Moist]		
Petrochemica	al: None			Cohesive	ness:	Medium	n De	ensity	,		
Description/ Notes:	SAA Fine wood	dy layer @	0.24 cr	m (<1 cm tl	hick)						

Photo 3:

Project Number: Project Name: SLR Photographs taken on: October 6, 2016 J160139 Location ID: BW16TR-006 Photo 2: Photo 1:

Photo 4:

Photo 5: Photo 6:

Project/S	ite In	forma	tion																		
Project Nan	ne:	SLR			СІ	lient:		MP	CA					Contra	acto	r:	Вау	/ We	st		
Project #:	J160	139		Site Lo	cation:	: [Tho	msc	on R	eservoi	r		Loca	tion I	D:	BV	/16T	ΓR-0	07		
Core & Po	olling	Colle	ctio	n Infor	matio	on		;	 Sam	ple Col	 lecto	rs:		ACB] [CJ	м]	
Date Collected:	Octol	per 6, 2	016		Гime С	ollec	ted:		2:48	B PM		A	L_bove/	Below	L LW	D (ft)] :			_	
Water Elevat	ion (ft)	:			Wat	er De	epth	(ft):		5.1			Sec	diment	Ele	vatior	n (ft):				
Poling Col	llectio	n Info	rmat	ion	Eq	uipm	ent:		Roc	ls											
Location ID	114101 110					Dep Ref (c				"Soft" Sedimer hicknes (cm)			Ref	usal T	ype		Aŗ		dimen achin		
PL-01							<i>01</i> 51			96				edime edime					Silty C		
]]		0											
Core Colle	1	Inforn Push tempts	ı	n Push I	Collect Depth		Meth		Pu	Check sh ery (ft)	Valv		Reco	very]	Re	taine	ed?			
		1		3				1.8					60			Yes					
		2		3				1.7					56.6	7		Yes					
													0			_					
		_											0			_					
Core Pro	cessi	ng Inf	orm	ation		Saı	mple	e Pr	oces	ssors:		ACB		CJIV	1						
Length of Co	ore (m):	0.51	Di	ate Pro	ocess	ed:		Oc	tober 7,	2016	6	Tim	ne Prod	cess	sed:	11	1:43	AM		

Sedime	ent (Charac	terizat	ion L	og	Loc	ation ID:		BW16TR-007		(e	Bay	West
Layer 1	l:	St	tart Depth	(m): 0.0)	En	d Depth (r	m):	0.08	15			V.
Primary (Color:	Dark Brown	(10YR 3/3)		Seconda	ry Co	lor: Brown	(10	YR 5/3)		10	1	A
USCS:	ML		USDA:	Silt Loa	m		Grains:	W	ell Rounded				
Organics:	N	lone		%:	N/A		Odor:	No	Odor		a de		
Rocks:	Nor	ne		%:	N/A		Moisture	e: [Moist	100	240		
Petroche	mical	: None			Cohesiver	ness:	Loose	_					
Descripti Notes:	on/	Silty loam	1								5. X	da	yey 511+
Layer 2	2:	St	tart Depth	(m): 0.0)8	En	d Depth (r	m):	0.51		A Jean		
Primary	Color:	Very Dark B	Brown (10YR	2/2)	Seconda	ry Co	lor: Dark B	row	n (10YR 3/3)	YM		V	
USCS:	ML		USDA:	Silt Loa	m		Grains:	W	ell Rounded			10	30 meter
Organics:	C	Other (see	Notes)	%:	N/A		Odor:	No	Odor		1		1
Rocks:	Nor	ne		%:	N/A		Moisture	e: [Moist				
Petroche	mical	: None			Cohesiver	ness:	Medium	n D	ensity	111	7		No.
Descripti Notes:	on/								235-0.25cm, 0.35-0.36cm.				
Layer 3	3:	St	tart Depth	(m):	1	En	d Depth (r	m):		20	^{sol} i oʻlingtu∰ni	ow Olo	Nicellan Natural
Primary	Color:		1		Seconda	ry Co	lor:				-(96	1
USCS:			USDA:	<u> </u>			Grains:	_		10	5C	15	and
Organics:		_		%:	_		Odor:	_			, h	4	
Rocks:				%:	_		Moisture): -	_		景	4	
Petroche	emical	:			Cohesiver	ness:	_						
Descripti Notes:	on/									OM ON	Ain Ann Ann Ain a' Ain.	4 <mark>0</mark> 11119111	milinilinilini

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-007

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Project/Si	ite In	forma	tion													
Project Nam	ne:	SLR			Client	: [MР	CA			Contrac	tor:	Ва	ay West		
Project #:	J160	139		Site Loca	ation:	Thor	nsc	on Reservoir		Loca	tion ID	: B	W16	STR-00	9	
Core & Po	olling	Colle	ctio	n Inforn	nation			Sample Collect	ors	: <i>A</i>	СВ	JI	 ИВ		JM	
Date Collected:	Octo	ber 6, 2	016	Tir	ne Colle	cted:		10:40 AM		Above/E	Below L	WD (ft	:):]
Water Elevat	ion (ft)	:			Water D	epth	(ft):	2.3		Sedi	ment E	levatio	n (ft	i):		
Poling Col	llectio	n Info	rmat	ion	Equipn	nent:		N/A								
Location ID	ID (cm) (cm) PL-01 74 90				Re	oth to fusal cm)		"Soft" Sediment Thickness (cm)		Refu	ısal Ty _l	ре	<i>A</i>	Sedi Approac	ment Ty ching R	
PL-01	8					101 '2.72]]]	91.44			ediment ediment				ilty Clay arse Sar —	
]]	0					[_	
Core Colle		Inforn Push tempts	I	n C	collection	ĺ		Check Val		% Recov	ery	R	etair	ned?		
		1		1		[0.6	5		65		Yes				
	2 1 1			1			D.8			80		Yes				
		_								0		_				
Core Prod	cessi	ng Inf	orm	ation	Sa	ample	Pr	ocessors:	AC	В	СЈМ] [
Length of Co	ore (m):	0.19	Date	e Proces	sed:	Г	October 7, 20	16	Time	e Proce	ssed:	<u> </u>	12:19 P	М	

Sedimer	nt C	harac	terizati	on L	og	Loc	ation ID:	BW16TR-009		Bay West
Layer 1:		Sta	art Depth	(m): 0.	0	En	d Depth (r	m): 0.19		
Primary Co	olor:	Brown (10YI	R 5/3)		Seconda	ry Co	lor: Brown	(10YR 5/3)	\neg	
USCS: S	M		USDA:	Sandy	Loam		Grains:	Well Rounded		a de la companya de l
Organics:	No	one		%:	N/A		Odor:	No Odor		
Rocks:	Fine	Gravel		%:	25 - 50		Moisture	: Moist		The state of
Petrochem	ical:	None			Cohesiver	ness:	Loose		$ \top $	
Descriptior Notes:			of coarse o coarse g		n bottom of sand	core	during co	llection		
Layer 2:		Sta	art Depth	(m):		 En	d Depth (r	m):		
Primary Co	olor:				Seconda	ry Co	olor: —			
USCS: -	_		USDA:	_			Grains:	_		
Organics:				%:	_		Odor:	_		
Rocks:				%:	_		Moisture	: —		
Petrochem	ical:				Cohesiver	ness:				
Description Notes:	n/									
Layer 3:		Sta	art Depth	(m):	7	En	d Depth (r	m):		
Primary Co	olor:	<u> </u>			Seconda	ry Co	lor:		_	
USCS: _			USDA:	_			Grains:		_	
Organics:				%:	_		Odor:		_	
Rocks:				%: 	_		Moisture	:	_	
Petrochem	ical: г	_			Cohesiver	ness:	_			
Descriptior Notes:	٦/									

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-009

Photo 1:

Photo 2:

Photo 3:

Photo 4:



Photo 5:

Photo 6:

Project/S	ite Inf	ormat	ion																	
Project Nan	ne:	SLR				Client	:	MF	PC/	4				Contra	ctor	:	Вау	West	:	
Project #:	J1601	139		Site L	oca	tion:	Th	noms	on	Reservoir			.oca	tion II	D:	BW	/16TI	R-01	0	
Core & Po	olling	Colle	ctio	n Info	rm	ation			Sa	ample Colle	 ecto	 rs:		ACB	 	CJI	м]			
Date Collected:	Octob	per 6, 20	016		Tim	ne Colle	cted	d:	1	:30 PM		Ab	ove/l	Below	LWE) (ft):				7
Water Elevat	ion (ft):				,	Water D	ept	th (ft)	:	0.8	_		Sed	iment l	Elev	ation	(ft):			
Poling Col	llectio	n Infor	mat	ion		Equipn	nen	ıt:	R	ods										
Location ID	w	oth of ater cm)		Depth tesistar		Re	pth fus cm)	al		"Soft" Sediment Thickness (cm)			Refu	ısal Ty	/pe				ment ching	Type Refusa
PL-01		74 90 24 46					101 06.6			27 82.68				edimer edimer					<i>Silty Cla</i> Silt Loar	
										0				_						
Core Colle	F	Inform Push tempts	ı			ollection pth (ft)	Me		F	Check Verse (ft)	Valv		ecov	very		Ret	aine	d?		
		1		1.3				1.3	3				100			⁄es				
													0		-					
													0							
Core Pro	cessii	ng Info	orm	ation		Sa	amp	ole P	roc	essors:	Α	ACB] [СЈМ]		
Length of Co	ore (m)		Date	Proces	sec	d:		October 7,	2016	5	Tim	e Proc	esse	ed:	12	:33 P	M			

Sedime	ent C	Charac	terizat	ion L	og Lo	cation ID:	BW	16TR-010	Bay W	?Si
Layer 1	l:	St	art Depth	(m): 0.0) E	nd Depth (m): 0.	05	7	
Primary (Color:	Dark Brown	(10YR 3/3)		Secondary C	olor: Brown	(10YR 5	/3)		1
USCS:	SM		USDA:	Sandy	Loam	Grains:	Well F	Rounded	20	
Organics:	N	one		%:	N/A	Odor:	No Oc	dor		1
Rocks:	Nor	ne		%:	N/A	Moisture	e: Moi:	st		
Petroche	mical:	None			Cohesiveness	s: Loose				1
Description Notes:	on/	Fine grain	ned sand							
Layer 2	2:	St	art Depth	(m): 0.0) E	nd Depth (m): 0.	11		
Primary (Color:	Dark Brown	(10YR 3/3)		Secondary C	olor: Brown	(10YR 5	/3)		
USCS:	ОН		USDA:	Other (see Notes)	Grains:	Well F	Rounded		
Organics:	W	/oody		%:	75 - 100	Odor:	No Oo	dor		1
Rocks:	Nor	ne		%:	N/A	Moisture	e: Moi	st		1
Petroche	mical:	None			Cohesiveness	s: Mediun	n Dens	ity		
Description Notes:	on/	Woody de	ebris with s	some fir	ne grained sand	d				
Layer 3	3:	St	art Depth	(m): 0.	11 E	nd Depth (m): 0.	48	10"2"30	
Primary (Color:	Dark Brown	(10YR 3/3)		Secondary C	olor: Brown	(10YR 5	/3)		
USCS:	ML		USDA:	Silt Loa	ım	Grains:	Well F	Rounded		
Organics:	M	/oody		%:	25 - 50	Odor:	No Oo	dor		
Rocks:	Nor	ne		%:	N/A	Moisture	e: Moi	st		
Petroche	mical:	None			Cohesiveness	s: Mediun	n Dens	ity	***	1
Description Notes:	on/	Woody la	yer @ 0.2	1 cm an	d 0.27 cm (1 c	m thick)			· · · · · · · · · · · · · · · · · · ·	athuff **

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-010

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Project/Si	ite Inf	ormatio	n									
Project Nam	ne:	SLR		Client:	MF	CA		Contrac	tor:	Bay \	West	
Project #:	J1601	39	Site Loc	ation:	Thoms	on Reservoir	L	ocation ID	: B\	W16TF	R-011	
Core & Po	olling	Collecti	on Inforn	nation		Sample Collecto	ors:	ACB		л ЈМ]
Date Collected:	Octob	er 6, 2016	5 Ti	me Collec	cted:	3:15 PM	Abo	ove/Below L'	L WD (ft):		<u>]</u>
Water Elevat	ion (ft):			Water D	epth (ft)	5.0		Sediment E	levatio	on (ft):		
Poling Col	llectio	n Informa	ation	Equipm	nent:	Rods						
Location ID	W	oth of ater em)	Depth to Resistance (cm)	Re	oth to fusal cm)	"Soft" Sediment Thickness (cm)		Refusal Typ	ре		Sediment proaching	
PL-01					101	27		Sediment			Silty Ci	ay
PL-01		152 243			259	107		Sediment			Silt Loa	m
				1		0		_				
						0		_				
Core Colle	ection	Informat	ion (Collection	Method	: Check Valv	/e					
		oush			Ī	Push						
	Att	empts	Push De	epth (ft)	Re	ecovery (ft)	% R	ecovery	Re	etained	d? ====	
		1	2.5		1.6			64	Yes			
		_						0				
								0				
								0				
		_						0				
Core Prod	cessir	ng Inforr	nation	Sa	ample P	rocessors:	ACB	CJM] []	
Length of Co	ore (m)	: 0.4	6 Dat	e Proces	sed:	October 7, 201	6	Time Proce	ssed:	12:	53 PM	

Sedimer	nt C	harac	terizati	on L	og	Loc	ation ID:	E	3W16TR-011		l Bay	West
Layer 1:		Sta	art Depth ((m): 0.0		Er	nd Depth (r	m):	0.46		7	
Primary Co	olor:	Very Dark B	rown (10YR :	2/2)	Secondar	у Сс	olor: Dark B	Brown	(10YR 3/3)			it.
USCS: M	1L		USDA:	Silt Loa	m		Grains:	We	ell Rounded			100
Organics:	W	oody		%:	0 - 5		Odor:	No	Odor			
Rocks:	Non	e		%:	N/A		Moisture	e: [-	_			
Petrochem	nical:	None			Cohesiven	ess:	Loose			$\left] \ \ \right $		
Descriptior Notes:	n/	Clayey sil	t loam									
Layer 2:		Sta	art Depth ((m): 0.4	4	Er	nd Depth (r	m):	0.46			14
Primary Co	olor:	Reddish Bro	own		Secondar	у Сс	olor: Brown	(10Y	TR 5/3)			
uscs: C	L-ML	-	USDA:	Silty Cla	ny		Grains:	We	ell Rounded			Na San
Organics:	W	oody		%:	0 - 5		Odor:	No	Odor			
Rocks:	Non	e		%:	N/A		Moisture	e: N	/loist		1	ALC: N
Petrochem	nical:	None			Cohesiven	ess:	Stiff			<u> </u>		9
Descriptior Notes:	n/	Very thin	fine woody	/ layer @	0.45cm (<	<1m	m thick)					
Layer 3:	г	St	art Depth ((m):	1.		nd Depth (r	m):			Olimbia Turdin Aturdin	
Primary Co	olor:	<u> </u>			Secondar	y Co				4	0 m 5 0 m	
USCS: _			USDA:	_		_	Grains:			4		1
Organics:				%:	_	_	Odor:			4		
Rocks:				% :			Moisture	e: [-	-	┦		
Petrochem Descriptior Notes:	Γ	_			Cohesiven	ess:						

Sediment (Characterizat	ion L	.og	Loca	tion ID:	BW16TR-011	Bay Wes
Layer 4:	Start Depth	(m): 0.	35	End	l Depth (r	n): 0.85	
Primary Color:	Dark Brown (10YR 3/3)		Secondar	y Colo	or: Brown	(10YR 5/3)	
USCS: ML	USDA:	Silt Lo	am		Grains:	Well Rounded	
Organics:	lone	%:	N/A		Odor:	No Odor	
Rocks: No	ne	%:	N/A		Moisture	: Moist	
Petrochemical	None		Cohesiven	ness:	Medium	Density	
Description/ Notes:	Clayey silt loam Sampled at 0.6-0.8	5m					
Layer 5:	Start Depth	(m):		End	I Depth (r	n):	
Primary Color:	_		Secondar	y Colo	or: —		
USCS: —	USDA:				Grains:	_	
Organics:	_	% :	_		Odor:	_	
Rocks: —] %:	_		Moisture	:	
Petrochemical	:		Cohesiven	ness:	_		
Description/ Notes:							
Layer 6:	Start Depth	(m):		J	Depth (r	n):	
Primary Color:			Secondar	y Colo	or:		_
USCS:	USDA:				Grains:	_	_
Organics:	_	% :	_		Odor:	_	_
Rocks: —		<u>%</u> :	_		Moisture	:	
Petrochemical	: <u> </u>		Cohesiven	ness:	_		<u> </u>
Description/ Notes:							

Photographic Log

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-011

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:



Photo 6:

Project/S	ite In	forma	tion								
Project Nam	ne:	SLR			Client:	MF	PCA		Contractor	:	Bay West
Project #:	J160	139		Site Loca	ation:	Thoms	on Reservoir		ocation ID:	BW	/16TR-012
Core & Po	olling	Colle	ectio	n Inform	nation		Sample Collector	 rs:	ACB	CJN	и П
Date Collected:	Octo	ber 6, 2	2016	Tir	ne Collec	ted:	3:45 PM	Abo	ve/Below LWI	O (ft):	
Water Elevat	ion (ft)	:			Water De	epth (ft)): 3.1		Sediment Elev	ation	(ft):
Poling Col	llectio	on Info	rmat	ion	Equipm	ent:	N/A				
Location ID	v	pth of Vater cm)		Depth to esistance (cm)	Ref	th to usal m)	"Soft" Sediment Thickness (cm)	I	Refusal Type		Sediment Type Approaching Refusal
PL-01		74		90		01	0 0 0 Panar/Crah		Sediment — — —		Silty Clay — — —
Core Colle		Push tempts	ı	n C	epth (ft)	ı	Push ecovery (ft)		0 - 0 - 0 - 0 -	Ret	ained?
Core Prod	cessi	ng Inf	orm	ation	Sa	mple P	rocessors: A	ιCΒ	СЈМ	J	МВ
Length of Co	ore (m):	0.15	Date	e Process	sed:	October 7, 2016	3	Time Process	ed:	12:26 PM

Sediment (Characterizat	ion L	og I	Loca	ation ID:	BW16TR-012		Bay West
Layer 1:	Start Depth	(m): 0.0	0	En	d Depth (n	n): 0.15		
Primary Color:	Dark Brown (10YR 3/3)		Secondary	у Со	lor: Brown	(10YR 5/3)		
USCS: ML	USDA:	Silt Loa	ım		Grains:	Well Rounded		
Organics:	lone	%:	N/A		Odor:	No Odor		
Rocks: Oth	ner (see Notes)	%:	5 - 10		Moisture	Saturated		
Petrochemical	: None		Cohesiven	ess:	_			
Description/ Notes:	Ponar grab Silt with some fine o	grained	sand, light b	rowi	n clay is pr	resent.		
Layer 2:	Start Depth	(m):		En	d Depth (n	n):		
Primary Color:	_		Secondary	у Со	lor: —			
USCS: -	USDA:	_			Grains:	_		
Organics:	_	%:	_		Odor:	_		
Rocks:		%:	_		Moisture	:		
Petrochemical	: —		Cohesiven	ess:	_			
Description/ Notes:								
Layer 3:	Start Depth	(m):	1		d Depth (n	n):		
Primary Color:			Secondary	y Co			_	
USCS:	USDA:				Grains:	_		
Organics: -	_	%: 	_		Odor:		_	
Rocks: —		% :	_		Moisture	:	_	
Petrochemical	: [—		Cohesiven	ess:			<u> </u>	
Description/ Notes:								

Photographic Log

Project Name: SLR Project Number: J160139 Photographs taken on: October 6, 2016

Location ID:

BW16TR-012

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:		Photo 6:	
----------	--	----------	--

Project/Si	ite In	formati	on																
Project Nam	ne:	SLR			Client:		MP	CA				Co	ontract	tor:	Е	Bay W	est /		
Project #:	J160	139		Site Loca	tion:	Tho	msc	on Re	servoir			ocatio	on ID:	: B	3W1	6TR	-014		
Core & Po	olling	Collec	tio	n Inform	ation		;	 Samp	ole Coll	ecto	rs:	AC			JM	 7 [
Date Collected:	Octob	per 6, 20	16	Tim	ne Collec	cted:		2:09	PM		Ab	L ove/Be	low LV	VD (1	ft):				
Water Elevati	ion (ft)	:			Water D	epth	(ft):		4.5			Sedim	ent El	evati	on (ft):		<u> </u>	
Poling Col	lectio	n Infori	nati	ion	Equipm	nent:		Rods	6										
Location ID	W	oth of ater cm)		Depth to esistance (cm)	Re	oth to fusa cm)		S	"Soft" edimen nicknes (cm)			Refusa	al Typ	е			edime oachi		
PL-01		74		90		101	_		27	_		Sedi	iment				Silty	Clay	
PL-01		137	180	2	287			150			Sedi	iment				Silt L	₋oam		
		$\neg 1$		1			$\neg \mid$		0	$\neg \mid$			_				_		
			L				_			_									
									0			_	_				_		
Core Colle	ection	Informa	atio	n Co	ollection	Meth	nod:	. [Check '	Valve	—— Э								
		Push	ı			ı		Pus		1			 						
	At	tempts	_	Push De	pth (ft)	<u> </u>	ке	cove	ry (ft)	\perp	% R	ecover	ТУ	R	Reta	ined?	· —		
		1		1.3			1.3					100		Yes	S				
		_										0							
		_										0							
		_										0							
												0	=				=		
			 							 			 	<u></u>					
Core Prod	cessi	ng Info	rma	ation	Sa	ample	e Pr	oces	sors:	A	СВ		CJM						
Length of Co	ore (m)): 0	.38	Date	Proces	sed:		Oct	ober 7,	2016	5	Time F	Proces	ssed:		1:23	B PM	v.072	2016

Sedime	ent C	Charac	terizati	ion L	og	Loc	ation ID:		BW16TR-014		(5	Bay L	Nest
Layer 1	l:	St	art Depth	(m): 0.0)] En	ıd Depth (ı	m):	0.08] . 1			
Primary (Color:	Dark Brown	(10YR 3/3)		Seconda	ry Co	olor: Black ((10Y	(R 2/1)	•	0		
USCS:	ML		USDA:	Silt Loa	m		Grains:	W	ell Rounded	1	20	100	
Organics:	N	one		%:	N/A		Odor:	No	Odor	3,6			73
Rocks:	Nor	ne		%:	N/A		Moisture	e: [Saturated		20.00	1	P
Petroche	mical:	None			Cohesiver	ness:	Loose	_			0	1	300
Descripti Notes:	on/	Silt with s	ome clay									Party.	
Layer 2	2:	St	art Depth	(m): 0.0)8	En	nd Depth (r	m):	0.38				
Primary (Color:	Very Dark B	rown (10YR	2/2)	Seconda	ry Co	olor: Dark B	row	n (10YR 3/3)			10	30 met
USCS:	CL-M	L	USDA:	Silty Cla	ay		Grains:	W	ell Rounded		, ,	.3	
Organics:	N	one		%:	N/A		Odor:	No	Odor Odor		• .	-	P.
Rocks:	Nor	ne		%:	N/A		Moisture	e: [Moist				
Petroche	mical:	None			Cohesiver	ness:	Medium	n D	ensity	to minimum annuality		1	
Descripti Notes:	on/	Silty clay										Carl	
Layer 3	1		art Depth	(m):	Seconda]	nd Depth (r	m):			on SOUN	· ·	40
USCS:			USDA:		Secondar		Grains:			$\frac{1}{2}$			
Organics:			0007.	%:			Odor:			$\frac{1}{2}$			
Rocks:				%:			Moisture	 . [$\frac{1}{2}$			
Petroche	mical:			70.	Cohesiver	ness:		<u>. [</u>		_			
Descripti Notes:													

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-014

Photo 1:

Photo 2:

Photo 3:

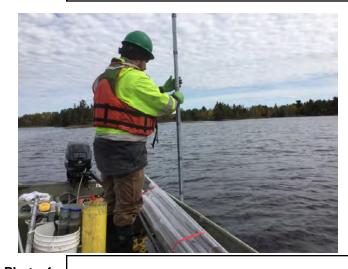


Photo 4:

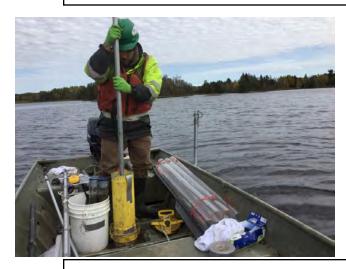


Photo 5:

Photo 6:

Project/Si	ite Inf	ormatio	n									
Project Name: SLR		SLR		Client: MP		PCA		Contractor:		Bay West		
Project #: J160139 Site Loca		ation: Thomson Reservoir			Location ID: B\		W16TR-015					
Core & Po	olling	Collecti	on Inform	nation		Sample Collecto	ors:	АСВ		л ЈМ]
Date Collected:	Octob	er 6, 2016	Tir	ne Collec	cted:	1:47 PM	Abo	ove/Below L	L WD (ft):		
Water Elevation (ft):			Water Depth (ft):		2.08		Sediment Elevation					
Poling Col	llectio	n Informa	ation	Equipm	nent:	Rods						
Location ID	W	oth of ater em)	Depth to Resistance (cm)	Re	oth to fusal cm)	"Soft" Sediment Thickness (cm)		Refusal Tyբ	oe		Sediment proaching	
PL-01	<u> </u>	74	90	,	101	27		Sediment	:		Silty C	lay
PL-01		71	132		142	71		Sediment			Silt Loa	am
						0		_			_	
				」								
						0		_			_	
Core Colle	ection	Informati	i on C	ollection	Method	: Check Valv	/e					
		oush			1 _	Push						
	Att	empts	Push De	epth (ft)	Re	ecovery (ft)	% R	ecovery	Re	etained	d?	
		1	1.4		1.2		8	5.71	Yes			
								0				
		_]						0				
		_						0				
		_						0				
Core Prod	cessir	ng Inforr	nation	Sa	ample Pi	rocessors:	ACB	СЈМ] []	
Length of Co	ore (m)	: 0.3	6 Date	e Proces	sed:	October 7, 201	6	Time Proce	ssed:	1:4	43 PM	

Sedime	nt C	harac	terizati	ion L	og	Loc	ation ID:	BW16TR	R-015		Bay Wes
Layer 1	:	St	art Depth	(m): 0.0)	Er	nd Depth (r	n): 0.10		W . P	S IN
Primary C	olor:	Dark Brown	(10YR 3/3)		Seconda	ry Co	olor: Brown	(10YR 5/3)			
USCS:	ML -		USDA:	Silt Loa	m		Grains:	Well Round	ded		
Organics:	No	one		%:	N/A		Odor:	No Odor			
Rocks:	Non	e		%:	N/A		Moisture	: Moist			
Petrocher	nical:	None			Cohesiver	ness:	Loose				
Descriptio Notes:	on/	Clayey sil	t								
Layer 2	:	St	art Depth	(m): 0.1	10	Er	nd Depth (r	n): 0.36			
Primary C	olor:	Dark Brown	(10YR 3/3)		Secondai	ry Co	olor: Brown	(10YR 5/3)			
USCS:	CL-ML	-	USDA:	Silty Cla	ay		Grains:	Well Round	ded	36	You will be
Organics:	No	one		%:	N/A		Odor:	No Odor			307
Rocks:	Non	e		%:	N/A		Moisture	: Moist			
Petrocher	nical:	None			Cohesiver	ness:	Medium	Density		公	
Descriptio Notes:	on/										
Layer 3	: :	St	art Depth	(m):	1	Er	nd Depth (r	n):		25 Oil of the State of the Stat	Markar 2 Quarter d'american
Primary C	olor:	<u> </u>			Secondar	ry Co	olor:				
USCS: -			USDA:				Grains:	_			
Organics:				%:	_		Odor:				
Rocks:	_			%: ————————————————————————————————————	_		Moisture	:			
Petrocher	nical: г	_			Cohesiver	ness:	_				
Descriptio Notes:	on/										

Project Name:

SLR

Project Number:

J160139

Photographs taken on:

October 6, 2016

Location ID:

BW16TR-015

Photo 1:

Photo 2:

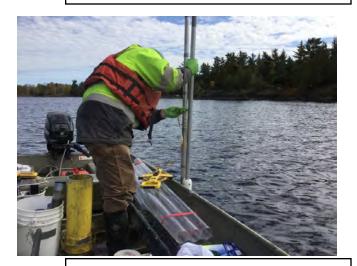


Photo 3:

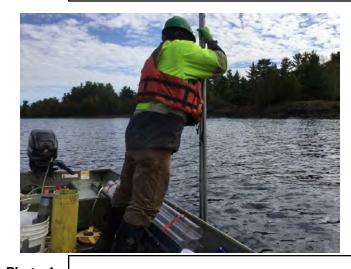


Photo 4:



Photo 5:

Photo 6:

Appendix B

2016 Tissue Analysis Project Plan for Duluth Reservoirs Draft Report

June 2017 BWJ160749

Advanced Environmental Management Group

Global knowledge, local solutions. ®

2016 Tissue Analysis Project Plan for Duluth Reservoirs Draft Report

Contract No. W911XK-16-D-0014-0005

Prepared for:

U.S. Army Corps of Engineers Detroit District 477 Michigan Avenue Detroit, Michigan 48226

Attn: Pam Horner

Prepared by:

Advanced Environmental Management Group 44339 Plymouth Oaks Blvd. Plymouth, Michigan, 48170-2585 March 10, 2017 F16705

www.environmental-help.com

voice: 734-354-9070 facsimile: 734-354-9087

Table of Contents

1.	.0	Introduction	1
Ζ.	0	Scope of Work	. 2
3.	0	Sample Collection	3
		Fish Sampling	
		Scanlon Reservoir	
		Thomson Reservoir	
	3.1.3	Boulder Lake Reservoir	4
	3.2	Fish Handling and Homogenization	4
	3.3	Macroinvertebrates Sample Collection	4
	3.4	Macroinvertebrates Handling and Homogenization	5
	3.5	Lumbriculus variegatus Handling and Homogenization	5
4.	.0	Tissue Sample Analysis	7
	4.1	Fish Samples	7
	4.1.1	Scanlon Reservoir	7
	4.1.2	Thomson Reservoir	7
	4.1.3		
	4.1.4	Test America Laboratory Reports	7
	4.2	Macroinvertebrate Samples	8
	4.3	Lumbriculus variegatus Samples	8
		GLEC QA/QC Samples	

Appendices

Appendix A – Scanlon Reservoir Whole Fish COCs and Fish Sampling Field Logs

Appendix B – Thomson Reservoir Whole Fish COCs and Fish Sampling Field Logs

Appendix C – Boulder Lake Reservoir Whole Fish COCs and Fish Sampling Field Logs

Appendix D – GLEC Fish and Macroinvertebrate Tissue Processing Report

Appendix E – GLEC Fish Information Summary Tables

Appendix F – EPA and MCPA Macroinvertebrate COCs and Instructions

Appendix G – Scanlon Reservoir Fish Samples Analytical Results Summary Table

Appendix H – Thomson Reservoir Fish Samples Analytical Results Summary Table

Appendix I – Boulder Lake Reservoir Fish Samples Analytical Results Summary Table

Appendix J – TA Report – J180-60593

Appendix K – TA Report – J180-60837

Appendix L – TA Report – J180-60852

Appendix M – Macroinvertebrate Analytical Results Summary Table

Appendix N – TA Report – J180-61461

Appendix O – Lumbriculus Variegatus Analytical Results Summary Table

Appendix P – TA Report – J180-62135

Appendix Q – TA Report – J180-60590

Appendix R – TA Report – J180-60831

Appendix S – TA Report – J180-61437

Abbreviations

AEM Group Advanced Environmental Management Group, LLC

COC Chain of Custody

EPA Environmental Protection Agency

GLEC Great Lakes Environmental Center, Inc.

MPCA Minnesota Pollution Control Agency

MS Matrix Spike

MSD Matrix Spike Duplicate

QA quality assurance

QAPP quality assurance project plan

QC quality control

RFP request for proposal

SOW scope of work

USACE U.S. Army Corps of Engineers

1.0 Introduction

The U.S. Army Corps of Engineers, Detroit District (USACE) contracted Advanced Environmental Management Group, LLC (AEM Group) to perform tissue analysis of organic samples collected from three reservoirs near Cloquet, Minnesota, in accordance with the USACE request for proposal (RFP) and statement of work (SOW) dated September, 2016.

The purpose of this project is part of an ongoing assessment to characterize the physical and chemical characteristics of fish and macro-organisms located in the Boulder Lake, Scanlon and Thomson Reservoirs for the purpose of evaluating human and wildlife exposure due to the current conditions of the reservoirs. The samples were provided by the Minnesota Pollution Control Agency (MPCA) and the Environmental Protection Agency (EPA).

For the purposes of aging the larger fish, the otoliths and fins were extracted from the fish prior to homogenization.

The SOW included the analysis of the selected fish and macro-organisms tissue provided by the MPCA and the EPA.

Laboratories subcontracted for analysis included:

- Test America (TA) for chemical and physical analyses, and
- Great Lakes Environmental Center, Inc. (GLEC) for biological handling and analyses.

This report provides documentation of the activities performed by GLEC and the laboratory results from Test America.

2.0 Scope of Work

The USACE SOW stated that MPCA and the EPA were to collect fish, mayflies and benthic organisms from three reservoirs near Cloquet, Minnesota for laboratory analysis.

The SOW estimated that MPCA and EPA would collect five fish species from each reservoir and three samples for each fish species collected. The fish samples were to consist of a total of: 5 fish species x 3 samples per reservoir x 3 reservoirs = 45 samples. Each fish sample would consist of a minimum of a 100 grams for analytical purposes.

The SOW estimated that MPCA and EPA would collect mayfly and other benthic organisms. The mayfly and benthic organism samples were to consist of a total of five samples per reservoir: 5 samples per reservoir x 3 reservoirs = 15 samples provided by MPCA and 15 additional samples provided by EPA.

The SOW estimated a total of 75 tissue samples be collected for chemical analysis. The samples were to be shipped under chain-of-custody (COC) with field logs to GLEC. GLEC would confirm the sample information collected in the field and preform the required homogenization. Each sample would be homogenized individually, including all fish in the same package. GLEC would send the samples to Test America, for analysis of dioxin, total mercury, methyl mercury, and % lipids.

For the fish samples, the EPA required otolith extraction from the larger fish species prior to homogenization. MPCA selected which fish would have the otolith extraction and included this information on the chain of custody form and field logs provided to GLEC. The SOW estimated that 100 fish would require otolith extraction. The extracted otoliths and a representative homogenated tissue samples of each fish sample would be preserved/frozen and sent to the EPA.

The samples being provided for chemical analysis for each reservoir are as follows:

- 5 Mayfly samples
- 5 Benthos samples
- 5 fish species samples will be selected from the following species:
 - o Minnow or Shiner
 - o Yellow Perch
 - o Young of Year Bluegill
 - o Smallmouth Bass
 - o Walleye
 - Northern Pike

The actual number of samples processed and analyzed would be dependent on the number of fish and macro-organisms collected and the total weight of the fish and macro-organisms.

3.0 Sample Collection

3.1 Fish Sampling

Fish samples were collected by MPCA. No report has been provided to AEM Group documenting how the fish were collected, handled, measured, selected, processed, frozen, or shipped. All information provided in this section is based upon the field logs and whole fish chain-of-custody (COC) provided to GLEC with the fish samples. MPCA developed a standardized fish naming convention for the samples collected. The field logs record included:

- Sample ID including reservoir and fish species,
- Sample date and time,
- Fish species,
- Number of fish,
- Fish length in millimeters (mm),
- Fish weight in grams (g).

3.1.1 Scanlon Reservoir

Twelve fish samples were collected from the Scanlon Reservoir on October 6, 2016. The samples were sent to GLEC on October 26, 2016. Fish collected included:

- Northern Pike, 1 sample –2 fish
- Shiner Mix, 1 sample number of individual fish not recorded, just total weight
- Smallmouth Bass, 3 samples 3 fish, 3 fish, 3 fish
- Walleye, 1 sample 3 fish
- White Sucker, 3 samples 3 fish, 3 fish, 3 fish
- Yellow Perch, 3 samples 4 fish, 3 fish, 19 fish

Appendix A includes copies of the Fish Sampling Field Log Sheets and the chain-of-custodies sent to GLEC for Scanlon Reservoir.

3.1.2 Thomson Reservoir

Thirteen fish samples were collected from the Thomson Reservoir on October 11, 2016. The samples were sent to GLEC on October 26, 2016. Fish collected included:

- Northern Pike, 1 sample 3 fish
- Rock Bass, 2 sample 3 fish, 8 fish
- Smallmouth Bass, 4 samples 10 fish, 3 fish, 3 fish, 10 fish
- Walleye, 1 sample 3 fish
- White Sucker, 3 samples 3 fish, 3 fish, 3 fish
- Yellow Perch, 2 samples 3 fish, 4 fish

Appendix B includes copies of the Fish Sampling Field Log Sheets and the chain-of-custodies sent to GLEC for Thomson Reservoir.

3.1.3 Boulder Lake Reservoir

Fourteen fish samples were collected from Boulder Lake Reservoir, the background samples, on October 6, 2016. The fish samples were sent to GLEC on October 26, 2016. Fish collected included:

- Black Crappie (species not confirmed), 1 sample 6 fish
- Rock Bass, 1 sample 9 fish
- Shiner Mix, 3 samples number of individual fish not recorded, just total weight
- Walleye, 3 samples 3 fish, 5 fish, 3 fish
- White Sucker, 3 samples 3 fish, 3 fish, 3 fish
- Yellow Perch, 3 samples 13 fish, 13 fish, 12 fish

Appendix C includes copies of the Fish Sampling Field Log Sheets and the chain-of-custodies sent to GLEC for Boulder Lake Reservoir.

3.2 Fish Handling and Homogenization

GLEC received a total of 39 fish samples out of the estimated 45 samples listed in the USACE SOW. GLEC logged the fish samples into their tracking system and issued the samples a GLEC sample ID number. MPCA also identified the samples to be used for Test America Quality Assurance/Quality Control (QA/QC) matrix spike/matrix spike duplicate (MS/MSD) samples and those samples to be duplicated by GLEC for QA/QC duplicate analysis.

GLEC prepared the fish samples based on the instructions on the COCs using the procedures outlined by EPA in EPA-841-R-14-007: National Coastal Condition Assessment, 2015 Field Operations Manual and EPA 841-R-14-008, National Coastal Condition Assessment, 2015 Laboratory Operations Manual. A copy of the GLEC report is included in Appendix D.

The information on the fish length, weight, and species were confirmed by GLEC in the laboratory, once the fish were partially thawed. This information is included in Appendix D, Tables 1 and 2. These tables are also included in Appendix E.

Once the fish samples were measured and weighed, the selected fish had the otolith bones and fins removed and sent to the EPA for fish aging. Fish that could have the sex determined were investigated to determine if the fish was male or female. The fish samples were then homogenized; samples were placed into three jars and sent to Test America Laboratories in Canton, Ohio; Pittsburg, Pennsylvania; and Knoxville, Tennessee for chemical and physical analysis. Samples were analyzed for methyl mercury, total mercury, % lipids, and dioxins/furans.

3.3 Macroinvertebrates Sample Collection

Macroinvertebrates samples were collected by MPCA and by the EPA. No report has been provided to AEM Group documenting how the macroinvertebrates samples were collected, handled, selected, processed, frozen, or shipped.

Copies of the COCs for the macroinvertebrates samples are included in Appendix F. Limited instructions on the homogenization of samples and the chemical and physical analysis of the

samples were included on the COCs. Additional instructions were provided by the EPA on how to composite and homogenize the EPA collected samples. These instructions are included in Appendix F.

3.4 Macroinvertebrates Handling and Homogenization

GLEC received seven samples from MPCA. Based on the sample ID, all seven samples were collected from the Scanlon Reservoir from September 19, 2017 to October 6, 2017. The samples included:

- 3 mayfly samples
- 3 dragonfly samples
- 1 crawfish sample

The third mayfly sample was run as a QA/QC duplicate for total mercury and methyl mercury. The first dragonfly sample was run as a QA/QC duplicate for % lipids and dioxins/furans. Not all samples were analyzed for all compounds based on the total weight of macroinvertebrates. The priority selected was dioxin and % lipids, then methyl mercury and total mercury.

GLEC received 19 samples from the USEPA for compositing and homogenization. The 19 samples were composited into 4 samples for analysis. The four samples were:

- EPA16-SR-HD-001-MCRS Scanlon Reservoir composite sample
- EPA16-TR-HD-001-MCRS Thomson Reservoir composite sample
- EPA16-BR-HD-001-MCRS Boulder Reservoir composite sample
- EPA16-TR-HD-001-C Thomson Reservoir composite sample for crawfish

No field identifications of the macroinvertebrates in the EPA samples were provided to AEM Group for inclusion in this report.

Only the Boulder Lake sample had enough material to be analyzed for dioxin, % lipids, methyl mercury, and total mercury. The Scanlon and Thomson samples were analyzed for methyl mercury, and total mercury

Copies of the COC and compositing instructions to GLEC are included in Appendix F.

Based on the amount of sample available, the samples were placed into one jar and shipped to Test America in Pittsburg, Pennsylvania for analysis based on the amount of material available.

3.5 Lumbriculus variegatus Handling and Homogenization

As part of this contract, it was decided since limited mass of macroinvertebrates were collected in September and October of 2016, that sediment from the reservoirs would be collected and used to test for biological toxicity in *Lumbriculus variegatus* grown and harvested in the lab.

Sediment was sent to GLEC under a separate contract for this purpose. The analysis of the *Lumbriculus variegatus* was performed under this contract. A copy of this report was not provided to AEM Group for this report.

According to the information that was provided, GLEC was sent seven sediment samples:

- Boulder Lake Reservoir 1 sample
- Scanlon Reservoir 2 samples
- Thomson Reservoir 4 samples

GLEC following standard procedures for the growth of *Lumbriculus variegatus*, divided the sediment samples into five replicates to produce enough *Lumbriculus variegatus* for laboratory analysis and statistical analysis of the laboratory results. However, based on the amount of *Lumbriculus variegatus* tissue, it was decided to homogenize the five replicates into one sample for laboratory analysis by Test America. No sample was divided for QA/QC analysis.

According to the COC, the *Lumbriculus variegatus* samples were homogenized on December 22, 2016 and shipped to Test America on December 26, 2016.

The *Lumbriculus variegatus* tissue samples were placed into three jars and sent to Test America Laboratories in Canton, Ohio; Pittsburg, Pennsylvania; and Knoxville, Tennessee for chemical and physical analysis. Samples were analyzed for methyl mercury, total mercury, % lipids, and dioxins/furans.

4.0 Tissue Sample Analysis

The tissue samples were delivered under chain-of-custody to Test America Laboratories in Canton, Ohio; Pittsburg, Pennsylvania; and Knoxville, Tennessee for chemical and physical analysis. Samples were analyzed for methyl mercury, total mercury, % lipids, and dioxins/furans.

- Canton, Ohio methyl mercury
- Pittsburg, Pennsylvania total mercury and % lipids
- Knoxville, Tennessee dioxins/furans

All coordination between the three labs was managed out of the Pittsburg laboratory.

4.1 Fish Samples

4.1.1 Scanlon Reservoir

Thirteen fish samples were sent from GLEC to Test America and were analyzed in two laboratory batches.

- 180-60837 9 samples (includes 1 QA/QC duplicate sample)
- 180-60852 4 samples

A summary table of the results is included in Appendix G.

4.1.2 Thomson Reservoir

Fifteen fish samples were sent from GLEC to Test America and were analyzed in two laboratory batches.

- 180-60593 3 samples
- 180-60837 12 samples (includes 2 QA/QC duplicate sample)

A summary table of the results is included in Appendix H.

4.1.3 Boulder Lake Reservoir

Fifteen fish samples were sent from GLEC to Test America and were analyzed in one laboratory batch.

• 180-60593 – 15 samples (includes 1 QA/QC duplicate sample)

A summary table of the results is included in Appendix I.

4.1.4 Test America Laboratory Reports

Copies of the Test America Laboratory Reports are included in Appendices J, K, and L.

• Appendix J – J180-60593 – 1 report

- Appendix K J180-60837 2 reports
- Appendix L J180-60852 2 reports

The number of reports was based on the amount of time required to perform the dioxin/furan analyses and get the information into the Test America reporting database. The dioxin/furan reports were originally run using the World Health Organization (WHO) 2005 Toxic Equivalency Factors (TEF) for human health risks to calculate the Toxic Equivalence (TEQ) for the total dioxin/furans identified in the laboratory reports. These values were calculated using zero (0) as the concentration in the equation for all samples that had no detection levels for the analyte.

Upon review, the client requested the TEQs be recalculated using the WHO 1998 TEF for fish. These values were calculated using the equipment detection limit (EDL) as the concentration in the equation for all samples that had no detection levels for the analyte.

4.2 Macroinvertebrate Samples

Thirteen macroinvertebrate samples were sent from GLEC to Test America and were analyzed in one laboratory batch.

• 180-61461 – 13 samples (includes 2 QA/QC duplicate samples)

A summary table of the results is included in Appendix M.

Copies of the Test America Laboratory Reports are included in Appendix N. Two reports were issued for these samples, one for dioxin/furans, and one for % lipids, methyl mercury, and total mercury. The dioxin/furan report was reissued using the WHO 1998 TEF for fish and the EDL for non-detects.

4.3 *Lumbriculus variegatus* Samples

Eight *Lumbriculus variegatus* samples were sent from GLEC to Test America and were analyzed in one laboratory batch.

• 180-62135 – 8 samples (includes no QA/QC duplicate samples)

A summary table of the results is included in Appendix O.

Copies of the Test America Laboratory Reports are included in Appendix P. Two reports were issued for these samples, one for dioxin/furans, and one for % lipids, methyl mercury, and total mercury. The dioxin/furan report was reissued using the WHO 1998 TEF for fish and the EDL for non-detects.

4.4 GLEC QA/QC Samples

As part of the homogenization process, GLEC sent equipment rinsate blanks to Test America for analysis to document the cleaning decontamination process that occurred between the fish homogenization activities.

The activities are described in Appendix D on page 2, and the page below.

Table 1: GLEC Rinsate Blanks

Date	Tissue Type	GLEC Sample Number	Project Sample Designation
11-2-16	Fish	H2O Rinsate collected for MeHG following GLEC 5041	MN16 BR WAL-A
11-2-16	Fish	H2O Rinsate collected for total Hg following GLEC 5031	MN16 BR YP-A
11-3-16	Fish	Hexane Rinse collected for dioxin following GLEC 5045	MN16 BR GS-C
11-8-16	Fish	H2O Rinsate collected for MeHG following GLEC 5036	MN16 TR SMB-B
11-8-16	Fish	Hexane Rinse collected for dioxin following GLEC 5004	MN16 TR SMB-C
11-9-16	Fish	H2O Rinsate collected for total Hg following GLEC 5015	MN16 TR WS-B
11-10-16	Fish	Hexane Rinse collected for dioxin following GLEC 5016	MN16 SR WS-C
11-11-16	Fish	H2O Rinsate collected for total Hg following GLEC 5022	MN16 SR WS-A
11-14-16	Fish	H2O Rinsate collected for MeHG following GLEC 5020	MN16 SR YP-B
11-29-16	Macroinvertebrates	H2O Rinsate collected for total Hg following EPA-HD-TR-001-C	EPA HD TR 001-C
11-30-16	Macroinvertebrates	H2O Rinsate collected for MeHG following BW16 SR 003 D	BW16 SR 003 D

Copies of these reports are located in Appendices Q, R, and S.

- Appendix Q 180-60590
- Appendix R 180-60831
- Appendix S 180-61437

APPENDIX A

Scanlon Reservoir Whole Fish COCs and Fish Sampling Field Logs

Codes # 1 WHOLE FISH CHAIN OF CUSTODY (Complete for the samples to be included in our of the samples to be included in our Sender: Mark Elliott / MPCA Date Sent: 10 / 26 / K Email Address: mark. elliott @ state.mn, us Phone Number: 218-302-6649 10/26/6 Note: Record information for minnows on back Site ID: Scan lon Reservoir Date Collected: Sample id: My 16 - SR - WS+C (Lubel # 5016) Common Name Total Length (mm) Frozen Comments white Sucker 452 .02 410 .03 425 .04 .05 Site ID: Scanlon Recorvoir Date Collected: [O / SAMPLEID: MN 16+ SR+ NP-A (450H) # 50H) Common Name Potal Length (mm) Comments ... Duplicate .01 Northern Piko 340 .02 487 .03 .04siteD: Scanlon Reservoir Date Collected: SAMPLEID: MN16+SR-GSA-A Common Name Total Length (mm) Comments Frozen Golden Shiner - mixed Shiner bulk suple 61 grams .03.04 .05 Site ID: Scanlon Reservoir Date Collected: 10 SAMPLEID: MN16+SR-WAL-A Common Name Total Length (mm) Frozen Comments walleye 305 .0229*0* .03 04 Received Frozen: [4 Received By / Organization Released By / Organization Print Name & Organization: 10:19 Mark FlliottlmRA 16:00

Released By Organization Received By Organization Received Frozen: 14

Print Name & Organization:

Mark Flight Met Grey Ateria 16 W Jan Backman 10:19

Signature:

Date: Signature: Print Name & Organization:

Time: Print Name & Organization:

Time: Print Name & Organization:

Time: Signature: Date: Signature:

Date: Signature: Date: Signature: Date: Signature: Date:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Fish Sampling Field Log Sheet

Project:	SLRAOC	Reservoir wh	nole fish sa <u>mp</u>	<u>lli</u> ng cond	ducted by MPCA	., October 2016	
Location: _	SR Won	Sar	mple Date:	10[6]1	½ Time: 1	5:43 Recorded by:	<u>C.SM</u>
بخ Weather: <u>ح</u>	dusk					Group Sample ID#:	
	valley						16-5R-WAL-A
TO 4 19 2		the same of the same	Species	Sex ID	Perform Otolith Extraction	Comments	
n.i	305	237	LAL)	Y	Y	5023.1	

Individual Fish #	Field Length	Wet Field Weight (grams)	Species	Sex JD	Perform Otolith Extraction	Comments
Al	305	237	WAL	γ	Y .	5023.1
A.Z.	290	215	WAL	Ý	4	5023.2
A3	279	168	WA	Υ	4	5023.3
				1		
						, <u>-</u>
	1		1	l	l .	

Notes:

Project:	<u>SLRAOC</u>	<u>Reservoir wh</u>	ole fish samp	ing cond	ucted by MPCA	<u>, Octaber 2016</u>
		San		10 61	♥ Time:	14:43 Recorded by: CSm
Weather:	Sunny	,55°F	Commo	ents:		
		co		mple G	roup ID: <u>C</u>	_ Group Sample ID#: MN16-SR-WS-9
Individual	100 march 10 march	Wet		Sex	Perform	19일 시작한 이번 시간 시간 사람들은 전쟁을 되었다면 하는 사람들은 사람들은 사람들이 되었다면 하는 것이 없었다.
Fish#	Length	Weight		10		
Cl	452		٧S	Y	4	5016.1
	410	ĺ	ws	V	7	5016.2
<u> </u>	425		ws	Ý	_ \	5016.3
_					1	
				_		
	.,,			ļ .		

Project:	<u>SLRAOC</u>	Reservoir wh	iole fish samp	ling conc	ducted by MPCA	A, October 2016	
Location: _ \$	<u>SR</u> Canlo	Sar	nple Date:	19 1	<u>မှ</u> Time:	17:43 Recorde	ed by: <u>CSM</u>
Weather: _§	•						
Fish Species N	: NP Inther	n Pike	mposite Sa	mple G	roup ID: <u>&</u>	Group Sample ID	#: <u>5019</u> MN16-SR-NP-A
	Field Length	Wet Field Weight (grams)		Sex ID	Perform Otolith Extraction	Comments	
	417		NP	Υ	4	50/9.1	
A2	462	487		γ		5019.2	

Project:	SLRAOC	Reservoir wh	nole fish samp	iling cond	ducted by MPCA	s, October <u>2016</u>
Location: _	SR anlov	Sai Nese	mple Date:	10/6/1	፟ Time:	17:41 Recorded by: 65/4
Weather: <u>C</u>	lear, skr	nny, 55°C	Comm	ents: _	Wer	y individuals n=17
, .					roup ID: <u>A</u>	Group Sample ID#:
Individual Fish #	Wet Field Length	Wet Field Weight	Species	Sex ID		Comments
ITA		(grams)		- Jackson	torgette (Commente en A	5024.1 - Many individuals

WHOLE FISH CHAIN OF CUSTODY SCM bn Carler # 2

		ncluded in one ceeler	,	
Sender: Mark Elliott // Email Address: Mark elliotte ;	MPC A	Date Sent:	10 / 740	16
Email Address: Mark elliotte	tate manus	Phone Number:	Z18-302-0	6649
Note: Record information for min	nows on back			
Site ID: Scanlon Reserve	ST	Date Collected:	10 / 6	7 1/ 3
SAMPLEID: MN 16-SR-5M	ر) کید	ALAI # (72-1)		((6
Common Name T	otal Length (mm)	Frozen	Comments	
.01 Smallmouth Bass	547 344	×		
02	42-7341	* * * * * * * * * * * * * * * * * * *		
0.04	340			
.05			· · · · · · · · · · · · · · · · · · ·	
Site ID: Scanlon (Leservoi)	Vincens value of the control of the		and the section of th	
Site ID: Scanlon (CESETVO) [SAMPLE ID: MW16-SR-SMP		Date Collected:	10 6	/ ((,
Common Name T	otal Length (mm)	Frozen	2 Comments	
.01 Smallmouth Bass	326	A		August Trade program (E. 1920) - 1940 (E. 1944)
L.UZ	345	× Du	plicate	
03	272	*		
.04		0 200		
[2010]	A STATE OF THE STA		A CONTRACTOR OF THE PROPERTY O	Acceptance
Site ID: Scanlon Reservoi		Date Collected:		
SAMPLE ID: MN 6 - SR+SMB- Common Name T		(Laha) & 50 Frozen	2.1) Comments	
.01 Smallmouth Buss	75 i	× 1.10Zell	Samments as	<u> </u>
02	795	2		
.03	265	2		
.04			<u>.</u> .	
1 00 000 100 100 100 100 100 100 100 1			AND PROPERTY OF THE PROPERTY O	
Site ID: xanlon Reservoir		Date Collected:	55 (0.5) A 95 (4.5) T. T. S. T. T. Name of the Colorest of	/ 16
SAMPLE ID: MN W_SR+WS+		Wel # 502	or wheel it was transactioned Objective in processions on	
On White Sucker	otal Length (mm)	Frozen	Comments	
.02	399	> _		
.03	399	200 2 -320		
.04				
.05			Section 1 The section is the Physical	
Released By / Organization	and the second of the second o	eived By / Organizați	on Received F	rozen: [1.
Print Name & Organization: Mark Elliott Mach Great Referre		lame & Organization: Ohn Bothn	~a~	11:00 0
Signature:	Date: Signa			Date:
Print Name & Organization:	Time: Print	lame & Organization:		10/27/16 Time:
	l v			Date:
Signature:	Date: Signat	ure:		Date.
Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street	GLE	pacl	estions regarding king, and shippin Call Jim Stricko (g: GLEC)
Traverse City, MI 49686	Great Lakes Environments	Center	231-499-594	17

Project:	SLRAOC	Reservoir w	nole fish samp	oling con	ducted by MPC/	A, October 2016
Location:	SR	sa Res.	mple Date:	10/6/	اله Time:	14,57 Recorded by: CSY
Weather:	Sunny,	55°C	Comm	ents: _		
Fish Species	: <u>Snablr</u>	1B co	mposite Sa Buss	mple G	roup ID: 🖺	Group Sample ID#: 5001- MN 16 - SR - SMB-
Individual Fish#	Field Length	Field Weight		Sex ID	Perform Otolith Extraction	Comments
Al				У	7	5001.
		627		Y	7	5001.2
	!	547	SMB	Y	<u> </u>	5001.3
		· · · · · · · · · · · · · · · · · · ·				

Individual Fish#	Field	Wet Field Weight	Species	ID 0	771-787 Prog. / - 7 V	Commer			
			·	•			MN	16 - SR-51	nß- B
Fish Species	. <u>Sm</u>	<u>В</u> со	mposite Sar	mpie Grou	ıр ID: <u>В</u>	_ Group !	Sample ID#:	5003-	
Weather: _	Sann	4.55°C	Commo	ents:					
Location: _	SR Lundo	sa	mple Date: Ser Vo Y	10/6/16	Time:	510 <u> </u>	Recorded by:	(3m)	
Project:	SLRAOC	Reservoir w	nole fish samp	ling conduct	ed by MPC	A, October 2	<u>016</u>		

individual Fish#	Wet Field Length (mm)	Wet Field Weight (grams)	Species	Sex ID	Perform Otolith Extraction	Comments
Bl	326	473	SMB	V	4	5062.1
B2	345	587	SMB	У	1	5002.2
B3	272	3T.E	SMB	X	4	5002.2 -50003.3
				1		

Project:	SLRAOC	Reservoir wh	nole fish samp	oling con	ducted by MPC	A, October <u>2016</u>	
Location: _	SR	Sai \	mple Date:	10/01	16 Time:	口にとし Recorded by:	CZW
Weather:	,						
Fish Species Sr	:SM wellow	outh	mposite Sa	mple G	roup ID: C		-5R-5MB-C
Individual Fish #	Field Length	Field Weight		Sex ID	Perform Otolith Extraction	Comments	and the second of the second o
C1		213	SmB	\ <u></u>	Y	50 21.1	
<u> </u>	295		2MS	V		5021.2	
<u>c3</u>	265	274	SMB	Ÿ	4	5021.3	

Project:	SLRAOC Rese	rvoir whole fish sam	pling conducted by M	PCA, October 20	<u>16</u>	
	SR aulon Re		: 10/6/16 Time:	14:11	Recorded by: _	CSM
Weather: _	sunny.55°	F Comm	nents:			
	: <u>ws</u> white s		ample Group ID: _	₹ Group S	ample ID#: M	116-SR-45-A
Individual Fish #	Length We	d	ID Otolith Extractio	'n		

Individual Fish #	Wet Field Length (mm)	Wet Field Weight (grams)	Species	Sex ID	Perform Otolith Extraction	Comments
Al	439	1015	WS	γ	٧	5022.1
A2	399	736	ws	ý	Y	5022.2
A3	399	792	WS	Ź	7	5022.3
				1		·
				<u> </u>		
			·			

Simlon Cooker # 3

WHOLE FISH CHAIN OF CUSTODY	Lun ion	Appendix A
(Complete for the samples to be included in Onto the	நெச்சூர்) Field Logs Scar	ılon Reservoir

Mark Elliott/MRA Sender: Date Sent: Email Address: Mark. elliott@ State. Mu. Phone Number: Z18-302-6649 Note: Record information for minnows on back Site ID: Scan la Reservoil Date Collected: SAMPLE ID: MN 16 + SR+ WS-B label # 5017 Common Name Total Length (mm) Frozen Comments white Sucker .01421 X .02452 .03<u> 304</u> .04 .05 Site ID: Scanlon Reservoir Date Collected: 10 % SAMPLEID: MN 16 + SR + VP-A Luber # 5025 Common Name Total Length (mm) Frozen Comments Perch Yellow 239 .02 MS/MSID 226 <u>* 1</u> .03 て17 .04 185 .05 Site ID: Scanlon Reservoir Date Collected: SAMPLED: MY 16+ SIR+ YP-B (Jose # 5020 Common Name Total Length (mm) Frozen Comments yellow Perch 767 .02 169 ス .03.04 .05 Scanlon Reservoir Date Collected: 10 SAMPLE D: MINIG - SR - YP-C abel # Suis Common Name Comments Total Length (mm) Frozen recorded .02 Not recorded 432 grans .03 .04 0 337 .05 Received Frozen: 📈 Received By / Organization Released By / Organization Print Name & Organization: Time: Time: 10.30a)ohn Bachman Date: 10/27/16 10/25/16 Date: Signature: Signature: Ouestions regarding sampling, Ship coolers to: GLEC

Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Project: Location: _ らこみ					ucted by MPCA	, October 2016 1:32 Recorded by: CSM
Weather:					· _	
Fish Species	: w:	5 coi	mposite Sa	mple G		Group Sample ID#: MN 16-5R- WS-[
920 Z940 1479 1470	141-4	Litza	Species	Sex	Perform	医性视镜性 医
Individual	利、急いたてたな ニュア	- 100 miles	[2017][2014][2015][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2016][2	17,540 - 0.00		Comments
Fish#	利、急いたてたな ニュア	Field Weight (grams)		iD		
Fish#	Field Length (mm)	Field Weight		17,540 - 0.00	Otolith	
Fish #	Field Length	Field Weight (grams)		îD.	Otalith Extraction	
Fish #	Field Length (mm)	Field Weight (grams)	wS	ĬD	Otalith Extraction	507,1

Project:	SLRAOC	Reservoir wh	nole fish samp	ling cond	lucted by MPCA	A, October 2016
Location: _	5 f	Sal	mple Date:	<u>10</u> 6 16	² Time: ¹	3:17 Recorded by: CS M
Weather: _	lear, su	inny, 55	°F Comm	ents: _	···	
	: <u>Y</u> F		mposite Sa	mple G	roup ID: <u>Å f</u>	Group Sample ID#: MNIG-SR-\IP-A
Individual	Wet	Wet	Species	23.35.813.3	Perform	Comments
Fish #	Field Length (mm)	3.4/7/2015 3 377		i D	Otolith Extraction	
Αſ	239	166	YP	Ч	44.	5025.1
A2	226	136	46	Ý	Y-Y-#	5025,2
А3	217	124	YP	Ý	Y YM	5025.3
AН	185	74	YP	Ý	1 4d	5025.4
				,	C	

roject:	<u>SLRAOC</u>	: Reser <u>voir w</u>	<u>hole fish sam</u>	pling con	ducted by MPCA	A, October 2016
cation: _	SR	Sa	mple Date:	<u> </u>	16 Time:	3:33 Recorded by: CSM
eather: <u> </u>	lear, sum	.w, 55°F	_ Comm	nents: _		
		N Per		ample G		_ Group Sample ID#: <u>MN 16ーSR〜YP</u>
1.4.4	Field Length	Field Weight	Species	In	Extraction	PARAGRAM CONTRACTOR CONTRACTOR
β١	Joz		۲P	У	7	20301
ва	189	76	40	У	7	502012 (nasa203)
B 3	223	141	4P	У	7	5020.4
			*.			
` '						
		,				

Notes:

Page 14 of 15

Project:	SLRAOC	Reservoir wh	nole fish samp	ling cond	ducted by MPCA	., October 201 <u>6</u>	
Location: _	SR Scan	sa	mple Date:	10/6/1	16 Time:	14:26 Recorded	by: CSM
Weather: <u>&</u>	ot Sunn	_{Ч.} 55°F	Comm	ents: _	did no 19 indi	t individually nuduals / 4329	neasure fish
		e co		mple G		•	5018 MN16-5R-YR
Individual Fish#	Wet Field	Wet Field Weight	Species		Perform Otolith Extraction	Comments	
C		432		Y	€ Y		
						Ü	

APPENDIX B

Thomson Reservoir Whole Fish COCs and Fish Sampling Field Logs

WHOLE FISH CHAIN OF CUSTODY (Complete for the samples to be included in one conclete) ield Logs Thomson Reservoi Mik Elliott Sender: 10 126/16 Date Sent: Email Address: work. elliotte state manus Phone Number: Note: Record information for minnows on back Site ID: Thomson Reservoir ... Date Collected: MNIG-TRI-WSI-B (lubel # 5015 Common Name Total Length (mm) . Frozen Comments Sucker 10. .02 .03.04 .05 Thomson Site ID: Reservoir Date Collected: 10 SAMPLE ID: MN 16 + TR-1 WS-C abe # 5014 Common Name Total Length (mm) Frozen .01 435 .02 405 .03 04 .05 Thomason Reservoir Date Collected: 10/ SAMPLEID: MN 16 +TR-WAL-A (lube | # 5007 Common Name Total Length (mm) Frozen Comments Z)4 .02 346 .033341 .04 .05 reservoir Date Collected: Site ID: 10 SAMPLEID: MN 16 +TR +RB-A abe / # Comments Common Name Total Length (mm) Frozen .01 135 .02 145 .03 09 .04 .05 Received Frozen: [1] Received By / Organization Released By / Organization Print Name & Organization: Time: 16:01 10:45 Date:

Date 10/27/16 0-25-16 Print Name & Organization Date: Date: Signature: Signature:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Ouestions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

WHOLE FISH CHAIN OF CLISTODY

(Complete for the samples to be included in one cooler)

Sender: Mark Elj Email Address:	istt	Date Phone Nu	Sent: mber:	10 / 26	_/
Note: Record information for	ninnows on bac	k			
Site ID: Thompson R.		Date Co	lected:	10 / 11	/ 16
SAMPLE ID: MN 19 TRIR	B-B				
Common Name	Total Length (m.	m) Frozen		Comments	
.01 Rock Bass		0	8	individual	×1
.02		0	In to	P= 1500	
.03 50/0		0	, 0 ,	~ <u> </u>	
	coc, entere	.f. 0			
.04 sample not on	7			**************************************	
Site ID:	6100. 10	O Bayer	nected:	/	/
SAMPLE ID:				1	
Common Name	Total Length (m	m) Frozen	 	Comments	<u>=±5,€7</u>
.01				······································	
<u></u>		0			
.03	ļ 				-
.04	i	1			
.05		3			
		Duta Ca	Uantod.	/	/
Site ID:		Date Co	necteu:		
SAMPLE ID:	/T / t)	Evaran		Comments	
Common Name	Total Length (m			Comments	
_0					
.02					
$\frac{-03}{6}$					
.04			<u>-</u>		
.03			= s en KFV = = = = = = = = = = = = = = = = = = =		
Site ID:		Date Co	llected:		
SAMPLE ID:	<u>.</u>	4 			
Common Name	Total Length (m	m) Frozen		Comments	
01		- 0			
02	!			,	
.03		0			
	ļ	0			
.05	 	<u>ii</u>			
Released By / Organization		Received By / O		n Received	
Print Name & Organization	Time	rent Name & Organization			11:30
	Date:	JOHN BAG	chungn		0ate
Signature		John Do	relm		10/27/
Prict Name & Organization	line 1	Profit Name & Organizatio	`1		Tallie 1
Newson	Date. S	Signature			Uale
Signature					
Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686			pack	tions regarding ing, and shippir all Jim Stricko 231-499-59	ig: (GLEC)
	Table Administration	Lie Article See		P aç	je 2 of 17

Project:	<u>SLRAOC</u>	Reservoir wh	ole fish samp	ling cond	lucted by MPC	A, October 2016
Location: _	TR	Sar	mple Date:	10/11/	<i>l</i>	Recorded by: HB
Weather:	Cloud	y .	Comm	ents:		· · · · · · · · · · · · · · · · · · ·
		co Suck	_	mple G	roup ID: <u> </u>	5015 Group Sample ID#: MNU6-TR-WS-B
Individual Fish #	Field Length	\$45 SEPT.		Sex ID	Perform Otolith Extraction	Comments
1	l _	965	WS	ies	Yes	
a	420	820	\	γ	٧ (
3	448	923		۶	7	
				, 		
		_	···-			
		-				

	<u> —</u>		· · · ·			
	:					
	_ · · · · · · · · · · · · · · · · · · ·					

Project:	SLRAOC	Reservoir wh	ole fish samp	ling cond	ucted by MPCA	, <u>October 2016</u>
Location:	TR	Sar MaS Dia	nple Date:	10/11/	16 Time: <u>/</u>	7',45_ Recorded by: H Bauman
Weather:	Clou	dy	Comm	ents:		
		<u>≥</u>		mple Gi	roup ID: <u>C</u>	<i>5</i> ン 14 _ Group Sample ID#: <u>MN16 - TR - WS -C</u>
Individual Fish #	Field Length	Wet Field Weight (grams)		Sex ID	Perform Otolith Extraction	Comments
1	435	1070		Yes	Yes	
2	405	le18	1)	
3	392	633	V	V	√	
· · · · · · · · · · · · · · · · · · ·						
		<u> </u>	<u> </u>			
	-					

Project:	<u>SLRAO</u> (C Reservoir w	hole fish sam	<u>pling con</u>	ducted by MPC.	A <u>, October 2016</u>
Location: _	Thoms	ion Res	Bervol/		_	5:00 Recorded by: H. Bauman
Weather:_	Cloud	ly	Comm	nents:_		
Fish Species	: WA Welle	L ca -4e	omposite Sa	imple G	roup ID: <u>A</u>	5007 Group Sample ID#: <u>MN/6~ TR-WAL-</u> /
	Wet Field	Wet Field Weight	and the second second second	Sex ID	Perform Otolith Extraction	Comments
	219	261	WAL	Yes	Yes	
_ 2	346	360				
_3	334		V	J		
-						
			<u> </u>			· .
					_	
						· · · · · · · · · · · · · · · · · · ·

Project:	SLRAOC	Reservoir wh	nole fish samp	ling cond	ducted by MPCA	, October 2016	
	Thou	44 Ju [DOC.	•			by: <u>H. Bauman</u>
Weather: <u>(</u>	Cloudy	<u> </u>	Comm	ients: _	Small Indi	1-3 yr	Rele Buss
Fish Species	Rock	Boss co	mposite Sa	imple G	roup ID:/	⊆ Group Sample ID#	MN16-TR-RB-
Individual Fish#	Wet Field Length (mm)	Wet Field Weight (grams)	Species	Sex ID	Perform Otolith Extraction	Comments	
	135	50	RB	У	У		
3	145	58	RB	Ý	Y		
3	190	142	RB	Y	7		· · · · · · · · · · · · · · · · · · ·
				/	, , , , , , , , , , , , , , , , , , , ,		
				ļ			
				ļ			
			. <u>.</u>				

Project:	SLRAOC Reservoir whole fish sampling conducted by MPCA, October 2016
Location:	TR Sample Date: 144/16 Time: 15:30 Recorded by: H. Bauman
	Monton Reservoil
Weather:	Cloudy Comments: Small 1-2 yr Rock Bass
Fish Specie	es: <u>Rock Bus</u> Composite Sample Group ID: <u>B</u> Group Sample ID#: <u>MNH6-TR-RB-B</u>

individual Fish #	Field =	Wet Field	Species	Sex ID	Perform Ordlith	Comments
	Length (mm)	Weight (grams)			Extraction	
/	90			טא	No	
7	100					
3.	100			<u> </u>		
4	/6U_					
<u> </u>	100	_				
6	100					
7	105			ļ <u>.</u>		
8	105				-	
		150		V	\ <u>\</u>	Total wt.
				<u> </u>		
				<u> </u>		

WHOLE FISH CHAIN OF CUSTODY

Thomson Carlor # ?

(Complete for the samples to be included in one coder) eld Logs Thomson Reservoir

Sender: Mark Elliott / MPCA Date Sent: 10 / 26 / 16
Email Address: Mark elliott estate many Phone Number: 219-302-6669

Note: Record information for minnows on back

Site ID:	Thomson Reserv	Date Collected: 10 /11 /16
	MN16-SMB+A	(lubel # 5003)
	ommon Name To	tal Length (mm) Frozen Comments
.01 Swu	mouth Bass	bulk Sple W
.03		10 sund ljuven.10
.04		3.20 fish
.05		130-164 mm

Site ID:	Thomson R	es	Date Collected:	10 11 16
SAMPLE ID: /	MN16-TR-50	B-B ((44) #5036)	
	mmon Name	Total Length (m	m) Frozen	Comments
01 Smul	Imonth Busy	364	2	
1.02		327	<u> </u>	
03		365	ブ	
.04				
100		<u> </u>		

Site ID: Thomson Res	Date Collected: 10 / 11 / 1/6
SAMPLE ID: MN 16+7R-15MB-C	(luse # 5004)
Common Name Total Length (r	um) Frozen Comments
1.01 Smallmouth Biss 389	2
366	
.03	
.04	
.05	(o) ()

	Site	ID: _ 1	Chomson	Rec	Ž.	Date Co	llected:	10/11/16
	SAN	APLE ID:	MN16-7	2+5MB	- 0 /	Whe #	5038	
		C	ommon Name		Total Length (m	m) Frozen	Č.	omments
	.01	Swell	mouth	2495	bulk sope	? & & X	bulk_	S-P10
	. .02				LAT! WELL	₹% ♦	103-170	MM
/	.03				1266 4654 358 G f		- 603- 170 - 541	10.10
	.04				77-0-7	♦ • • •		
	.05					0 55		

Released By / Organization		Received By / Organization Received Fr	
Print Name & Organization: Markell Dtt MARA Grey Retersor	Time:	Print Name & Organization: 10 hn 15 achman	Time: 18 : 40
Signature: Otto Ina Certain	Date:	Signfure Bachnar	Date: 1927/16
Print Name & Organization:	Time:	Print Name & Organization:	Time:
Signature:	Date:	Signature:	Date:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Project:	SLRAOC Reservoir	whole fish sampling conduc	ted by MPCA, October 2	<u>016</u>	
Location:		î î	Time: 13:05	Recorded by: 14 Bau	men
Weather: _	Cloudy	N ROS Comments:			
Fish Specie	s: <u>單SMB</u>	Composite Sample Gro	A up ID:≇ Group:	<i>5003</i> Sample ID#: <u>MN16 - TR</u>	smB -智-夏A

Individual Fish #	Wet Field Length (mm)	Wet Field Weight (grams)	Species	Sex ID	Perform Otolith Extraction	Comments
1	143	39	事smB	No	No	
2	139	36		Ť	}	
3	145	41				
4	143	41				
5	153	47				
9	130	30				
7	164	64				
8	142	37				
9	(3)	30				
10	130	29		$\overline{\wedge}$	1	•
	-			-	7	

Project:	SLRAOC	Reservoir w	hole fish samp	oling cond	ducted by MPC/	<u> 4, October 2016</u>
						Recorded by: H Bauman
Weather: _						
Fish Species	: <u>SMF</u> Sme	3 co 11mou	mposite Sa	mple G	roup ID: <u>B</u>	5036 Group Sample ID#: MNILe - TR-SMB-1
Individual Fish #	Field Length	 a. 166, Applicate September 3, 198 		ID		Comments
1	364	763	SMB	Yes	Yes	
کر ع	327			7	>	
3_	365	714		Y	У	
					1	
						-
				<u> </u>		
	·					
				-	<u> </u>	
		-				

Project:	SLRAOC	Reservoir w	hole fish samı	pling cond	ducted by MPC	A, October 2016
Location: _	TR Th	Sa δλυ50	mple Date:	: w/u/! 5.	<i>6</i> Time:	Recorded by: H. Bauman
Weather:	Cloud	<u>y</u>	_ Comm	nents: _		
Fish Species			omposite Sa			5004 Group Sample ID#: <u>IM ILp - TR - SmB -</u> C
Individual Fish #	Wet	Wet		Sex	Perform	- Comments
	(mm)	(grams)			Extraction	
(389	1090	SMB	Yes	Yes	
ىر	289	10/2	1	1	1	
3	392	936	√	V	>	
	:					
<u> </u>					<u>-</u>	
	·					
· · · · · · · · · · · · · · · · · · ·						

Project:	<u>SLRAQC</u>	Reservoir wh	nole fish samp	ling cond	lucted by MPCA	A, October <u>2016</u>
						Recorded by: H. Bauman
Weather:	elondi	smson J	Res. Comm	ents:		
Fish Species	: <u>SM</u> Sm	B co	mposite Sa 21h B	mple G	roup ID: Ď	Group Sample ID#: MN16-TR-SMB-
Individual Fish#	Field Length	Field Weight	Species	Sex ID	Perform Otolith Extraction	Comments
1	(mm) : /フ0	(grams)		No	No	<u> 19 a de la como de la 194, de fordinada e defondada de fordinada e de fordinada e de fordinada e de fordinada e</u> En esta de la como de fordinada e d
2	160	<u> </u>		1	1	
3	159					
4	155					
5	143					
6	139					
7	127		-		,	
8	112					
9	103			1		
		358				Total wt.
			· · · · · ·			

WHOLE FISH CHAIN OF CUSTODY

Thomson -Cwes #3

(Complete for the samples to be included in-Outcode left) ield Logs Thomson Reservoir

Sender:	Mark	Elliott	/MPCA	Date Sent:	1	/
Email Address	Mark ,	ell:0x+10	Gleike min.	Phone Number:	716-200	-6-1-100

Motal Pages	s: Mark elliox	to state mn.	ب_Phone Number: _	218-302-6649
	d information for n		k Dåte Collected:	
	MALLY -TRE-NOT		(Luby) # 5006	Contract of Marketine Contractor (1997) and the second of the second
	Common Name	Total Length (m)	n) Frozen	Comments
.01 Nort	hern Pike	374	1	······································
.02		348	k	
.03		342	· ·	
.04			0	
.05			0 %	
Site ID;	Thomson 1	zes.	Date Collected:	10 11 16
SAMPLE ID:	MW 16+TR-1	JP ZA (label # 5005	
	Common Name	Total Length (mn	i) - Frozen	Comments
.01 Yel	llow Perch	270	* * *	
.02		278	Dudice **	ent e
.03		256	٠ ٢	
.04			0	
.05		· · · · · · · · · · · · · · · · · · ·		
Site ID:	Thomson !	les.	Date Collected:	10 11 1C
SAMPLE ID:	MN 16+TR->	IP-B ()	bel # 5008	
	Common Name	Total Length (mn		Comments
.01 Ye	llow Perch	238_	≫ >	
.02		239	A	
.03		231	> 23	<u> </u>
.04		Z30	8	<u> </u>
.05				
Site ID:	thomson Res		Date Collected:	10/11/16
	MNL6-TR-W	s=A	(lubel # 5011	
	ommon Name	Total Length (mn		Comments
	Sucker	490	S S S	- 4
.02		485	2 Dupli	cule
.03		480	8-33	
.04		•	0	· · · · · · · · · · · · · · · · · · ·
.05				

Released By / Organization		Received By / Organization Received I	AAGE L. H. A. S. S. ZERREIT . A. S. A. S.
Print Name & Organization: Mark ENOHMAA Grez Peters	Time: 1515	Print Name & Organization: Dohn Backman	Time: #200_
Signature: White Crex Petern	Date: 10/25/16	Signiture Back	Date: 10/27/16
Print Name & Organization:	Time:	Print Name & Organization:	Time:
Signature;	Date:	Signature:	Date:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Project:	SLRAOC	Reservoir wh	ole fish samp	oling conc	lucted by MPCA	. <u>October 2016</u>	
Location: _	TR ones	Sai	mple Date:	iduf	<u>//</u> Time:	Recorded by:	H. Bauman
Weather: _	('loud	7	Comm	ents:	Sund	1 yr Pike	
Fish Species	:_NP North	co	mposite Sa	mple G	roup ID: <u>A</u>	_ Group Sample ID#: <u>/</u> /1	5006 N16-TR-NP-1
Individual	1	L. 4.0945000 - 0.0000	Species	Sex ID	Perform	Comments	
Fish#	Length	Field Weight (grams)			Otolith Extraction		
	374	275	NP	Yes	Yes		
ત	348	178	1				
3	342	186		V.			
						·	<u> </u>
						·	
					<u></u> -		

Project:	SLRAOC	: Reservoir wh	nole fi <u>sh sam</u> g	oling cond	ducted by MPC	4, October 2016	
Location: _	TR	Sar	mple Date:	10/11	<u> </u>	3:00_ Re	corded by: H Bauman
		1					corded by: H Bauman
Fish Species:	Yello	— co W Per	mposite Sa	ımple G	iroup ID: A	_ Group Samp	5005 ole ID#: MN16-TR-YP-A
Individual Fish #	Field Length	Wet Field Weight (grams)		- 1 (Page 2000)	Perform Otolith Extraction	Comments	
1	****	268	YP	les	Yes		and the second of the second o
<u>2</u> 3		352					
3	256	239	V	1	\ <u>\</u>		
1							
							, , , , , , , , , , , , , , , , , , ,
						······································	

Project:	roject: SLRAOC Reservoir whole fish sampling conducted by MPCA, October 2016									
ocation: TR Sample Date: 19/16/16 Time: 15:15 Recorded by: H. Bauman										
Thomson Res- Weather: Cloudy Comments:										
Fish Species: Composite Sample Group ID: Group Sample ID#: MN/Ho - TR - YP-B Velow lerch										
Individual	Wet	Wet	Species	2.625	Perform	Comments				
Fish #	Field Length	Field Weight		ID	Otolith Extraction					
Marian (1922) ila Gelia (1921) ila (1924)	(mm)	(grams)								
1	238	alD	4P	405	Yes					
ລ	7.39	au	VP	١	412					
3 4	231	188	40							
4	230	172	UP		,1,					
	من	110	1 1							
		_ .	······································							
					,					
	~ .									
	-				-					

Project:	SLRAOC	Reservoir wh	hole fish samp	oling conc	ducted by MPC/	A, October 2016
Location: _				10/11/	/ /6 Time:_ (2:25 Recorded by: H. Bauman
Weather: _		uson 1		ients: _		
Fish Species	: WS	′ Co	omposite Sa	ımple G	roup !D: <u></u>	501 _ Group Sample ID#: <u>MN16-TR-W\$-</u> A
<u> </u>	Shik	Suck	ces			
Individual Fish #	Field	Wet Field Weight (grams)	Species	105% 127	Perform Otolith Extraction	Comments
	490	1204	WS	Yes	Jes	
ス	485	1184		У	Ý	
3	480	1064		У	У	
	!		····	· · · · · · · · · · · · · · · · · · ·		

APPENDIX C

Boulder Lake Reservoir Whole Fish COCs and Fish Sampling Field Logs

WHOLE FISH CHAIN OF CUSTODY

lete for the samples to be included hin she wild be included hin she will be included hin sh

(Complete for the samples to b					
Sender: Mark Elliott MACA Email Address: Wark Elliott@Stake and v5	Date Sent: 10 / 26 / 16				
Email Address: Wark. Plliott@ State pon us	Phone Number: 719-302-6649				
Note: Record information for minnows on bac	· - · ·				
	The state of the s				
site ID: Boulder Reservol	Date Collected: 10 / 6 / 16				
SAMPLE ID: MN/6+BR-RB-A (Lib "					
Common Name Total Length (m	m) Frozen Comments				
.01 Rock Buss	9 9-individual fish				
.02	yoy or small juve nile				
.03	AOA OL ANTE THANKS				
04 05					
	The second secon				
Site ID: Boulder Reservoil	Date Collected: /0 / 6 / /6				
SAMPLE ID: MN/4-BR+BLC-A (Lobel &	m) Frozen Comments				
Common Name Total Length (m					
.01 Black Cappie 107	Small juvenilo				
1.03 loz	ind:v:d_9				
04	X X				
05 99 99	7				
Site ID: Boulder Resorvoil	Date Collected: 10 / 6 / 1/6				
SAMPLE ID: MN16-BR+YR-AI (La	501 0 5031)				
Common Name Total Length (m					
.01 Yellow Perch	13 indivituals -500				
.02	los Shoot (112-190 mm)				
.03	juvaille				
.04					
.05					
Site ID: Boulder Reservoir	Date Collected: 10 / 6 /16				
	# 5030				
Common Name Total Length (m	m) Frozen Comments				
.01 Vellas Perch	o 13 individual distr				
	0 see log quet (110-185 mm)				
	o juvenile paren				
04 05 05 05 05 05 05 05 05 05 05 05 05 05					
.05					
The state of the s	Received By / Organization Received Frozen: [1]				
Mark Elliottime & Organization: Mark Elliottime Gree Ceteron 16:00	John Bachwan 11:800m				
Signature: Date:	Date: Date:				
Mic mes et 10-25-14	Delit Name & Organization:				
Print Name & Organization: Time:	Print Name & Organization:				
Signature: Date:	Signature: Date:				
Ship coolers to: GLEC	Questions regarding sampling,				
Attn: John Bachman	packing, and shipping:				
739 Hastings Street	Call Jim Stricko (GLEC) 231-499-5947				
Traverse City, MI 49686					

Page 1 of 18

Project:	SLRAOC	Reservoir wh	ole fish samp	ling cond	ucted by MPCA	, October <u>2016</u>				
Location: _	ocation: BR Sample Date: 10/1/16 Time: 14:45 Recorded by: H Bauman Boulder Reservoir									
Weather: <u>?</u>	Clondi]	Comm	ents:	·					
Fish Species		con k Bas		mple G	roup (D: <u>A</u>	5035 _ Group Sample ID#: <u>MNIL- BR - RB</u> -A				
Individual Fish #	Field	Wet Field Weight (grams)		Sex ID	Perform Otolith Extraction	Comments				
	102	aa	RB	No	No					
a	114	27								
3	101	18								
4	105	22								
5	98	17								
6	101	19								
7	102	91								
. 8	/al	35		1						
93	110	27	<u> </u>	<u>U</u>						
439			<u></u>							
4	-			<u> </u>						
l	ļ.	I	I	1	I	i				

Project: SLRAOC Reservoir whole fish sampling conducted by MPCA, October 2016									
Location: BR Sample Date: 10/6/16 Time: 14:50 Recorded by: HBauman Boulder Reservoir									
Weather: PCloudy Comments: BLC-Black Ovarie? Creek									
Fish Species: BLC Composite Sample Group ID: A Group Sample ID#: MN/6-BR-BLC Black Crappie ?									
Individual Fish#	Wet Field	Wet Field	Species		Perform Otolith	Comments			
	Length (mm)	Weight (grams)			Extraction				
	107	23	BLC	No	No				
2	88	13							
3	102	20		\ 					
4	109	25	-	1					
5	99	17			,				
4	99	/8		<u>U</u>					
					V				
	_								
		<u>-</u>							

Notes:

Check Species Black Crappie

or Rock Bass

Project:	oject: SLRAOC Reservoir whole fish sampling conducted by MPCA, October 2016								
Location: BR Sample Date: 10/11/16 Time: 12:30 Recorded by: H. Bruman									
Weather: Sun brezy Comments: Bulk									
Fish Species: YPP Composite Sample Group ID: A Group Sample ID#: MN/6-BR-YP-A YELLOW PERCLE.									
Individual Fish#		Wet Field		Sex ID	Perform Otalith	Comments			
11311 T	Length (mm)	Weight			Extraction				
格	//2	(grams) /s ⁻	የ ዖ	No	No				
7	190								
3	180	63		[\					
4	160	49							
5	124	15							
6	115	14	¥,		1 1				
7	115	15	j.						
8	1/5	13	1/						
9	120	16			1 /_				
10	114	14		\bigvee _	<u> </u>				
<u> </u>	173	64							
12	112	/2							
13	115	11							

Project:	SLRAOC	Reservoir wh	iole fish samp	ling conc	lucted by MPCA	v. October 2016
	Bon	lder	Reserv	1015		2:45 Recorded by: H. Bauman
Weather: P	Cloude	4	Comm	ents: _		Bulk
	: <u>YP</u>	-	mposite Sa			<u>€031-5</u> 5030. _ Group Sample ID#: <u>MN 16-BR-YP-B</u>
Individual Fish #	Wet Field	Wet Field Weight	Species	Sex ID	Perform Otolith Extraction	Comments
1	160	46	YP	No	No	
a a	110	12				
3	150	ع ا3		1		
4	115	11				
5	154	41	\ \	j		
6	105	lı	1			
7	113	14	Ì,			
8	121	18			1/	
9	185	68		1/	<u> </u>	
10	111	13	11/	V		
	106	/2				
12	119	17		:		
l <i>3</i> y Notes:	106	<u> / 2</u>				

WHOLE FISH CHAIN OF CUSTODY (Complete for the samples to be included hair offection and Field Logs Boulder Res **Date Sent:** Sender: Phone Number: 25-3-2-**Email Address**: Note: Record information for minnows on back Site ID: Boulder Reservoil Date Collected: Sol # SAMPLE ID: MINI 16-BR+YP-C 5034 Comments > Common Name Total Length (mm) Frozen individue .01 .02 .03juvenile 5,70 .04 .05 Boulder Receivois **Date Collected:** Site ID: 146el # 5033 SAMPLEID: MN 16-BR +6-SH +A Total Length (mm) Frozen Comments Common Name Golden Shiner / Shiner Mix .01.02 iel mixed w .03 .04 .05Boulder Reservois Date Collected: Site ID: SAMPLE ID: MOV 16 -BR+GBH-B Comments Total Length (mm) Frozen Common Name Shiner/Shiner noix <u>(152 grus)</u> .01.02 Mix of Golder Shines + .03.04.05 Date Collected: Site ID: SAMPLEID: MN 16 - BR- 45H-C Comments Common Name Total Length (mm) Frozen Golde Shinor/ Shinor Mix .02Mix of Golden + Spot itail .03 .04 .05 Received Frozen: |] Received By / Organization Released By / Organization Time: Print Name & Organization: Time: Print Name & Organization: John Bachmar 10245 Date: Signature: 10/27/1 Priof Name & Organization Time: Print Name & Organization: Date: Signature: Date: Signature:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Project:	SLRAOC	Reservoir wh	nole fish same	oling cond	ducted by MPCA	A, October 2016
	BAG	der 1	oses vo	1		S:00 Recorded by: H Bauman
Weather: T	2 Clou	dy	Comm	ents: _		Belk Splo
					roup ID: A	<i>5</i> 033 Group Sample ID#: <u>MN/U~BR~GSH~</u> A
	Wet Field Length (mm)	Field	Species	Sex ID	Perform Otolith Extraction	Comments
		152	GSH	No	No	
, , , , , , , , , , , , , , , , , , ,						
				,		
				-		

Notes: 10% spot tail shiners by weight

Project:	SLRAOC	Reservoir w	hole fish samı	oling cond	ducted by MPCA	A. October 2016
			mple Date:	• •		F:05 Recorded by: HBauman
Weather: _	PClou	dy	Comm	ients: _		Bulk Splo
Fish Species			_		iroup ID: <u>B</u> er Mix	<i>5</i> 03ユ _ Group Sample ID#: <u><i>MN16- BR -</i> GSH</u> - <u>F</u>)
Individual Fish #	Field Length	Wet Field Weight (grams)	the second control of		Perform Otolith Extraction	Comments
tradition of the second		/52	GSH	N _o	Nø	
						,
	·					

Notes: 10% spot tail shiner by weight

Project:	<u>SLRAOC</u>	Reservoir wh	iole fish samp	ling cond	ducted by MPCA	, October 2016		
Weather: _	Boul P <i>Clo</i>	der r	.ese.~ Comm	ents: _	,	Bulk	5-Pl	Bauman O 45 o-BR-GSH-C
().	siden	Shines	Species	Sex	Perform	Comments		
■ 1.7 建設。対策機	Field Length (mm)	はつかんがいたくがたりかくりつ・・・	NO SECTION OF A SEC	ID.	Otolith Extraction			
		[63	୯୬୫	No	No			
					-			
							<u></u>	
		!						
	-							<u> </u>

Notes: 1070 Spot tail Shiner by weight

Project:	SLRAOC	Reservoir w	nole f <u>ish sam</u> g	oling cone	ducted by MPC	A, October 2015
						4:30 Recorded by: H Bauman
Weather: 🗍	Cloud	ly	Comm	ents:	(3	sulk Spla
Fish Species	: <u>4P</u> Yelb	co W Pel	mposite Sa	mple G	roup ID: <u>C</u>	5034 Group Sample ID#: <u>M7V16 - BR - YP- C</u>
Individual	Wet	Wet	Species	Sex	Perform	Comments
Fish #	Field Length (mm)	Field Weight (grams)		ID	Otolith Extraction	
1	173	58	47	No	No	
a	172	58			1	
3	157	45				
4	166	47				
5	103	10				
6	107	/a				
7	106	/a				
8 9	110	13	· · · · · · · · · · · · · · · · · · ·			
9	105	/a,		1/	1/	
/0	110	14		V	V	
[]	103	//	V			
/a	109	/2				

Notes:

Page 10 of 18

WHOLE FISH CHAIN OF CUSTODY
Chain-of-Custody and Field Logs Boulder Reservoir
(Complete for the samples to be included in one cooler) Mark Elliott /MPCA 10 / 26 / 16 Date Sent: Sender: Phone Number: 7/8 - 302 - 6649 Email Address: Mark. elliott @ state. Mr. 25 Note: Record information for minnows on back Boulder Reservoir Date Collected: SAMPLEID: MN 16 + BIR+WIAL -A /Lab # 5041 Total Length (mm) Comments Frozen Common Name Duplicate 470 .01 .02 396 .03× .04 .05 Date Collected: Bomilder Reservoir Site ID: SAMPLE ID: MINIS - BR - WAL-C (Lab # 5043) Comments Total Length (mm) Frozen Common Name .01 202° .02 राप .03 77.7 203 .04 2.11 A. .05 Date Collected: ROCEV VOIV SAMPLED MN16-1BR-1WS-B Comments Total Length (mm) Common Name Frozen White Surker 37n .01466 .02 × .03 456 .04 .05 Date Collected: Site ID: SAMPLE ID: Comments Total Length (mm) Frozen Common Name .01 .020 .03.04 .05 Received Frozen: h Received By / Organization Released By / Organization Print Name & Organization: Time: 16-00 Bachmar 11:00 a Date 10 27 / L Time: 0/25/16 Print Name & Organization: Date: Date: Signature: Signature:

Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686

Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Project:	<u>SLRAOC</u>	Reservoir wh	nole fish samp	oling cond	ucted by MPCA	s, October 2016
				10/6/1	<u></u> Time: ∐	:00 Recorded by: H. Bauman
Weather: S		lder a Bruze		ents:		
Fish Species	: <u>WAL</u> العراا		mposite Sa	mple G	roup ID: <u>A</u>	504 (Group Sample ID#: <u>MN 16 - BR - WAL</u> - A
Individual Fish#	Field	Wet Field Weight (grams)	Species	Sex . ID	Perform Otolith Extraction	Comments
Al	420		WAL	Yes	Yes	
Aa		578	WAL	Yes	Yes	
A 3	396		WAL	Yes	Yes	
A4			WAL	Yes	Yes	7
A5			WAL	Yes	res	?

Project:	<u>SLRAOC</u>	Reservoir wh	<u>iole fish samp</u>	ling cond	ducted by MPCA	A, October 201 <u>6</u>
	Bon	lder	Res.			1:15 Recorded by: H Bauman
Weather: \overline{T}	Clona	luz	Comm	ents:		
Fish Species	_	- co lleye	mposite Sa	mple G	roup ID: <u>C</u>	5043 Group Sample ID#: <u>MNI6-BR-WAL-C</u>
(主要にないないという)	Field Length				Perform Otolith Extraction	Comments
CI		· · · · · · · · · · · · · · · · · · ·	WAL	Yes	Yes	
ca	214	-84	WAL	Yes	Yes	
C3	હ્યુટ	83	WAL	Yes	Yes	
C4	203	72	WAL			
C5	211	73	WAL	Yes	Yes	,
·						
					····	
<u> </u>						

Project:	SLRAOC	Reservoir wh	iole fish samp	oling cond	ducted by MPC	A. October 2016
Location:	BR R.	Sai	nple Date:	10/10	ДЬ Time: <u>\</u> З	3:35 Recorded by: H. Bauman
	_					3:35 Recorded by: H. Bauman
Fish Species	: <u>WS</u> Wh.	; te 2:	mposite Sa	mple G	roup ID: <u>B</u>	5029 Group Sample ID#: MNI6-BR-WS-E
Individual Fish#	Field Length	Wet Field Weight (grams)	Species	Sex ID	Perform Otolith Extraction	Comments
BI	370	622	WS	Yes	les	
Ba		1830	ws	ies	Ues	
83	456	1150	WS	Yes	Yes	
		·				
				-		·- ·- ·-

WHOLE FISH CHAIN OF CUSTODY

(- · — i	•	e includeath one c	GONDE THE THE LOGS BOUNCE TRESERVOIL
Sender: Mark Elliott Email Address: Mark. elliotte S	I MAC A	_ Date Se	ent:/
Email Address: mck. elliotte 5	tede mous	Phone Numb	er: <u>218-302-6649</u>
Note: Record information for mi	nnows on bacl	k	
Site ID: Boulder Lake Re	servoir	Date Collec	ted: 10/6/16
SAMPLE ID: MN16-BR-WS+A	(Lab #	5027	
Common Name	Total Length (mn	n) Frozen	Comments
.01 White Sucker	279	X	ms/msi)
.02	438	<u> </u>	
.03	365	*	
04		0	
.05			
Site ID: Boulder Lake Re	- X-1	Date Collec	ted: 0/6/4
SAMPLE ID: MN 16-BR+W1-		15 # 5028)	Comments
	Total Length (mr	n) Frozen	A COMMONIST AND ASSESSED.
01 White Suctor	470	- X -	
.03	482	98 2	
.04		100 o 100	
.05			
Site ID: Bouldor Reserv	oi C	Date Colle	eted: 10 / 6 / 16
SAMPLEID: MN 16 - BR-14	ML-B	Last	
Common Name	Total Length (m)	m) Frozen	Comments
.01 walleye	250	A	
.02	295	_ 8	
.03	225	<u> </u>	
0.04		0 2 4	
.05			
Site ID:		Date Colle	cted:
SAMPLE ID:	1 - 2 - 2 - 2		
Common Name	Total Length (m)	m) Frozen	Comments
01 02 03 03 03 03 03 03 03 03 03 03 03 03 03	 		
.02		0	
.04	. 	14 O 14	
.05		0	
Released By / Organization		Received By / Org	anization Received Frozen: [
Print Name & Organization:	Time: P	rint-Name & Organization:	Time:
Mark Ellid with Gregor	e70-1600	7	10:30 Date:
Signature: Muc Granization: Print Name & Organization:	10/24/16 C	Figure & Organization:	Chm 10/27/16
Signature:	Date: S	Signature:	Date:
Ship coolers to: GLEC Attn: John Bachman 739 Hastings Street Traverse City, MI 49686	GLF Great Lukes Environ	EC Importal Center	Questions regarding sampling, packing, and shipping: Call Jim Stricko (GLEC) 231-499-5947

Page 15 of 18

Project:	<u>SLRAOC</u>	Reservoir wh	ole fish samp	ling cond	ducted by MPCA	4, October 2016
		Sar		10/10	ال Time: <u>ا</u>	: 0D Recorded by: H. Bauman
Weather: $\underline{\mathbb{S}}$	iun B	<u>ceny</u>	Comm	ents:		ו דיר מי
Fish Species	: WS Wh:	con	mposite Sa	mple G	roup ID: <u>A</u>	5097. _ Group Sample ID#: <u>MN16-BK-WS-A</u>
	Field Length	Wet Field Weight (grams)		Sex. ID	Perform Otolith Extraction	Comments.
A l	279	a ર્ચ 1	WS	Yes	العج ا	Bookspilgfordungste from Land der _e ngeliche vor den make en sich foreit im der den med eine stelle stelle med gegenen
A 2	438	•	WS	165	Yes	
A3	345	619	WS	ies	Yes	
		7				
		1847				
	·	<u>.</u>				
					<u></u>	
	į.	: 1	1			

Project:	SLRAO	C Reservoir w	hole fish sam	pling con	ducted by MPC	A, October 2016
	Bou	lder 1	Ce5		•	345 Recorded by: H.Bauman
Weather: 1	PClou	dy	Comm	ients: _		
		co		imple G	iroup ID: <u>C</u>	<i>5</i> 028 Group Sample ID#: <u>MN16-BR-WS</u> -(
Individual Fish #	. 1 4570 to 2019 to 10 10 10 10 10 10 10 10 10 10 10 10 10	Wet Field Weight (grams)		Sex ID	Perform Otolith Extraction	Comments
CI	598	1779	WS	Yes	Yes	
ငဍ	470	1285	ws	Yes	Yes	
<u>C3</u>	482	1326	WS	Yes		
 .						
<u>.</u>						X.
			_			
						· · · · · · · · · · · · · · · · · · ·
						·
-						
]					

Notes:

Page 17 of 18

Sould of Recorded by: H Bournar Bould of Res. Weather: Pcloudy Comments: Fish Species: WAL Composite Sample Group ID: B Group Sample ID#: MNI6-BR-WAI Individual Wet Wet Species Sex Perform Comments Fish # Field Field ID Otolith Length Weight (grams) B1 250 131 WAL Yes Yes B3 285 212 WAL Yes Yes B3 285 81 WAL Yes Yes
Weather: PCloudy Comments: Sofa Sofa
Fish Species: WAL Composite Sample Group ID: B Group Sample ID#: MNI6-BR-WAI Individual Wet Wet Species Sex Perform Comments Fish # Field Field ID Otolith Length Weight Extraction [mm] (grams) B1 250 131 WAL Yes Yes B2 295 212 WAL Yes Yes B3 225 81 WAL Yes Yes
Fish.# Field Field ID Otolith Length Weight Extraction (mm) (grams) B1 250 131 WAL Yes Yes B2 295 212 WAL Yes Yes B3 285 81 WAL Yes Yes
B3 225 81. WAL Yes Yes
B3 225 81. WAL Yes Yes
B3 225 81. WAL Yes Yes
424

APPENDIX D

GLEC Fish and Macroinvertebrate Tissue Processing Report

Southeast Michigan Office 31700 West Thirteen Mile Road, Suite 215 Farmington Hills, Michigan 48334 Phone: 248.538.0900

Fax: 248.538.0906

January 19, 2017

Mariah Hope Advanced Environmental Management Group 44339 Plymouth Oaks Boulevard Plymouth, Michigan 48170-2585

Phone: 734-354-9070

SUBJECT: Fish and Macroinvertebrate Tissue Processing

Scanlon, Thomson, and Boulder Reservoirs

Cloquet, Minnesota

USACE AEM Group Contract W911XK-16-D-0014

GLEC Project Number: 5148

Dear Ms. Hope:

Great Lakes Environmental Center, Inc. (GLEC) provided fish and macroinvertebrate tissue processing and fish otolith extraction services to Advance Environmental Management Group (AEM Group) and the U.S. Army Corps of Engineers in conjunction with the 2016 Tissue Analysis of Scanlon, Thomson, and Boulder Reservoirs located near Cloquet, Minnesota.

The purpose of this project is to characterize the tissue samples provided by the Minnesota Pollution Control Agency (MPCA) from three reservoirs located near Cloquet, Minnesota (Boulder Lake, Scanlon and Thomson Reservoirs). The tissue samples were used to evaluate human and wildlife exposure due to dioxin, total and methyl mercury within these three reservoirs.

<u>Tissue Processing Procedures</u>

GLEC prepared the 39 fish and 11 macroinvertebrate tissue samples using the procedures outlined by EPA in EPA-841-R-14-007: National Coastal Condition Assessment, 2015 Field Operations Manual and EPA 841-R-14-008, National Coastal Condition Assessment, 2015 Laboratory

Operations Manual. The whole body fish tissue procedure is described in the 2015 National Coastal Condition Assessment Laboratory Operations Manual (Appendix A); this document references the fish tissue preparation procedures that are located in the Quality Assurance Project Plan for Sample Preparation for the 2013-2014 National Rivers and Streams Assessment Fish Fillet Indicator (Appendix B).

In accordance with the 2015 National Coastal Condition Assessment Laboratory Operations Manual USEPA Laboratory, the following rinsate blanks were collected.

Date	Tissue Type	GLEC Sample Number	Project Sample Designation
11-2-16	Fish	H2O Rinsate collected for MeHG following GLEC 5041	MN16 BR WAL-A
11-2-16	Fish	H2O Rinsate collected for total Hg following GLEC 5031	MN16 BR YP-A
11-3-16	Fish	Hexane Rinse collected for dioxin following GLEC 5045	MN16 BR GS-C
11-8-16	Fish	H2O Rinsate collected for MeHG following GLEC 5036	MN16 TR SMB-B
11-8-16	Fish	Hexane Rinse collected for dioxin following GLEC 5004	MN16 TR SMB-C
11-9-16	Fish	H2O Rinsate collected for total Hg following GLEC 5015	MN16 TR WS-B
11-10-16	Fish	Hexane Rinse collected for dioxin following GLEC 5016	MN16 SR WS-C
11-11-16	Fish	H2O Rinsate collected for total Hg following GLEC 5022	MN16 SR WS-A
11-14-16	Fish	H2O Rinsate collected for MeHG following GLEC 5020	MN16 SR YP-B
11-29-16	Macroinvertebrates	H2O Rinsate collected for total Hg following EPA-HD-TR-001-C	EPA HD TR 001-C
11-30-16	Macroinvertebrates	H2O Rinsate collected for MeHG following BW16 SR 003 D	BW16 SR 003 D

In conjunction with the USEPA Operations Manuals, triplicate percent lipid testing was conducted on three of the 39 fish tissue samples to evaluate homogenization of the tissue, the percent lipids test results follow:

GLEC Sample Number	Reservoir	Description	# of Individuals	Field Weight 1 (g)	Field Weight 2 (g)	Field Weight 3 (g)	Tissue Mass (g)	% Lipid	Standard Deviation	Sample Mean	Relative Standard Deviation (%)
5007-1							10.00	0.75	0.12	0.85	15
5007-2	Thomson	Walleye A	3	261	360	311	10.21	0.85			
5007-3							11.93	0.98			
5021-1							11.21	0.85	0.09	0.95	9.1
5021-2	Scanlon	SMB C	3	213	371	274	8.90	0.99			
5021-3							11.49	1.00			
5028-1							12.38	2.78	0.43	2.31	18
5028-2	Boulder	White Sucker C	3	1775	1285	1326	10.86	1.96			
5028-3							11.54	2.17			

Review of the percent lipids data for each of the three tissue samples reveals that the relative standard deviation was less than 20 percent and meets the homogenization requirements of the USEPA Laboratory Operation Manual. Note that there was insufficient tissue mass to complete percent lipids testing on the macroinvertebrate samples.

Let us know if you have other questions or require additional information.

Sincerely,

GREAT LAKES ENVIRONMENTAL CENTER, INC.

John Bachman Principal Research Scientist John H. Barkach, CPG, CHMM Senior Program Manager

Table 1. Fish Tissue Processing Field Data
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

				# of	Field	Field	Field	Field	Field	Total Mass	Perform	Perform						Processed Tissue
GLEC ID	QC	Reservoir	Description	Individuals	Weight 1	Weight 2	Weight 3	Weight 4	Weight 5	(mg)	Sex ID?	Otolith?	SexID 1	SexID 2	SexID 3	SexID 4	SexID 5	Shipped to Lab
5035		Boulder	Rock Bass A	9						368	No	No					<u>'</u>	11/7/2016
5044		Boulder	Black Crappie A	6						116	No	No						11/7/2016
5031		Boulder	Yellow Perch A	13						378	No	No						11/7/2016
5030		Boulder	Yellow Perch B	13						311	No	No						11/7/2016
5034		Boulder	Yellow Perch C	12						304	No	No						11/7/2016
5033		Boulder	Shiners A	Many						152	No	No						11/7/2016
5032		Boulder	Shiners B	Many						152	No	No						11/7/2016
5045		Boulder	Shiners C	Many						163	No	No						11/7/2016
5041	Dupe	Boulder	Walleye A	3	664	578	577			1819	1,2,3	1,2,3	М	М	М			11/7/2016
5043		Boulder	Walleye C	5	58	84	83	72	73	370	1,2,3,4,5	1,2,3,4,5	IND	IND	IND	IND	IND	11/7/2016
5029		Boulder	White Sucker B	3	622	1230	1150			3002	1,2,3	1,2,3	M	M	M			11/7/2016
5027	MSD	Boulder	White Sucker A	3	221	1007	619			1847	1,2,3	1,2,3	IND	M	M			11/7/2016
5028		Boulder	White Sucker C	3	1779	1285	1326			4390	1,2,3	1,2,3	F	F	F			11/7/2016
5042		Boulder	Walleye B	3	131	212	81			424	1,2,3	1,2,3	M	M	M			11/7/2016
5015		Thomson	White Sucker B	3	965	820	923			2708	1,2,3	1,2,3	F	F	F			11/14/2016
5014		Thomson	White Sucker C	3	1070	618	633			2321	1,2,3	1,2,3	F	F	F			11/14/2016
5007	MSD	Thomson	Walleye A	3	261	360	311			932	1,2,3	1,2,3	M	M	M			11/7/2016
5009		Thomson	Rock Bass A	3	50	58	142			250	1,2,3	1,2,3	M	F	M			11/14/2016
5010		Thomson	Rock Bass B	8						150	No	No						11/7/2016
5003		Thomson	Small Mouth Bass A	10						394	No	No						11/14/2016
5036		Thomson	Small Mouth Bass B	3	763	768	714			2245	1,2,3	1,2,3	F	M	F			11/14/2016
5004		Thomson	Small Mouth Bass C	3	1090	1012	936			3038	1,2,3	1,2,3	F	M	M			11/14/2016
5038		Thomson	Small Mouth Bass D	9						358	No	No						11/7/2016
5006		Thomson	North Pike A	3	275	178	186			639	1,2,3	1,2,3	F	F	F			11/14/2016
5005	Dupe	Thomson	Yellow Perch A	3	268	352				859	1,2,3	1,2,3	F	F	F			11/14/2016
5008		Thomson	Yellow Perch B	4	210	211	188	172		781	1,2,3,4	1,2,3,4	F	M	М	F		11/14/2016
5011	Dupe	Thomson	White Sucker A	3	1204	1144	1064			3412	1,2,3	1,2,3	F	F	F			11/14/2016
5016		Scanlon	White Sucker C	3	791	781	817			2389	1,2,3	1,2,3	F	F	F			11/14/2016
5019	Dupe	Scanlon	Northern Pike A	2	340	487				827	1,2	1,2	F	F				11/14/2016
5024		Scanlon	Shiners A	Many						61	No	No						11/15/2016
5023		Scanlon	Walleye A	3	237	215				620	1,2,3	1,2,3	M	M	M			11/14/2016
5001		Scanlon	SMB A	3	547	627	547			1721	1,2,3	1,2,3	M	F	M			11/14/2016
5002	Dupe	Scanlon	SMB B	3	473	587	278			1338	1,2,3	1,2,3	F	M	F			11/15/2016
5021		Scanlon	SMB C	3	213	371				858	1,2,3	1,2,3	F	F	M			11/14/2016
5022		Scanlon	White Sucker A	3	1015	736				2543	1,2,3	1,2,3	F	F	F			11/14/2016
5017		Scanlon	White Sucker B	3	844	952	324			2120	1,2,3	1,2,3	F	F	M			11/14/2016
5025	MSD	Scanlon	Yellow Perch A	4	166	136	124	74		500	1,2,3,4	1,2,3,4	F	F	F	М		11/15/2016
5020		Scanlon	Yellow Perch B	3	98	76	141			315	1,2,3	1,2,3	М	М	F			11/15/2016
5018		Scanlon	Yellow Perch C	19						432	No	No						11/14/2016

Table 2. Fish Tissue Processing Laboratory Data
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

GLEC ID	QC	Reservoir	Description	# of Individuals	Metric	1	2	3	4	5	SexID 1	SexID 2	SexID 3	SexID 4	SexID 5
5027	MSD	Boulder	White Sucker A	3	Length (mm)	272	399	347			IND	М	М		
5027	MSD	Boulder	White Sucker A	3	Mass (g)	221	1013	615			IND	M	М		
5028		Boulder	White Sucker C	3	Length (mm)	502	468	457			F	F	F		
5028		Boulder	White Sucker C	3	Mass (g)	1884	1368	1326			F	F	F		
5029		Boulder	White Sucker B	3	Length (mm)	351	464	455			M	M	М		
5029		Boulder	White Sucker B	3	Mass (g)	616	1232	1147			M	M	М		
5030		Boulder	Yellow Perch B	13	For greyed-out s	amples, se	ee small spe	ecies spread	dsheet tab fo	or individu	ual mass and	length			
5031		Boulder	Yellow Perch A	13											
5032		Boulder	Shiners B	Many											
5033		Boulder	Shiners A	Many											
5034		Boulder	Yellow Perch C	12											
5035		Boulder	Rock Bass A	9											
5041	Dupe	Boulder	Walleye A	3	Length (mm)	418	394	393			М	М	М		
5041	Dupe	Boulder	Walleye A	3	Mass (g)	671	599	591			M	M	М		
5042		Boulder	Walleye B	3	Length (mm)	248	288	219			M	M	M		
5042		Boulder	Walleye B	3	Mass (g)	127	213	79			M	M	М		
5043		Boulder	Walleye C	5	Length (mm)	204	213	220	200	211	IND	IND	IND	IND	IND
5043		Boulder	Walleye C	5	Mass (g)	56	83	82	72	73	IND	IND	IND	IND	IND
5044		Boulder	Black Crappie A	6											
5045		Boulder	Shiners C	Many											
5001		Scanlon	SMB A	3	Length (mm)	343	338	341			М	F	М		
5001		Scanlon	SMB A	3	Mass (g)	552	631	555			M	F	М		
5002	Dupe	Scanlon	SMB B	3	Length (mm)	321	345	272			F	M	F		
5002	Dupe	Scanlon	SMB B	3	Mass (g)	481	594	282			F	M	F		
5016		Scanlon	White Sucker C	3	Length (mm)	415	410	414			F	F	F		
5016		Scanlon	White Sucker C	3	Mass (g)	785	743	799			F	F	F		
5017		Scanlon	White Sucker B	3	Length (mm)	420	432	306			F	F	М		
5017		Scanlon	White Sucker B	3	Mass (g)	826	939	320			F	F	М		
5018		Scanlon	Yellow Perch C	19											
5019	Dupe	Scanlon	Northern Pike A	2	Length (mm)	415	459				F	F			
5019	Dupe	Scanlon	Northern Pike A	2	Mass (g)	343	481				F	F			
5020		Scanlon	Yellow Perch B	3	Length (mm)	201	186	219			M	M	F		
5020		Scanlon	Yellow Perch B	3	Mass (g)	100	87	142			M	M	F		
5021		Scanlon	SMB C	3	Length (mm)	250	289	265			F	F	M		
5021		Scanlon	SMB C	3	Mass (g)	218	379	279			F	F	М		
5022		Scanlon	White Sucker A	3	Length (mm)	436	389	395			F	F	F		
5022		Scanlon	White Sucker A	3	Mass (g)	1016	736	796			F	F	F		
5023		Scanlon	Walleye A	3	Length (mm)	307	290	276			M	M	M		

Table 2. Fish Tissue Processing Laboratory Data
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

GLEC ID	QC	Reservoir	Description	# of Individuals	Metric	1	2	3	4	5	SexID 1	SexID 2	SexID 3	SexID 4	SexID 5
5023		Scanlon	Walleye A	3	Mass (g)	241	216	172			М	М	М		
5024		Scanlon	Shiners A	Many											
5025	MSD	Scanlon	Yellow Perch A	4	Length (mm)	232	219	214	187		F	F	F	М	
5025	MSD	Scanlon	Yellow Perch A	4	Mass (g)	170	137	125	75		F	F	F	Μ	
5003		Thomson	Small Mouth Bass A	10											
5004		Thomson	Small Mouth Bass C	3	Length (mm)	393	348	393			F	М	M		
5004		Thomson	Small Mouth Bass C	3	Mass (g)	1083	1001	924			F	М	M		
5005	Dupe	Thomson	Yellow Perch A	3	Length (mm)	271	276	259			F	F	F		
5005	Dupe	Thomson	Yellow Perch A	3	Mass (g)	267	345	238			F	F	F		
5006		Thomson	North Pike A	3	Length (mm)	371	347	339			F	F	F		
5006		Thomson	North Pike A	3	Mass (g)	278	179	183			F	F	F		
5007	MSD	Thomson	Walleye A	3	Length (mm)	317	332	330			M	M	M		
5007	MSD	Thomson	Walleye A	3	Mass (g)	261	360	309			M	M	M		
5008		Thomson	Yellow Perch B	4	Length (mm)	216	215	228	230		F	М	M	F	
5008		Thomson	Yellow Perch B	4	Mass (g)	138	138	190	168		F	М	M	F	
5009		Thomson	Rock Bass A	3	Length (mm)	136	145	192			M	F	M		
5009		Thomson	Rock Bass A	3	Mass (g)	50	58	132			M	F	M		
5010		Thomson	Rock Bass B	8											
5011	Dupe	Thomson	White Sucker A	3	Length (mm)	468	468	480			F	F	F		
5011	Dupe	Thomson	White Sucker A	3	Mass (g)	1023	1108	1169			F	F	F		
5014		Thomson	White Sucker C	3	Length (mm)	431	404	392			F	F	F		
5014		Thomson	White Sucker C	3	Mass (g)	1030	591	620			F	F	F		
5015		Thomson	White Sucker B	3	Length (mm)	419	412	438			F	F	F		
5015		Thomson	White Sucker B	3	Mass (g)	949	794	892			F	F	F		
5036		Thomson	Small Mouth Bass B	3	Length (mm)	366	311	363			F	M	F		
5036		Thomson	Small Mouth Bass B	3	Mass (g)	1083	1001	924			F	М	F		
5038		Thomson	Small Mouth Bass D	9											

Table 2. Fish Tissue Processing Laboratory Data (continued)
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

015015	# of				2.5	
GLEC ID	Individuals	Reservoir	Species	Individual	Mass (g)	Length (mm)
5030	13	Boulder	Yellow Perch B	1	12	102
				2	46	162
				3	12	107
				4	35	143
				5 6	18	110
				7	11 12	96
					12	104 100
				8 9	11 17	100
				9 10	17 12	99
				11 12	14 41	104 147
				13	41 67	176
5031	13	Boulder	Yellow Perch A	13	67 77	181
3031	15	boulder	fellow Percit A	2	64	172
				3	48	156
				4	48 65	169
				5	16	109
				6	14	107
				7	15	111
				8	14	108
				9	15	106
				10	17	116
				11	15	111
				12	10	97
				13	12	103
5032	many	Boulder	Shiners B	Min	<1	39
	<i></i>			Max	12	110
5033	many	Boulder	Shiners A	Min	<1	18
	• •			Max	24	125
5034	12	Boulder	Yellow Perch C	1	11	99
				2	12	103
				3	12	104
				4	13	105

Table 2. Fish Tissue Processing Laboratory Data (continued)
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

	# of					
GLEC ID	Individuals	Reservoir	Species	Individual	Mass (g)	Length (mm)
				5	14	108
				6	11	99
				7	13	103
				8	12	103
				9	45	154
				10	59	168
				11	47	146
				12	59	171
5035	9	Boulder	Rock Bass A	1	29	108
				2	36	117
				3	23	102
				4	20	96
				5	22	101
				6	28	110
				7	24	103
				8	18	94
				9	19	100
5044	6	Boulder	Black Crappie A	1	18	95
				2	14	86
				3	18	94
				4	21	99
				5	26	103
				6	25	104
5045	many	Boulder	Shiners C	Min	<1	9
				Max	32	101
5018	19	Scanlon	Yellow Perch C	1	132	216
				2	82	178
				3	43	153
				4	25	132
				5	20	118
				6	16	111
				7	15	109
				8	14	109
				9	18	116

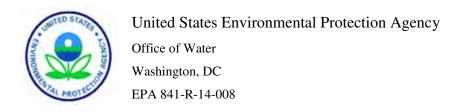
Table 2. Fish Tissue Processing Laboratory Data (continued)
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

	# of					
GLEC ID	# 01 Individuals	Reservoir	Species	Individual	Mass (g)	Length (mm)
			·	10	14	103
				11	12	103
				12	12	103
				13	10	97
				14	3	68
				15	2	66
				16	3	65
				17	3	70
				18	3	70
				19	2	59
5024	many	Scanlon	Shiners A	Min	<1	15
				Max	33	120
5003	10	Thomson	Small Mouth Bass A	1	30	132
				2	30	135
				3	29	133
				4	35	142
				5	39	141
				6	41	138
				7	40	139
				8	47	151
				9	38	140
				10	64	161
5010	8	Thomson	Rock Bass B	1	20	97
				2	14	91
				3	19	97
				4	19	101
				5	23	107
				6	22	104
				7	18	95
				8	18	95
5038	9	Thomson	Small Mouth Bass D	1	57	156
				2	55	155
				3	63	169
				4	50	149

Table 2. Fish Tissue Processing Laboratory Data (continued)
Boulder, Thomson, and Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

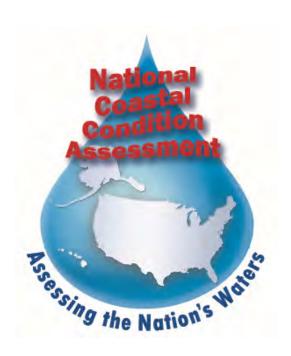
GLEC ID	# of Individuals	Reservoir	Species	Individual	Mass (g)	Length (mm)
				5	39	141
				6	35	133
				7	28	124
				8	19	110
				9	16	100

Table 3. Macroinvertebrate Tissue Processing Data Boulder, Thomson, and Scanlon Reservoirs Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148


			Homogenate	
Sample Description	Date Processed	Sample ID	Mass (g)	Notes
Boulder Reservoir, HD collection, macro invertebrates	11/30/2016	EPA16-HD-BR-001-MCRS	17	
Scanlon Reservoir, field collected crayfish, 005	11/30/2016	BW16-SR-005-C	35	
Scanlon Reservoir, field collected dragon fly nymphs, 002	11/29/2016	BW16-SR-002-D/ BW16- SR-102-D	40/12	Homogenate split into 2 samples (002D = 40g, 102D = 12g)
Scanlon Reservoir, field collected dragon fly nymphs, 003	11/30/2016	BW16-SR-003-D	16	
Scanlon Reservoir, field collected dragon fly nymphs, 005	11/30/2016	BW16-SR-005-D	36	
Scanlon Reservoir, field collected mayfly nymphs, 001	11/29/2016	BW16-SR-001-M	40	
Scanlon Reservoir, field collected mayfly nymphs, 002	11/29/2016	BW16-SR-002-M	52	
Scanlon Reservoir, field collected mayfly nymphs, 003	11/29/2016	BW16-SR-003-M/ BW16- SR-103-M	38/10	Homogenate split into 2 samples (003M = 38g, 103M = 10g)
Scanlon Reservoir, HD collected macro invertebrates	12/1/2016	BW16-HS-SR-001-MCRS	1.5	
Thomson Reservoir, HD collected macro invertebrates	11/29/2016	EPA16-HD-TR-001-MCRS	4	
Thomson Reservoir, HD collected crayfish	11/29/2016	EPA16-HD-TR-001-C	9	

APPENDIX A

2015 National Coastal Condition Assessment Laboratory Operations Manual



National Coastal Condition Assessment 2015 Laboratory Operations Manual

Version 2.1 May 2016

NOTICE

The goal of the National Coastal Condition Assessment (NCCA) is to provide a comprehensive assessment of the Nation's freshwater, marine shoreline and estuarine waters. The complete documentation of overall project management, design, methods, and standards is contained in four companion documents, including:

National Coastal Condition Assessment: Quality Assurance Project Plan EPA 841-R-14-005 National Coastal Condition Assessment: Site Evaluation Guidelines EPA 841-R-14-006 National Coastal Condition Assessment: Field Operations Manual EPA 841-R-14-007 National Coastal Condition Assessment: Laboratory Methods Manual EPA 841-R-14-008

This document (*Laboratory Operations Manual*) contains information on laboratory methods for analyses of the samples collected during the National Coastal Condition Assessment (NCCA). It also provides quality assurance objectives, sample handling procedures, and data reporting requirements. Methods described in this document are to be used specifically in work relating to the NCCA 2015. All NCCA Cooperator laboratories must follow the guidelines presented in the document.

With the exception of the requirements in Chapter 4 for evaluating algal toxics, mention of trade names or commercial products in this document does not constitute endorsement or recommendation for use. Chapter 4 requires use of a specific kit and supplemental materials manufactured by a single firm.

More details on specific methods for site evaluation, sampling, and sample processing can be found in the appropriate companion document.

The suggested citation for this document is:

USEPA. National Coastal Condition Assessment 2015: Laboratory Operations Manual. EPA-841-R-14-008. U.S. Environmental Protection Agency, Office of Water, Washington, DC. 2016.

Contents

	TRODUCTION	
	ENERAL LABORATORY GUIDELINES	
2.1	RESPONSIBILITY AND PERSONNEL QUALIFICATIONS	
2.2	ROLES AND CONTACT INFORMATION	
2.3	SAMPLE TRACKING	
2.4	REPORTING	12
3.0 A	LGAL TOXIN (MICROCYSTIN) IMMUNOASSAY PROCEDURE	14
3.1	SUMMARY OF THE PROCEDURE.	14
3.2	HEALTH AND SAFETY WARNINGS	15
3.3	DEFINITIONS AND REQUIRED RESOURCES (PERSONNEL, LABORATORIES, AND EQUIPMENT)	15
3.3.1	Definitions	15
3.3.2	General Requirements for Laboratories	17
3.3.3	=	
3.3.4	1 1	
3.4	SAMPLE RECEIPT	
3.5	PROCEDURE	
3.5.1		
3.5.2		
3.5.3	r	
3.5.4	J	
3.5.5		
3.6	QUALITY MEASURES	
3.6.1		
3.6.2		
3.6.3		
3.7	SAMPLE AND RECORD RETENTION	
3.8	REFERENCES	32
4.0 B	ENTHIC MACROINVERTEBRATES	33
4.1	SUMMARY OF METHOD	33
4.2	HEALTH AND SAFETY WARNINGS	
4.3	DEFINITIONS AND REQUIRED RESOURCES (LABORATORY, PERSONNEL, AND EQUIPMENT)	
4.3.1	y	
4.3.2		
4.3.3	= +: ** : : : : : : : : : : : : : : : : :	
4.3.4		
4.4	SAMPLE RECEIPT	
4.5	SAMPLE PREPARATION AND PICKING ORGANISMS	
4.6	TAXONOMIC IDENTIFICATION	
4.7	DATA ENTRY	
4.8	SAMPLE AND RECORD RETENTION	
4.9	EXTERNAL TAXONOMIC QUALITY CONTROL	
4.10	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
4.11	REFERENCES	54
5.0 W	HOLE BODY FISH PROCESSING AND CONTAMINANT ANALYSIS	57
5.1	SUMMARY OF THE PROCEDURE.	
5.2	HEALTH AND SAFETY WARNINGS	
5.3	DEFINITIONS AND REQUIRED RESOURCES (PERSONNEL, LABORATORIES, AND EQUIPMENT)	58
5.3.1		
5.3.2	· ·	
5.3.3		
5.3.4	Equipment/Materials	60

5.4	SAMPLE RECEIPT	
5.5	WHOLE FISH PREPARATION AND HOMOGENIZATION PROCEDURES	62
5.5.1	Sample Classification: Routine or Non-Routine	62
5.5.2	*	
5.5.3	•	
5.5.4	1 1	
5.6	CONTAMINANT ANALYSIS: REQUIREMENTS	
5.7	DATA ENTRY	
5.8	QUALITY MEASURES	
5.8.1		
5.8.2	\sim 1	
5.8.3	\mathcal{I} \mathcal{I} \mathcal{Z} \mathcal{Z} \mathcal{I}	
5.9	SAMPLE AND RECORD RETENTION	
5.10	REFERENCES	/8
6.0 SI	EDIMENT CONTAMINANT, GRAIN SIZE, AND TOC ANALYSES	80
6.1	SUMMARY OF THE PROCEDURE.	
6.2	HEALTH AND SAFETY WARNINGS	
6.3	DEFINITIONS AND REQUIRED RESOURCES (PERSONNEL, LABORATORIES, AND EQUIPMENT)	
6.3.1		
6.3.2	·	
6.3.3		
6.3.4	1 1	
6.4	SAMPLE RECEIPT	
6.5	LABORATORY ANALYSIS: REQUIREMENTS	
6.6	Data Entry	
6.7	QUALITY MEASURES	
6.7.1		
6.7.2	\boldsymbol{z} 1	
6.7.3		
6.8	SAMPLE AND RECORD RETENTION.	93
6.9	REFERENCES	93
7.0 W	ATER CHEMISTRY AND CHLOROPHYLL A	05
7.0 VV	SUMMARY OF THE PROCEDURE	
7.1		
–	HEALTH AND SAFETY WARNINGS	
7.3	DEFINITIONS AND REQUIRED RESOURCES (PERSONNEL, LABORATORIES, AND EQUIPMENT)	
7.3.1	= -7	
7.3.2	J	
7.3.3		
7.3.4	1 1	
7.4	SAMPLE RECEIPT	
7.5	PREPARATION OF WATER CHEMISTRY ALIQUOTS	
7.6	WATER CHEMISTRY AND CHLOROPHYLL A ANALYSIS: REQUIREMENTS	
7.7	Data Entry	
7.8	QUALITY MEASURES	106
7.9	SAMPLE AND RECORD RETENTION	111
7.10	REFERENCES	112
0.0 ~		440
	EDIMENT TOXICITY TESTING	
8.1	SUMMARY OF THE PROCEDURE	
8.2	HEALTH AND SAFETY WARNINGS	
8.3	DEFINITIONS AND REQUIRED RESOURCES (PERSONNEL, LABORATORIES, AND EQUIPMENT)	
8.3.1	· · · · · · · · · · · · · · · · · · ·	
8.3.2	\boldsymbol{j}	
8.3.3		
8.3.4	! Equipment/Materials	116

8.4	SAMPLE RECEIPT	116
8.5	TOXICITY TESTING: REQUIREMENTS	117
8.6	Data Entry	
8.7	QUALITY MEASURES	121
8.7.	1 Assistance Visits	121
8.7.	2 QC Samples	121
8.7.	3 Summary of QA/QC Requirements	121
8.8	SAMPLE AND RECORD RETENTION	123
8.9	References	123
9.0 I	FISH TISSUE FILLET (GREAT LAKES)	105
	MERCURY IN FISH TISSUE PLUGS	
10.0	SUMMARY OF THE PROCEDURE	
10.1	GENERAL REQUIREMENTS FOR LABORATORIES	
10.2		
10.2		
10.3	SAMPLE RECEIPT	
10.4	QUALITY MEASURES	
10.4		
10.4		
110 T		
	FECAL INDICATOR: ENTEROCOCCI	
	ALGAL TOXINS, RESEARCH INDICATOR	
	DIX A: LABORATORY REMOTE EVALUATION FORMS	
	DIX B: TARGET FISH SPECIES FOR WHOLE FISH ANALYSES	
APPENI	DIX C: ALGAL TOXINS RESEARCH INDICATOR STANDARD OPERATING P	
	NIV D. EVANDI E CORCEOD MEDOUDY IN FIGUREICHE DEUC ANAL VOEC	144
APPENI	DIX D: EXAMPLE SOPS FOR MERCURY IN FISH TISSUE PLUG ANALYSES	I 74

LIST OF ACRONYMS

ADT analysis decision tree AFDM ash-free dry mass

ANC acid neutralizing capacity
ANS Academy of Natural Sciences
AQM absolute quantitation method

ASTM American Society for Testing and Materials

Avg Average

BHI brain heart infusion

BV biovolume Ca Calcium

CAS Chemical Abstracts Service assigns unique identifiers to chemicals

CCE calibrator cell equivalents

CEQ cell equivalent chlorophyll-a Cl Chloride CO₂ carbon dioxide Ct threshold cycle

CPR cardiopulmonary resuscitation

cv curriculum vitae

DCF dilution/concentration factor
DDT dichloro-diphenyl-trichloroethane

DI de-ionized

DIC differential interference contrast

DL detection limit

DNA Deoxyribo-nucleic Acid

DO dissolved oxygen

DOC dissolved organic carbon
DTH depositional targeted habitat

DW distilled water

ELISA enzyme-linked Immunosorbent assay

EMAP Environmental Monitoring and Assessment Program

ENT enterococci

EPA Environmental Protection Agency

ETOH ethyl alcohol

FOM Field Operations Manual

g grams

GEQ genomic equivalent

GIS geographic information system
GPS global positioning device

HCl hydrogen chloride

HDPE high density polyethylene

HNO₃ nitric acid

HRP antibody-Horseradish Peroxidase

H2S hydrogen sulfide H2SO₄ sulphuric acid

IBD ionic balance difference

ID Identification

IM information management IPC internal positive control

ISBN International Standard Book Number

ISO International Organization for Standardization

IT IS Integrated Taxonomic Information System (IT IS)

K potassium kg kilograms L Liters

LCR Labeled Compound Recovery
LCS Laboratory Control Sample
LFB Laboratory Fortified Blanks
LFM Laboratory Fortified Matrices

LIMS Laboratory Information Management System

LOM Laboratory Operations Manual LRL Laboratory Reporting Limit

mg milligrams

mg/kg milligrams per kilogram

Mg magnesium mL milliliters

MDL method detection limit

Mn manganese

MPCA Minnesota Pollution Control Agency

MSDS Materials Safety Data Sheet

N nitrogen Na sodium

NABS North American Benthological Society
NALMS North American Lakes Management Society

NARS National Aquatic Resource Surveys

NAWOA National Water Quality Assessment Program

ND non-detect

NELAC National Environmental Laboratory Accreditation Conference NELAP National Environmental Laboratory Accreditation Program

ng nanograms NH4 ammonium

NIST National Institute of Standards

NO₂ nitrite NO₃ nitrate

NRSA National Rivers and Streams Assessment

NTL no template control

NTU Nephelometric Turbidity Units

OD optical density

ORD EPA's Office of Research and Development
OSHA Occupational Safety and Health Administration

OW EPA's Office of Water

PAH Polycyclic Aromatic hydrocarbons PAR Photosynthetically Active Radiation PBS phosphate buffered saline PCB polychlorinated biphenyl

PctDIFF percent difference

PDE percent disagreement in enumeration

PCR polymerase chain reaction PE performance evaluation

PES performance evaluation samples

PHab physical habitat

P-M Palmer-Maloney (P-M) count PDE percent difference in enumeration

ppb parts per billion ppm parts per million ppt parts per trillion

PSE percent sorting efficiency
PT performance testing

PTD percent taxonomic disagreement

QA quality assurance

QAPP Quality Assurance Project Plan QA/QC quality assurance/quality control

QC quality control

QCCS Quality Control Check Sample QMP Quality Management Plan

qPCR quantitative polymerase chain reaction

QRG Quick Reference Guide

RL reporting limit

RMSE root mean square error

RO reverse-osmosis

RPD Relative Percent Difference
RQM relative quantitation method
RSD Relative Standard Deviation
RTH richest targeted habitat

Sb antimony

SEG Site Evaluation Guidelines SFS Society of Freshwater Science

SiO₂ silica SO₄ sulphate

SOPs Standard Operating Procedures
SPC sample processing control
S-R Sedgewick-Rafter count
SRM standard reference material

SS salmon sperm

TMB tetramethylbenzidine

TN total nitrogen

TOC total organic carbon TP total phosphorus

TRANS transect

TSN	taxonomic serial number
TSS	total suspended solids
TVS	total volatile solids

μg micrograms

μg/g micrograms per gram μg/L micrograms per liter

UNK unknown

USGS United States Geological Survey WSA Wadeable Streams Assessment

WQX Water Quality Exchange

1.0 INTRODUCTION

This manual describes methods for laboratory analyses of the samples to be collected during the National Coastal Condition Assessment (NCCA). The manual includes quality assurance objectives, sample handling specifications, and data reporting requirements.

The NCCA is one of a series of water assessments conducted by States, Tribes, the U.S. Environmental Protection Agency (EPA), and other partners. In addition to coastal waters, the National Aquatic Resource Surveys (NARS) also focuses on rivers and streams, lakes, and wetlands in a revolving sequence. The purpose of these assessments is to generate statistically-valid reports on the condition of our Nation's water resources and identify key stressors to these systems.

The goal of NCCA is to address two key questions about the quality of the Nation's coastal waters:

- What percent of the Nation's coastal waters are in good, fair, and poor condition for key indicators of water quality, ecological health, and recreation?
- What is the relative importance of key stressors such as nutrients and contaminated sediments?

The NCCA is a probability-based survey of our Nation's coastal and estuarine waters, and designed to:

- Assess the condition of the Nation's coastal and estuarine waters at national and regional scales, including the Great Lakes;
- Identify the relative importance of selected stressors to coastal and estuarine water quality;
- Evaluate changes in condition from previous National Coastal Assessments (NCA) starting in 2000; and
- Help build State and Tribal capacity for monitoring and assessment and promote collaboration across jurisdictional boundaries.

EPA selected the sampling locations using a probability based survey design. Sample surveys have been used in a variety of fields (e.g., monthly labor estimates, forest inventory analysis) to determine the status of populations or resources of interest using a representative sample of a relatively few members or sites. Using this survey design allows data from the subset of sampled sites to be applied to the larger target population, and assessments with known confidence bounds to be made.

The NCCA field sampling season will be during the index period of June through the end of September. Field crews will collect a variety of measurements and samples from the statistically selected sampling locations identified by geographical coordinates. The samples are shipped to laboratories to evaluate the indicators identified in Table 1.1. The indicators are similar to those evaluated in previous NCA.

Table 1.1 NCCA: Indicators

Measure/Inc	licator	Assessment outcome
	Dissolved oxygen	Hypoxia/anoxia
	pH Temperature Depth Conductivity (freshwater) Salinity (marine)	Water column characterization
Water Quality	Secchi/light measurements PAR	Societal value and ecosystem production
	Nutrients: • Dissolved inorganic NO ₂ , NO ₃ NH ₄ ,PO ₄ ; • Total N and P	Nutrient enrichment
	Chlorophyll a	
	Grain size (Silt/Clay content)	Influencing factor for extent and severity for contamination
	Total Organic Carbon (TOC)	Influencing factor for extent and severity for contamination
Sediment Quality	Sediment chemistry • 15 metals • 25 PAHs • 20 PCBs • 14 pesticides • 6 DDT metabolites	Risk of biological response to sediment contamination
	Sediment toxicity (10-day static bioassay with <i>Leptocheirus</i> or <i>Hyalella</i>)	Biological response to sediment exposure
Biological Quality	Whole body fish contaminants 13 metals (no Sb or Mn) 20 PCBs 14 pesticides 6 DDT metabolites Optional: PAHs (national lab only)	Environmentally available contaminant exposure
	Benthic community structure	Biological response to site conditions

2.0 GENERAL LABORATORY GUIDELINES

This chapter describes the general laboratory guidelines with an overview to the quality assurance / quality control (QA/QC) requirements. Each of the following chapters describes a different procedure and the relevant QA/QC requirements for that particular procedure. In addition, the Quality Assurance Project Plan (QAPP) provides a comprehensive consolidation of the QA/QC requirements for NCCA 2015.

2.1 Responsibility and Personnel Qualifications

Each laboratory shall train its laboratory personnel in advance in the use of equipment and procedures used for the standard operating procedure (SOP) in which they are responsible. All personnel are responsible for complying with all of the QA/QC requirements that pertain to the samples to be analyzed. Each laboratory follows its institutional or organizational requirements for instrument maintenance. Appendix A identifies the specific documentation that each laboratory must submit to demonstrate its qualifications for performing the analyses.

2.2 Roles and Contact Information

The **EPA Headquarters Project Management Team** consists of the Project Leader, Alternate Project Leaders, Project QA Lead, and Laboratory Review Coordinator. The Team is responsible for overseeing all aspects of the project and ensuring that the laboratories properly adhere to the technical and quality assurance requirements. The Team is the final authority on all decisions regarding laboratory analysis.

The NARS Information Management (IM) Coordinator tracks the location of each NCCA sample that involves post-processing. The coordinator will be the labs main point of contact in regards to sample tracking and data submission.

Table 2.1 NCCA: Contact Information

Title*	Name	Contact Information
EPA HQ NCCA	Hugh Sullivan, OW	sullivan.hugh@epa.gov
Project Lead, Acting		202-564-1763
EPA HQ NCCA	Sarah Lehmann, OW	lehmann.sarah@epa.gov
Project QA		202-566-1379
Coordinator		
EPA HQ NCCA	Kendra Forde, OW	forde.kendra@epa.gov
Laboratory Review		202-564-0417
Coordinator		
EPA HQ NARS Team	Sarah Lehmann, OW	lehmann.sarah@epa.gov
Leader		202-566-1379
Information	Marlys Cappaert,	cappaert.marlys@epa.gov
Management Center	SRA International	541-754-4467
Coordinator	Inc.	541-754-4799 (fax)

^{*}For any technical direction, laboratories under contract to EPA must contact the Task Order's Contracting Officer's Representative (TOCOR) instead of the contacts provided in this table. For any technical information or sample tracking, the laboratories are permitted to contact these persons.

2.3 Sample Tracking

Samples are collected by a large number of different field crews during the index period (May through September). The actual number of sites sampled on a given day will vary widely during this time. Field crews will submit electronic forms when they have shipped samples and the NARS IM Center will input each sample into the NARS IM database. Laboratories can track sample shipment from field crews by accessing the NARS IM database. Participating laboratories will be given access to the NARS IM system, where they can acquire tracking numbers and information on samples that have been shipped to them by field crews (either by overnight shipment for perishable samples or batch shipments for preserved samples). Upon sample receipt, the laboratory must immediately log in to the database and confirm that samples have arrived. Each laboratory will make arrangements with the NARS IM Coordinator, listed above, to ensure access is granted.

When the samples arrive from the field crews, the shipments will include tracking forms (refer to the NCCA FOM). These forms will list the samples included in the shipment. Laboratory personnel must cross check the forms with the samples received to verify that there are not any inconsistencies. If any sample is missing or damaged, contact the NARS IM Coordinator immediately.

2.4 Reporting

All labs must provide data analysis information to the HQ Project Management Team and the NARS IM Center by **March 30, 2016** or as stipulated in contractual agreements. These reports must include the data elements specified for each analytical method in this manual. The submitted filename must use the following naming convention:

- Indicator name (ex: microcystins)
- Date of files submission to NARS IM Center by year, month, and day (ex: 2015 11 01)
- Laboratory name (ex: MyLab)

Combined, the file name would look as follows: Microcystins_2015_11_01_MyLab.xlsx Before the laboratory submits the batch data to EPA, the analyst who generated the data and an experienced data reviewer independently check and review the data, as follows:

The analyst shall review the data to ensure that:

- Sample preparation information is correct and complete;
- Analysis information is correct and complete;
- The appropriate method and standard operating procedures were followed;
- Analytical results are correct and complete;
- Quality control samples were within established control limits;
- Blanks (where appropriate) were within the appropriate QC limits; and
- Documentation is complete.

The data reviewer shall review the data package to verify that:

- Calibration data (where appropriate) are scientifically sound and appropriate;
- QC samples were within established control limits;
- Qualitative and quantitative results are correct; and
- Documentation is complete.

Accompanying its data submission for each batch, the laboratory shall provide a short narrative that includes the following information:

- Project summary referencing the batch QC identification number, total number of samples in the batch and their sample numbers, and the analytical methodology used for analysis;
- Discussion of any protocol deviations that may have occurred during sample testing;
- Discussion of QC questions or issues that were encountered and the corrective measures taken:
- Definitions of any laboratory QC codes used in the data;
- Summary and discussion of samples that are diluted by the presence of an interference, non-target analyte, or target analyte; and
- QC samples exceeding established control limits or parameters required by laboratory internal analytical SOPs and an explanation of why, if known.

As specified in the QAPP, remaining sample material and specimens must be maintained by the EPA's designated laboratory or facilities as directed by the NCCA 2015 Project Lead. Unless otherwise authorized by the Project Lead, the laboratory shall retain:

- The sample materials, including vials, for a minimum of three (3) years from the date the EPA publishes the 2015 NCCA report. During this time, the laboratory shall maintain the materials at the temperature specified in its laboratory method. The laboratory shall periodically check the sample materials for degradation. Unless the Project Lead arranges for transfer of sample materials to EPA, at the end of the retention period, the laboratory shall follow its internal protocols for disposal.
- Original records, including laboratory notebooks and raw data files (including logbooks, bench sheets, and instrument tracings), for a minimum of ten (10) years from the date that EPA publishes the final report.

The Project Lead is responsible for maintaining the following:

- Deliverables from contractors and cooperators, including raw data, which are permanent as per EPA Record Schedule 258.
- EPA's project records which under Schedule 501 are permanent.

3.0 ALGAL TOXIN (MICROCYSTIN) IMMUNOASSAY PROCEDURE

This chapter describes an immunoassay procedure that measures concentrations of total microcystins in water samples. In applying the procedure, the laboratory uses Abraxis' Microcystins-ADDA Test Kits (Figure 3.1; "kits"). Each kit is an enzyme-linked immunosorbent assay (ELISA) for the determination of microcystins and nodularins in water samples. Microcystins refers to the entire group of toxins, all of the different congeners, rather than just one congener. Algae can produce one or many different congeners at any one time, including Microcystin-LR (used in the kit's calibration standards), Microcystin-LA, and Microcystin-RR. The different letters on the end signify the chemical structure (each one is slightly different), which makes each congener different.

Figure 3.1 Microcystins: Abraxis Test Kit (Converted from color to grayscale from James, page 3, 2010)

3.1 Summary of the Procedure

The procedure is an adaptation of the instructions provided by Abraxis for determining total microcystins concentrations using its ELISA-ADDA kits. For samples samples with salinity<3.5 parts per thousand (ppt), the procedure's reporting range is $0.15 \,\mu\text{g/L}$ to $5.0 \,\mu\text{g/L}$, although, theoretically, the procedure can detect, not quantify, microcystins concentrations as

¹ Abraxis, "Microcystins-ADDA ELISA (Microtiter Plate): User's Guide R021412." Retrieved on January 14, 2014 from

 $[\]frac{http://www.abraxiskits.com/uploads/products/docfiles/278\ Microcystin\%20PL\%20ADDA\%20users\%20R120214.p}{df}.$

low as $0.10 \,\mu\text{g/L}$. For samples with higher concentrations of microcystins, the procedure includes the necessary dilution steps. The procedure also provides additional sample preparation steps for samples with salinities $\geq 3.5 \,\text{ppt}$. The results then are adjusted by a factor of 1.75 for a reporting range of $0.263 \,\mu\text{g/L}$ to $8.75 \,\mu\text{g/L}$.

3.2 Health and Safety Warnings

The laboratory must require its staff to abide by appropriate health and safety precautions, because the kit substrate solution contains tetramethylbenzidine (TMB) and the stop solution contains diluted sulfuric acid. In addition to the laboratory's usual requirements such as a Chemical Hygiene Plan, the laboratory must adhere to the following health and safety procedures:

- 1. Laboratory facilities must properly store and dispose of solutions of weak acid.
- 2. Laboratory personnel must wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear, gloves).
- 3. When working with potential hazardous chemicals (e.g., weak acid), laboratory personnel must avoid inhalation, skin contact, eye contact, or ingestion. Laboratory personnel must avoid contacting skin and mucous membranes with the TMB and stopping solution. If skin contact occurs, remove clothing immediately. Wash and rinse the affected skin areas thoroughly with large amounts of water.

3.3 Definitions and Required Resources (Personnel, Laboratories, and Equipment)

This section provides definitions and required resources for using the procedure.

3.3.1 Definitions

The procedure uses the following terms:

Absorbance (A) is a measure of the amount of light absorbed by a sample at a specific wavelength. A standard statistical curve is used to convert the absorbance value to the concentration value of microcystins.

Brackish and Seawater Samples, for the purposes of the ABRAXIS microcystins test procedure, are samples with salinity greater than or equal to 3.5 parts per thousand (ppt). (EPA is using different definitions for the water chemistry samples.) EPA recognizes that brackish water is usually defined as 0.5 ppt, and seawater as 35 ppt, but for this immunoassay procedure, it is important to use additional steps described in Section 3.5.2 for any sample with salinity greater than or equal to 3.5 ppt. The sample labels provide the salinity levels.

Calibration Range is the assay range for which analysis results can be reported with confidence. For example, assays of undiluted samples with salinities<3.5 ppt range from the reporting limit of $0.15 \mu g/L$ to a maximum value of $5.0 \mu g/L$.

Coefficient of Variation (CV): The precision for a sample is reported in terms of the percent CV of its absorbance values. To calculate the %CV, first calculate the standard deviation, S, as follows:

$$S = \left[\frac{1}{n-1} \sum_{i=1}^{n} (A_i - \bar{A})^2 \right]^{1/2}$$

where n is the number of replicate samples, A_i , is the absorbance measured for the i^{th} replicate. Per Section 3.5.4, samples are evaluated in duplicate (i=1 or 2); controls are either evaluated in duplicate or triplicate (i=1, 2, 3). \bar{A} is the average absorbance of the replicates. Then, calculate %CV as:

$$\%CV = \left|\frac{S}{\bar{A}}\right| \times 100$$

Dark or Dimly Lit: Away from sunlight, but under incandescent lighting is acceptable.

Detection Limit is the minimum concentration at which the analyte can be *detected* with confidence. In other words, the outcome can be reported with confidence that it is greater than zero (i.e., present in the sample). The detection limit is less than the reporting limit at which the *measured* value of the analyte can be reported with confidence. Also see "Sample-Specific Detection Limit."

Duplicates are defined as two aliquots of the same sample which are analyzed separately using identical procedures. The results are used to evaluate the precision of the laboratory analyses. Per Section 3.5.4, controls are evaluated in duplicate or triplicate (i.e., three aliquots).

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management System (NARS IM): The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. Freshwater and coastal samples will be collected during the field stage of NCCA.

Relative Standard Deviation (RSD) is the same as the coefficient of variation (%CV). Because many of the plate reader software programs provides the CV in their outputs, the procedure presents the quality control requirement in terms of %CV instead of RSD.

Reporting Limit: A reporting limit is the point at which the measured value of the analyte can be reported with confidence.

Sample-Specific Detection Limit: Most samples will have a sample-specific detection equal to the method's detection limi. For diluted samples, the sample-specific detection limit will be the product of the method's detection limit and the dilution factor. Typical values for the dilution factor will be 10 or 100.

Seawater Sample: See definition for brackish and seawater samples.

3.3.2 General Requirements for Laboratories

<u>Expertise</u>. To demonstrate its expertise, the laboratory shall provide EPA with one or more of the following:

- Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
- Documentation detailing the expertise of the organization, including professional certifications for water-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.

Quality assurance and quality control requirements.

To demonstrate its expertise in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

3.3.3 Personnel

The procedure refers to the following personnel:

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual (which differs from the Abraxis instructions). The laboratory technician also must be familiar with the use of a multichannel pipette and plate readers.

External QC Coordinator is an EPA staff person who is responsible for selecting and managing the "**QC contractor**." To eliminate the appearance of any inherent bias, the QC contractor must be dedicated to QA/QC functions, and thus, must not be a primary laboratory or a field sampling contractor for NCCA. The QC contractor is responsible for complying with instructions from the External QC Coordinator; coordinating and paying for shipments of the performance samples to participating laboratories; comparing immunoassay results from the laboratories; and preparing brief summary reports.

3.3.4 Equipment/Materials

The procedures require the following equipment and information:

- Abraxis ADDA Test Kit, Product #520011 (see items in Section 3.5.2)
- Adhesive Sealing Film (Parafilm) for Micro Plates (such as Rainin, non-sterile, Cat. No. 96-SP-100): Used to cover plates during incubation.
- Data Template See Figure 3.2
- Distilled or Deionized Water: For diluting samples when necessary.
- ELISA evaluation software
- Glass scintillation, LC, vials (two vials of 20 mL each)
- Glass vials with Teflon-lined caps of size:
 - o 20 mL
 - o 4 mL (for dilutions)
- Multichannel Pipette & Plastic Tips: A single-channel and an 8-channel pipette are used for this method.
- Norm-ject syringes (or equivalent)
- Paper Towels: For blotting the microtiter plates dry after washing.
- Permanent Marker (Sharpie Fine Point): For labeling samples, bottles, plates and covers.
- Plate Reader (e.g., Metertech Model M965 AccuReader; ChroMate[®]; or equivalent readers with software to read the microtiter plates and measure absorbances).
- Reagent Reservoirs (e.g., Costar Cat Number 4870): Plain plastic reservoir for reagents that accommodate the use of a multi-channel pipette.
- Test tubes (glass): For dilutions, if needed.
- Timer: For measuring incubation times.
- Vortex Genie: For mixing dilutions.
- Whatman Glass fiber syringe filter (25mm, GF 0.45 µm filter)

Analysis of samples with salinity≥3.5 ppt require additional equipment and supplies, as follows:

- Microcystins-ADDA Seawater Sample Clean-Up Kit (Product #529912) which includes the following supplies:
 - Disposable 5 ¾" glass Pasteur pipettes
 - Disposable 9" glass Pasteur pipettes
 - Glass wool
 - Pasteur pipette bulb
 - Microcystins-ADDA Seawater Sample Treatment Solution
 - Microcystins-ADDA Seawater Sample Clean-up Resin
- \circ 12x75 mm test tubes
- Scoopula
- Micropipettes with disposable plastic tips
- Vortex mixer

3.4 Sample Receipt

Field crews hold the microcystins samples on ice while in the field and then pack the samples in ice for delivery to a central facility ("batching laboratory") or the State's laboratory. The batching and State laboratories freeze the samples upon receipt. Periodically, the batching laboratory ships samples to the microcystins laboratory. The batching and microcystins laboratory may retain the frozen samples for several months before analysis.

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery.

- 1. Report receipt of samples in the NARS IM sample tracking system (within 24 clock hours). Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Inspect each sample THE SAME DAY THEY ARE RECEIVED:
 - a. Verify that the sample IDs in the shipment match those recorded on the:
 - i. Chain of custody forms when the batching laboratory sends the samples to the microcystins laboratory; or
 - ii. Sample tracking form if the field crew sends the shipment directly to the State laboratory.
 - b. Record the information in Table 3.1 into NARS IM, including the Condition Code for each sample:
 - i. OK: Sample is in good condition
 - ii. C: Sample container was cracked
 - iii. L: Sample container is leaking
 - iv. ML: Sample label is missing
 - v. W: Sample is warm (>8°), record the temperature in the comment field, and perform the assay
 - c. If any sample is damaged or missing, contact the EPA HQ Laboratory Review Coordinator to discuss whether the sample can be analyzed. (See contact information in Chapter 2 of the Manual).
- 3. Store samples in the freezer until sample preparation begins.
- 4. Maintain the chain of custody or sample tracking forms with the samples.

Table 3.1 Microcystins Login: Required Data Elements

FIELD	FORMAT	DESCRIPTION
LAB ID	text	Name or abbreviation for QC laboratory
DATE RECEIVED	MMDDYY	Date sample was received by lab
SITE ID	text	NCCA site id as used on sample label
VISIT NUMBER	numeric	Sequential visits to site (1 or 2)

FIELD	FORMAT	DESCRI	PTION
SAMPLE ID	numeric	Sample id as used on field sheet (on sample label)	
DATE	MMDDYY	Date samp	le was collected
COLLECTED			
CONDITION	text	Condition	codes describing the condition of the
CODE		sample upo	on arrival at the laboratory.
		Flag	Definition
		OK	Sample is in good condition
		С	Sample container is cracked
		L	Sample or container is leaking
		ML	Sample label is missing
		W	Sample is warm (>8°)
		Q	Other quality concerns, not identified
			above
CONDITION	text	Comments about the condition of the sample. If	
COMMENT		the condition code='W' then provide the	
		temperatur	re

3.5 Procedure

The following sections describe the sample and kit preparation and analysis.

3.5.1 Sample Preparation: Freeze-Thaw Steps

For each frozen sample (500 mL per sample), the laboratory technician runs it through a freeze-thaw cycle three times to lyse the cells as follows:

- 1. All cycles: Keep the samples in dark or dimly lit areas (i.e., away from sunlight, but under incandescent lighting is acceptable).
- 2. First freeze-thaw cycle:
 - a. Start with a frozen 500 ml sample.
 - b. Thaw the sample to room temperature (approximately 25° C). Swirl the sample to check for ice crystals. At this temperature, no ice crystals should be present in the sample.
 - c. Shake well to homogenize the sample, then transfer 10 mL to an appropriately labeled clean 20 mL glass vial.
- 3. Second freeze-thaw cycle:
 - a. Freeze the vial.
 - b. Keep the large sample bottle (from the 500 mL initial sample) frozen for future use.
 - c. Thaw the sample vial contents to room temperature.
- 4. Third freeze-thaw cycle:
 - a. Freeze the vial.
 - b. Thaw the vial contents to room temperature.
 - c. Filter the vial contents through a new, syringe filter (0.45 µm) into a new, labeled 20 mL glass scintillation vial. Norm-ject syringes and Whatman Glass fiber

syringe filters (25mm, GF 0.45 µm filter) or other similar alternative are acceptable. Use one new syringe and filter per sample.

3.5.2 Additional Sample Preparation for Samples with Salinity>3.5 parts per thousand

For any sample with salinity of 3.5 parts per thousand (ppt) or greater (the salinity will be marked on sample vials), the laboratory technician needs to perform the following additional steps provided by Abraxis. ² For all other samples (i.e. with salinity less than 3.5 ppt), the technician skips this section (i.e., Section 3.5.2) and goes directly to kit preparation as described in Section 3.5.3. For samples with salinity 3.5 ppt the technician:

1. Prepares the column as follows:

- a. Place a small amount of glass wool into the top of a 5 3/4" glass Pasteur pipette. Using a 9" glass Pasteur pipette, push the glass wool into to the bottom of the 5 3/4" pipette to form the base of the column. The depth of the glass wool should be approximately 5 mm. Place the column into a 12x75 mm test tube.
- b. Each column will require approximately 1.5 g of Seawater Sample Clean-Up Resin. Calculate and add the appropriate amount of Microcystins-ADDA Seawater Sample Clean-Up Resin to a 20 mL glass vial.
- c. Add distilled or deionized water at an approximately 2:1 ratio to the Microcystins-ADDA Seawater Sample Clean-Up Resin (for example, 10 mL of deionized or distilled water per 5 g of Resin). Shake or vortex.
- d. Pipette the Resin in water solution into the column using the 9" Pasteur pipette. Avoid the formation of air bubbles in the column bed by keeping the tip of the pipette at the surface of the bed being created. Fill the column to the indentation approximately 2 cm from the top of the pipette. This will create an approximately 8 cm column.
- e. Allow the deionized or distilled water to drain from the column. ³. Lift the tip of the column at least 1 cm above the surface of the water in the tube. Place the pipette bulb against the top of the column (do not attach the bulb to the column) and push the remaining water out of the column. Avoid allowing the tip of the column to come into contact with the water in the tube to prevent aspiration of water back into the column.
- f. Place the column into an appropriately labeled 4 mL glass vial.

2. Cleans up the sample as follows:

a. Add 1 mL of the sample to a clean, appropriately labeled 4 mL glass vial. Add 50 µL of Microcystins-ADDA Seawater Sample Treatment Solution. Vortex.

² Reformatted from Abraxis, "Microcystins in Brackish Water or Seawater Sample Preparation" Retrieved on January 14, 2014 from http://abraxiskits.com/uploads/products/docfiles/385_MCT-ADDA%20in%20Seawater%20Sample%20Prep%20%20Bulletin%20R041112.pdf. Reproduced with permission. Except for Abraxis' solutions labeled as seawater, EPA has removed references to "brackish" and "seawater" which typically are defined as having different cutpoints than 3.5 ppt for salinity.

³ Additional correspondence between EPA and Abraxis notes that this step leaves the resin in the column.

ALGAL TOXIN (MICROCYSTIN) IMMUNOASSAY PROCEDURE

- b. Add 375 μ L of the treated sample to the top of the column. Allow the sample to drain through the column and collect in the vial.
- c. Add a second 375 μL aliquot of the treated sample to the column. Allow to drain through the column.
- d. Lift the tip of the column at least 1 cm above the surface of the sample in the vial. Place the pipette bulb against the top of the column (do not attach the bulb to the column) and push the remaining sample out of the column. Avoid allowing the tip of the column to come into contact with the sample in the vial to prevent aspiration of the sample back into the column.
- e. Lower the column back into the vial. Add 500 μ L of distilled or deionized water to the top of the column. Allow the rinse to drain through the column and collect with the sample.
- f. Lift the tip of the column at least 1 cm above the surface of the sample/rinse in the vial. Place the pipette bulb against the top of the column (do not attach the bulb to the column) and push the remaining rinse out of the column. Avoid allowing the tip of the column to come into contact with the sample in the vial to prevent aspiration of the sample back into the column.
- g. Remove the column and discard (columns are single use only). Cap vial and vortex. The sample can then be analyzed using the Abraxis Microcystins-ADDA ELISA Kit beginning with the next section (3.5.3).

3.5.3 Kit Preparation

The technician prepares the kits using the following instructions:

- 1. Check the expiration date on the kit box and verify that it has not expired. If the kit has expired, discard and select a kit that is still within its marked shelf life. (Instead of discarding the kit, consider clearly labelling it as expired and keeping it for training activities.)
- 2. Verify that each kit contains all of the required contents:
 - Microtiter plate
 - Standards (6) referenced in this procedure as follows with the associated concentration:
 - o S0: 0 μg/L
 - \circ S1: 0.15 µg/L
 - \circ S2: 0.40 µg/L,
 - o S3: 1.0 μg/L
 - \circ S4: 2.0 µg/L
 - o S5: 5.0 μg/L
 - Kit Control (KC): 0.75 µg/L
 - Antibody solution
 - Anti-Sheep-HRP Conjugate
 - Wash Solution 5X Concentrate
 - Color Solution
 - Stop Solution
 - Diluent
 - Foil bag with 12 microtiter plate strips

- 3. If any bottles are missing or damaged, discard the kit. This step is important because Abraxis has calibrated the standards and reagents separately for each kit.
- 4. Adjust the microtiter plate, samples, standards, and the reagents to room temperature.
- 5. Remove 12 microtiter plate strips (each for 8 wells) from the foil bag for each kit. The plates contain 12 strips of 8 wells. If running less than a whole plate, remove unneeded strips from the strip holder and place in the foil bag, ziplocked closed, and store in the refrigerator (4-8° C).
- 6. Prepare a negative control (NC) using distilled water.
- 7. The standards, controls, antibody solution, enzyme conjugate, color solution, and stop solutions are ready to use and do not require any further dilutions.
- 8. Dilute the wash solution with deionized water. (The wash solution is a 5X concentrated solution.) In a 1L container, dilute the 5X solution 1:5 (i.e., 100 mL of the 5X wash solution plus 400 mL of deionized water). Mix thoroughly. Set aside the diluted solution to wash the microtiter wells later.
- 9. Handle the stop solution containing diluted H₂SO₄ with care.

3.5.4 Insertion of Contents into Wells

This section describes the steps for placing the different solutions into the 96 wells. Because of the potential for cross contamination using a shaker table, the following steps specify manual shaking of the kits instead mechanized shaking.

- 1. While preparing the samples and kit, turn the plate reader on so it can warm up. The plate reader needs a minimum of 30 minutes to warm up.
- 2. Turn on the computer so that it can control and access the plate reader.
- 3. Print the template (Figure 3.2) to use as reference when loading the standards, controls, and samples as described in the next step. Templates contain rows, labeled with a marking pen, of strips of 8 wells that snap into the blank frame. (If the laboratory wishes to use a different template, provide a copy to the EPA HQ Laboratory Review Coordinator for approval prior to first use. (See Chapter 2 of the manual for contact information.)
- 4. Using the 100- μ L pipette, add 50 μ L, each, of the standards, controls, and samples to the appropriate wells in the plate. Place all six standards (0.00, 0.15, 0.40, 1.00, 2.0 and 5.0 μ g/L), the kit control (0.75 μ L), and negative control, in pairs, starting in the well in the upper left-hand corner of the kit as shown in Figure 3.2. Verify that the software displays the same template or make any necessary corrections.

	1	2	3	4	5	6	7	8	9	10	11	12
Α	SO	S4	NC	U4	U8	U12	U16	U20	U24	U28	U32	U36
В	SO	S4	NC	U4	U8	U12	U16	U20	U24	U28	U32	U36
C	S1	S5	U1	U5	U9	U13	U17	U21	U25	U29	U33	U37
D	S1	S5	U1	U5	U9	U13	U17	U21	U25	U29	U33	U37
E	S2	KC	U2	U6	U10	U14	U18	U22	U26	U30	U34	U38
F	S2	KC	U2	U6	U10	U14	U18	U22	U26	U30	U34	U38
G	S3	KC	U3	U7	U11	U15	U19	U23	U27	U31	U35	U39
Н	S3	NC	U3	U7	U11	U15	U19	U23	U27	U31	U35	U39

Key:

S0-S5 = Standards;

KC = Control supplied with Kit (i.e., Kit Control);

NC = Negative Control;

U = Unknown (sample collected by the field crew);

Figure 3.2 Microcystins: Template for samples

- 5. Add 50 μL of the pink antibody solution to each well using the multi-channel pipettor and a reagent reservoir. Use dedicated reagent reservoirs for each reagent to avoid contamination from one reagent to another.
- 6. Place the sealing Parafilm over the wells.
- 7. Manually mix the contents by moving the strip holder in a rapid circular motion on the benchtop for 30 seconds. Be careful not to spill the contents.
- 8. Place the plate in a dimly lit area (as defined in Section 3.3.1) for 90 minutes.
- 9. After 90 minutes, carefully remove the Parafilm.
- 10. Empty the contents of the plate into the sink, pat inverted plate dry on a stack of paper towels, and then wash the wells of the plate three times with 250 μ L of washing solution using the multi-channel pipette. After adding the washing solution each time, empty the solution into the sink and use the paper towels as before.
- 11. Add 100 µL of enzyme conjugate solution to all wells using the multi-channel pipettor.
- 12. Cover the wells with Parafilm.

- 13. Manually mix the contents by moving the strip holder in a rapid circular motion on the benchtop for 30 seconds. Be careful not to spill the contents.
- 14. Place the strip holder in a dimly lit area for 30 minutes.
- 15. After 30 minutes, remove the Parafilm, decant, and rinse the wells three times again with $250 \,\mu\text{L}$ of washing solution as described in step 10.
- 16. Add 100 µL of color solution to the wells using the multi-channel pipette and reagent reservoir. This color solution will make the contents have a blue hue.
- 17. Cover the wells with Parafilm.
- 18. Manually mix the contents by moving the strip holder in a rapid circular motion on the benchtop for 30 seconds. Be careful not to spill the contents.
- 19. Place the plate in a dimly lit area for 20 minutes.
- 20. After 20 minutes, remove the Parafilm and add 50 µL of stopping solution to the wells in the same sequence as for the color solution. This will turn the contents a bright yellow color. After adding the stopping solution, read the plate within 15 minutes.
- 21. Within 15 minutes of adding the stopping solution, use the microplate ELISA photometer (plate reader) to determine the absorbance at 450 nm. The software (i.e., commercial ELISA evaluation program) calculates the absorbance and concentration values of the samples from the calibration curve and the average values for each pair. Use a 4-parameter standard curve fit to determine the concentrations.
- 22. Dispose of solution in plates in a lab sink. Rinse plates and sink with water to dilute the weak acid present.
- 23. Perform QC evaluations of the data as follows:
 - a. If the following **failures** occur, then the laboratory must reanalyze all samples in the analytical run:
 - i. Standard curve with a correlation coefficient, R, of less than 0.99
 - ii. Standards S0-S5 must have decreasing absorbance values. First, calculate the average values for each standard. That is, if \bar{A}_i is the absorbance average for S_i , then the absorbance averages must be:

$$\bar{A}_0 > \bar{A}_1 > \bar{A}_2 > \bar{A}_3 > \bar{A}_4 > \bar{A}_5$$

- iii. The average absorbance of the standard S0 less than 0.8 (i.e., $\bar{A}_0 < 0.8$).
- iv. Two or more negative control sample results report detectable concentrations of microcystins (i.e., values $\geq 0.1~\mu g/L$). If this occurs, then evaluate possible causes (e.g., cross-contamination between samples), and if appropriate, modify laboratory processes before the next analytical run.
- v. Results for control samples of outside the acceptable range of $0.75 \pm 0.185 \,\mu g/L$. That is, results must be between $0.565 \,\mu g/L$ and $0.935 \,\mu g/L$.

- b. If either, or both, of the following situations occur, then the sample must be reanalyzed (maximum of two analyses, 4 consisting of the original analysis and, if necessary, one reanalysis):
 - i. The concentration value registers as HIGH (exceeds the calibration range).⁵ Dilute the sample for the reanalysis per Section 3.5.5.
 - ii. The %CV > 15% between the duplicate absorbance values for a sample.
- 24. If the sample has a salinity of 3.5 ppt or greater, then convert the results by multiplying by 1.75. If the assay was non-detected, then the detection limit is 0.175 μ g/L. The reporting limit is 0.263 μ g/L. The calibration range is 0.263 μ g/L to 8.75 μ g/L.
- 25. Record the results, even if the data failed the quality control requirements in #23b, for each well in EPA's data template (see Table 3.2 for required elements). The required entries are for the following columns:
 - a. **TYPE** indicates the sample type using one of the following codes: S0-S5 for standards; KC or NC for controls; and U for unknown sample.
 - b. **CONC** contains the numeric concentration value. Two special cases:
 - i. Non-detected concentrations: If the sample is non-detected, then provide the sample-specific detection limit which is $0.1 \,\mu\text{g/L}$ if the sample is undiluted with a salinity<3.5 ppt in the sample. See step 24 for reporting values for samples with salinity ≥ 3.5 ppt. See Section 3.5.5 for calculating the sample-specific detection limit for a diluted sample.
 - ii. If the result shows that it is "HI," this indicates that the sample value is outside of the calibration range and must be diluted and re-run using another analytical run. Leave the CONC column blank and record 'HI' in the DATA FLAG column.
 - c. **DATA FLAGS** have codes for the following special cases:
 - i. **ND** if the sample was non-detected;
 - ii. **J** if the value is detected but at a level below the reporting limit of 0.15 μ g/L (for undiluted samples with salinity <3.5 ppt; see step 24 for samples with salinity \geq 3.5 ppt);
 - iii. **HI** if the concentration value registers as HIGH (exceeds the calibration range).
 - d. **QUALITY FLAGS** have codes for the following special cases:
 - i. **QCF** if there is a QC failure per step 23 above. The QCF code must be used for all failures to facilitate data analysis.
 - ii. **Q** for any other quality issue (describe in **COMMENTS**)
 - **e. DILUTION FACTOR** is only required if the sample was diluted.

 $^{^4}$ In its data analyses, EPA compares the microcystins data values to $10 \,\mu\text{g/L}$, which is the World Health Organization threshold for moderate risk. If a sample is diluted once following the procedures in Section 3.5.5 and the concentration still registers as HIGH, the concentration is recorded as >50 $\,\mu\text{g/L}$ which is greater than the WHO threshold. EPA does not require additional dilution to obtain a more precise value, but a laboratory may choose to increase the dilution of the sample and report the associated concentration value.

⁵ A value of HIGH is not a QA/QC failure, but rather indicates a necessity to find the correct dilution to get it within calibration.

f. **DUP AVG** and **DUP CV** are required for duplicate samples and control samples (use all three values if the controls are used in triplicate).

Table 3.2 Microcystins: Required Data Elements

STAGE	FIELD	FORMAT	DESCRIPTIO	N		
LOGIN	LAB ID	Character	Name or abbrevi	ation for QC laboratory		
	DATE RECEIVED	MMDDYY	Date sample was	ple was received by lab		
	SITE ID	Character	NCCA site ID co	ode as recorded on sample label or		
			tracking form (bl	ank if standard or control)		
	VISIT NUMBER	Numeric	_	to site (1 or 2) (blank if standard		
			or control)			
	SAMPLE ID	Numeric		O number as recorded on sample		
				rm (blank if standard or control)		
	DATE COLLECTED	MMDDYY	control)	collected (blank if standard or		
	CONDITION	Character		n upon arrival at the laboratory		
	CODE		(blank if standard			
			Flag	Definition		
			Blank or N	Not a sample (blank,		
				standard, or control)		
			OK	Sample is in good condition		
			С	Sample container is cracked		
			L	Sample or container is		
) // (leaking		
			ML	Sample label is missing		
	CONDITION	Chanastan	W Sample iswarm (>8°)			
	COMMENT	Character		the condition of the sample. If the W' then provide the temperature		
ANALYS	TECHNICIAN	Character		of technician performing the		
IS IS			procedure			
	ANALYSIS DATE	MMDDYY		bles are inserted into the wells per		
			Section 3.5.4			
	ANALYSIS TIME	24-hour time		imple is inserted into the wells per		
	VIT EVDIDE	MMDDWW	Section 3.5.4	on 1si4 h oss		
	KIT EXPIRE DATE	MMDDYY	Expiration date of			
	KIT ID	Character	Kit identification a unique code to	code. If one does not exist, assign each kit.		
	R2	Numeric	•	to the average absorbance values		
			for the standards. Value is between 0 and 1.			
	TYPE	Character		being tested in the well		
			Code	Definition		
			KC	Kit Control		
			NC	Negative Control		
			S0,S1, S2,S3, S4, S5	Standard		

STAGE	FIELD	FORMAT	DESCRIPTIO	N	
			U	Sample of unknown concentration	
	LOCATION	Character	Location of well in the kit (e.g., B5 would be the fifth well from the left in the second row B) If the sample vial has the salinity marked on the vial, record the value in units of parts per thousand Otherwise, leave blank.		
	SALINITY	Numeric			
	CONC	Numeric	Concentration or sample-specific detection limit of contents of well in μ g/L. Sample-specific detection limit should be 0.1 μ g/L for a sample with salinity <3.5 ppt which hasn't been diluted. (Detection limit is 0.175 μ g/L for samples with salinity \geq 3.5 ppt)		
	ABSORBANCE	Numeric	Absorbance valu	e	
	DILUTION FACTOR	Numeric		number of times the sample was uted, leave blank or record 1	
	CV_ABSORB	Numeric	Calculated %CV for a sample. On	of duplicate values of absorbance ly calculated for TYPE=U, KC, or Value is between 0 and 100%.	
	AVG_ABSORB	Numeric	Calculated average of absorbance values for a sample. Only provided for TYPE=U, KC, NC, or SC. Average value of the original sample and its duplicate (or replicates for KC and NC). Calculated average of concentration values for a sample. Substitute for any value below the reporting limit. Data qualifier codes associated with specific identifications of voucher samples. These codes provide more information than those used when reporting receipt of samples. A technician may us alternative or additional qualifiers if definitions are provided as part of the submitted data package (e.g., as a separate worksheet page of the data submission file).		
	AVG_CONC	Numeric			
	DATA FLAG (if appropriate)	Character			
			Flag	Definition	
			ND	Concentration below detection.	
			HI	Result indicated a high concentration (i.e., outside calibration range)	
			J	Concentration above detection but below reporting limit.	
	QUAL_FLAG	QCF/Q	QCF	QC failure	
			Q	Other quality concerns, not identified above	
	COMMENTS	Character	Explanation for comments.	lata flag(s) (if needed) or other	

3.5.5 Dilutions (if needed)

Dilutions if needed are prepared as follows (using clean glass tubes):

1. 1:10 dilution

- a. Add 900 µL of distilled water to a clean vial. (Note: Dilutions may also be made using the kit's diluent rather than distilled water.)
- b. Pipette $100 \,\mu\text{L}$ from the sample into the vial. (To provide more accurate dilutions and less chance of contaminating the diluent, add the diluent to the vial before the sample.)
- c. Mix by vortexing.
- d. Multiply final concentration and Abraxis' detection limit by 10 to obtain the sample-specific detection limit.. For example, for a sample with salinity<3.5 ppt, Abraxis' detection limit is 0.1 μg/L and the sample-specific detection would be 1.0 μg/L for a 1:10 dilution.

2. 1:100 dilution

- a. Add 3.96 mL of distilled water to a clean, appropriately labeled glass vial. (Note: Dilutions may also be made using the kit's diluent rather than distilled water.)
- b. Vortex the sample to mix thoroughly, then pipette $40 \,\mu\text{L}$ from the sample and add to the water (or diluent) in the appropriate labeled vial. Vortex.
- c. Multiply the final concentration and Abraxis' detection limit by 100 to obtain the sample-specific detection limit. For example, for a sample with salinity<3.5 ppt, Abraxis' detection limit is $0.1 \,\mu\text{g/L}$ and the sample-specific detection would be 10 $\,\mu\text{g/L}$ for a 1:100 dilution.
- 3. Other dilutions can be calculated in the same manner as #1 and #2 if needed.

3.6 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements.

3.6.1 Assistance Visits

Assistance visits are intended to familiarize EPA with actual procedures being implemented by different laboratories; and to ensure a clear and consistent understanding of procedures and activities by both EPA and the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter. EPA will develop, review and approve the checklist prior to conducting an assistance visit.

3.6.2 QC Samples

The External QC Coordinator will instruct the QC contractor to provide one or two identical sets of freshwater and/or seawater performance test samples to all participating laboratories. If the laboratory will assay both freshwater and seawater samples, then it will receive both sets (i.e.,

freshwater and seawater). Each set will contain five samples to test the expected range of concentrations in the NCCA samples.

For the contract laboratory, the QC contractor will provide the first set to be run with the first set of samples and a second set to be run at the midpoint of the assigned samples. If available, a third set will be run with the final batch of samples. Because most state laboratories will have relatively few samples that can be analyzed using a single kit, the QC contractor will send only one set to each state laboratory.

Each laboratory will run the QC samples following the same procedures used for the other samples. The External QC Coordinator will compare the results and assess patterns in the data (e.g., one laboratory being consistently higher or lower than all others). Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any deviations from the Method or unique laboratory practices that might account for differences between the laboratory and others. With this additional information, the External QC Coordinator will determine an appropriate course of action, including no action, flagging the data, or excluding some or all of the laboratory's data.

3.6.3 Summary of QA/QC Requirements

Table 3.3 provides a summary of the quality control requirements described in Sections 3.5 and 3.6.

Table 3.3 Microcystins: Sample analysis quality control activities and objectives

Quality Control Activity	Description and Requirements	Corrective Action
Kit – Shelf Life	Is within its expiration date listed on kit box.	If kit has expired, then discard or clearly label as expired and set aside for training activities.
Kit - Contents	All required contents must be present and in acceptable condition. This is important because Abraxis has calibrated the standards and reagents separately for each kit.	If any bottles are missing or damaged, discard the kit.
Calibration	All of the following must be met: Standard curve must have a correlation coefficient of ≥ 0.99 ; Average absorbance value, \bar{A}_0 , for S0 must be ≥ 0.80 ; and Standards S0-S5 must have decreasing average absorbance values. That is, if \bar{A}_i is the average of the absorbance values for S_i , then the absorbance average values must be: $\bar{A}_0 > \bar{A}_1 > \bar{A}_2 > \bar{A}_3 > \bar{A}_4 > \bar{A}_5$	If any requirement fails: Results from the analytical run are not reported. All samples in the analytical run are reanalyzed until calibration provides acceptable results. At its discretion, the lab may consult with EPA for guidance on persistent difficulties with calibration.
Kit Control	The average concentration value of the duplicates (or triplicate) must be within the range of 0.75 +/- 0.185 µg/L. That is, the	If either requirement fails: Results from the analytical run are not reported

Quality Control Activity	Description and Requirements	Corrective Action
N. C. C.	average must be between 0.565 µg/L and 0.935 µg/L.	The lab evaluates its processes, and if appropriate, modifies its
Negative Control	The values for the negative control replicates must meet the following requirements: All concentration values must be < 0.15 μ g/L (i.e., the reporting limit; and one or more concentration results must be nondetectable (i.e., <0.10 μ g/L)	processes to correct possible contamination or other problems. The lab reanalyzes all samples in the analytical run until the controls meet the requirements.
Sample Evaluations	All samples are run in duplicate. Each duplicate pair must have %CV≤15% between its absorbance values.	If %CV of the absorbances for the sample>15%, then: Record the results for both duplicates using different start dates and/or start times to distinguish between the runs Report the data for both duplicate results using Quality Control Failure flag "QCF"; and re-analyze the sample in a new analytical run. No samples are to be run more than twice. If the second run passes, then the data analyst will exclude the data from the first run (which will have been flagged with "QCF"). If both runs fail, the data analyst will determine if either value should be used in the analysis (e.g., it might be acceptable to use data if the CV is just slightly over 15%).
Results Within Calibration Range	All samples are run in duplicate. If both of the values are less than the upper calibration range (i.e., $\leq 5.0 \mu\text{g/L}$ for undiluted samples with salinity<3.5 ppt; $\leq 8.75 \mu\text{g/L}$ for undiluted samples with salinity $\geq 3.5 \text{ppt}$), then the requirement is met.	If a result registers as "HIGH", then record the result with a data flag of "HI." If one or both duplicates register as 'HIGH,' then the sample must be diluted and rerun. No samples are to be run more than twice. The lab reports both the original and diluted sample results.
External Quality Control Sample	External QC Coordinator, supported by QC contractor, provides 1-2 sets of identical samples to all laboratories and compares results.	Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any deviations from the Method or unique laboratory practices that might account for differences between the laboratory and others. With this additional information, the External QC

Quality Control Activity	Description and Requirements	Corrective Action
		Coordinator will determine an appropriate course of action, including no action, flagging the data, or excluding some or all of the laboratory's data.

3.7 Sample and Record Retention

The laboratory shall retain:

- 1. The sample materials, including vials, for a minimum of 3 years from the date the EPA publishes the final report. During this time, the laboratory shall freeze the materials. The laboratory shall periodically check the sample materials for degradation.
- 2. Original records, including laboratory notebooks and the reference library, for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

3.8 References

Abraxis, "Microcystins-ADDA ELISA (Microtiter Plate)," Product 520011, R021412, Undated. Retrieved January 2014 from

http://www.abraxiskits.com/uploads/products/docfiles/278_Microcystin%20PL%20ADDA%20users%20R120214.pdf.

Abraxis, "Microcystin-ADDA ELISA Kit, Detailed Procedure," Undated. Retrieved January 2014 from http://www.abraxiskits.com/uploads/products/docfiles/253_PN520011FLOW.pdf.

Abraxis, "Microcystins in Brackish Water or Seawater Sample Preparation" Undated. Retrieved on January 2014 from http://abraxiskits.com/uploads/products/docfiles/385_MCT-ADDA%20in%20Seawater%20Sample%20Prep%20%20Bulletin%20R041112.pdf. Loftin, K.A., et al., "Comparison of Two Cell Lysis Procedures for Recovery of Microcystins in Water Samples from Silver Lake in Dover, Delaware, with Microcystin Producing Cyanobacterial Accumulations," in USGS Open-File Report 2008 -1341. 2008. Retrieved April 2013 from http://pubs.usgs.gov/of/2008/1341/pdf/of2008_1341.pdf.

James, R., et al., "Environmental Technology Verification Report: Abraxis Microcystin Test Kits: ADDA ELISA Test Kit; DM ELISA Test Kit; Strip Test Kit," in Environmental Technology Verification System Center 2010. Retrieved March 2013 from http://nepis.epa.gov/Adobe/PDF/P100EL6B.pdf

Kamp, L. (Abraxis) "Re: question about instructions for brackish water or seawater"; Email to M. Smith (EPA). June 23, 2015.

This chapter describes the steps for identifying benthic macroinvertebrate organisms in samples collected in coastal waters and the Great Lakes during the 2015 National Coastal Condition Assessment (NCCA). Field crews preserve samples in the field with formalin and ship them to a central holding facility or directly to the laboratory. Because NCCA samples generally have fewer than 400 organisms, this procedure requires the laboratory to fully sort and identify all organisms in the sample. If, upon initial inspection, a sample appears likely to have more than 400 organisms, contact the EPA HQ Laboratory Review Coordinator (see contact information in Chapter 2) for processing instructions. (EPA may require use of the subsampling procedures such as those described in the Laboratory Operations Manual for the 2013-2014 National Rivers and Streams Assessment (NRSA)).⁶

In the following discussion, Sections 4.1, 4.2, and 4.3 summarize the procedure; health and safety concerns; and definitions and required resources. Section 4.4 provides the steps for acknowledging sample receipt. Section 4.5 provides the steps for preparing and picking organisms from the sample. Sections 4.6 – 4.8 provide the steps for the taxonomy identification; data entry; and sample and record retention. Sections 4.9 and 4.10 describe EPA's external review of laboratory operations and quality measures. Section 4.11 identifies references used in developing the procedure. Attachment 4.1 provides an example of a taxonomic bench sheet.

4.1 Summary of Method

The procedure describes the steps for picking and identifying organisms from sediment samples. This section provides a summary of the procedure and quality control measures.

The sorter evenly distributes each sample across a tray(s) and then picks all organisms from the sample. During the identification step, a taxonomist identifies all organisms to the target taxonomic levels for the survey and discards materials that do not meet the identification criteria. For each species or lowest identifiable taxonomic level, the taxonomist includes at least one representative organism in the laboratory's reference collection for NCCA 2015.

As part of the quality control measures, a second taxonomist will re-identify a subset (usually 10%) of the samples to quantify enumeration and taxonomic precision, or consistency, as percent difference in enumeration (PDE) and percent taxonomic disagreement (PTD), to help target corrective actions, and ultimately to help minimize problems during data analysis.

4.2 Health and Safety Warnings

In addition to the laboratory's requirements, persons using this procedure must abide by the following health and safety procedures:

⁶ USEPA, 2013, National Rivers and Streams Assessment 2013-14: Laboratory Operations Manual EPA 841-B-12-010.

- 1. Wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear / goggles).
- 2. When working with potential hazardous chemicals (e.g. Rose Bengal) or biological agents (benthic organisms and sediments), avoid inhalation, skin contact, eye contact, or ingestion. If skin contact occurs, remove clothing immediately and wash / rinse thoroughly. Wash the affected skin areas thoroughly with large amounts of soap and water.

4.3 Definitions and Required Resources (Laboratory, Personnel, and Equipment)

This section provides definitions and required resources for using this procedure. Section 4.3.1 defines the terms used throughout the procedure. Section 4.3.2 describes the expertise required for each laboratory using the procedure. Section 4.3.3 describes the roles and responsibilities of the personnel involved in the procedure. Section 4.3.4 identifies the equipment necessary to apply the procedure in preparing, sorting, and identifying benthic macroinvertebrate organisms in samples.

4.3.1 Definitions

The procedure uses the following throughout the document:

Dissecting microscope: Microscope configured to allow low magnification of threedimensional objects that are larger or thicker than the compound microscope can accommodate.

Distinct taxa: Data analysts use the number of distinct (i.e., unique) taxa within a given sample to evaluate the richness associated with the sample location. The distinctness attribute is assessed sample by sample, and not across all samples. To facilitate the data analyses, the database includes an additional variable ("flag") that is used for the first identification of a particular taxon in a sample. Section 4.6 provides the steps used to identify which taxa are flagged.

Good quality digital photograph: Good quality means that other taxonomists can readily identify the taxon from one or multiple photographs and the library can readily locate the photographs. To ensure that the photographs meet these objectives, the image must be:

- Taken through the microscope at a high enough resolution so that the key diagnostic features are distinguishable and clear. Include all features that would be necessary for an experienced taxonomist to identify the specimen, this may require multiple photographs and at different magnifications.
- Positioned so that it includes:

- Only one taxon in the photo. If necessary, the laboratory may edit (e.g., crop) the digital photograph and save the file with a new filename as specified below. Both the original and edited files must be included in the digital library.
- A scale bar or measurements in an appropriate location to indicate the size of the specimen.
- One specimen that lies flat on the surface instead of tilted (to the extent practicable).
- Saved using a format that preserves the image in the highest resolution possible.
- Saved with a filename that is consistent within the digital library and shall include the following elements in the order listed below:
 - o NCCA2015
 - o Laboratory name (or abbreviation)
 - o Sample number
 - o Taxa name
 - o Magnification (if applicable, otherwise indicate no magnification as "1x")
 - o Date (format YYYYMMDD) that the photograph was taken.
 - o Appendage of "e" if the photograph was edited (e.g., cropped).

For example, on September 8, 2015, laboratory ABC identified the specimen in sample 1234 to be a *Capitella capitata* and took a digital photograph at a resolution of 40x and then cropped the photograph to eliminate extraneous material. The filenames of the original and edited photographs would be: NCCA2_ABC_1234_ capitella capitata_40x_20150908.gif and NCCA2_ABC_1234_ capitella capitata_40x_20150908e.gif.

Elutriate: Circulate water over the sample in order to wash away the lighter or finer particles of the detritus.

Inorganic material: Material that is not capable of further decay (e.g., gravel, sand, silt)

Integrated Taxonomic Information System (ITIS): Database with standardized, reliable information on species nomenclature and their hierarchical taxonomic classification.

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management (IM) System: The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. The samples are collected during the field stage of NCCA.

Organic material: Material derived from living organisms that is capable of further decay (e.g., leaves, sticks, algae).

Percent sorting efficiency (PSE): Number of organisms recovered by sorter (A) compared to the combined (total) number of recoveries by the sorter (A) and independent sorter (B) for a sample (sorter B sorts through pickate and counts only organisms missed by Sorter A).

$$PSE = \frac{A}{A+B} \times 100 \tag{1}$$

Percent disagreement in enumeration (PDE): measure of taxonomic precision comparing the number of organisms, n_1 , counted in a sample by the primary taxonomist with the number of organisms, n_2 , counted by the internal or external QC taxonomist.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} \times 100$$
(2)

Percent taxonomic disagreement (PTD): measure of taxonomic precision comparing the number of agreements (positive comparisons, $comp_{pos}$) of the primary taxonomist and internal or external QC taxonomists. In the following equation, N is the total number of organisms in the larger of the two counts.

$$PTD = \left[1 - \frac{comp_{pos}}{N}\right] \times 100 \tag{3}$$

Pickate: This is the remaining material left from the tray after the sorter has removed all benthic macroinvertebrates. This could include small stones, sticks or leaves, etc.

Primary laboratory: The laboratory that 1) sorts the sample; and 2) provides the first identification of benthic macroinvertebrates in the sample.

Secondary laboratory: The laboratory selected by the External QC Coordinator. It provides an independent identification of the benthic macroinvertebrates in the sample. The secondary laboratory must provide QC taxonomists who did not participate in the original identifications for the sample.

Target taxonomic levels: Target taxonomic levels for the NCCA is typically species (lowest practical level). NCCA excludes meiofauna (due to being smaller than 0.5 mm) from identifications. Additional exceptions include Oligochaeta (Class) and Chironomidae (Family) in samples from marine, polyhaline and mesohaline regions **ONLY**.

Taxonomic Bench Sheet: Form used by the laboratory to record information about the sample during the identification procedure.

Taxonomic Serial Number (TSN): stable and unique identifier that the Integrated Taxonomic Information System (ITIS), Encyclopedia of Life, and/or Catalogue of Life

couples with each scientific name to serve as the "common denominator" for accessing information. ITIS numbers are preferred, but when they are not available, secondary sources are acceptable.

a)

4.3.2 Laboratory

The procedure may be used by any laboratory that demonstrates competency in analytical work and quality procedures as documented by any one or more of the following::

- 1. Analytical work: To demonstrate its expertise, the laboratory shall provide EPA with one or more of the following:
 - a. Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
 - b. Memorandum describing experience with analyses that are the same or similar to the requirements of this method.
 - c. Dated copy of relevant Accreditation or Certification (NELAC, ISO, state, etc.) for the laboratory and/or its experts who will perform and/or oversee the analyses. The accreditation must be for the entirety of analysis that the laboratory will be performing.
 - d. Memorandum that describes the laboratory's participation in round robin studies and/or performance studies.
 - e. Report of findings from an on-site technical assessment or audit.
- 2. Quality procedures.
 - a. To demonstrate its expertise in quality assurance and quality control procedures, the laboratory shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).
 - b. To demonstrate its ongoing commitment, the person in charge of quality issues for the laboratory shall sign the NCCA 2015 QAPP Certification Page.
- 3. Reporting standardized data. To demonstrate its expertise, the laboratory shall provide EPA with a memorandum that confirms that the laboratory has a computerized Laboratory Information Management System (LIMS) routinely used to track samples and record laboratory results. The memorandum also shall confirm that the laboratory will use LIMS to record and report results from the procedure.

4.3.3 Personnel

The procedure may be used by any person who has received training in processing and identification of benthic macroinvertebrates. For purposes of this procedure, EPA assumes that the following personnel are responsible for performing specific duties:

Internal Taxonomy QC Officer provides oversight of daily operations, sample processing, monitors QC activities at the laboratory to determine conformance, and conducts performance and systems audits of the procedures. The laboratory must retain documentation for the qualifications for the Internal Taxonomy QC Officer meeting the following requirements. The laboratory must provide, or otherwise make available, this documentation to EPA upon request. The Internal Taxonomy QC Officer is an experienced taxonomist who:

- 1. Demonstrated an initial enumeration and identification proficiency (as measured by PDE≤5% and PTD≤15%.
- 2. Maintains enumeration and identification proficiency in periodic QC checks (i.e., 1 in 10 samples with a minimum of one sample checked).

External QC Coordinator is an EPA staff person. Because the assigned duties are primarily administrative in nature, the External QC Coordinator is not required to have laboratory experience, although such experience would be preferable.

External QC Taxonomists, are selected by the External QC Coordinator (after consultation with EPA experts), and have demonstrated expertise and experience to be used as a quasi "gold standard" for taxonomic evaluations.

Taxonomists are trained, and have considerable experience, in identifying benthic macroinvertebrates, i.e., taxonomy. It is also important that the taxonomist maintains contact with other taxonomists through professional societies and other interactions, and keeps up with the pertinent literature, since systematics and species identifications change over time. EPA prefers, but does not require, that the freshwater taxonomists are certified by the Society of Freshwater Science (SFS). Each laboratory must submit the resume or *curriculum vitae* for the taxonomists who identify benthic macroinvertebrates for the NCCA samples to the EPA Project QC Officer.

Sorters are laboratory technicians who have basic training in laboratory procedures. An "experienced" sorter is one that has achieved \geq 90% sorting efficiency in 5 consecutive samples.

4.3.4 Equipment/Materials

The procedure requires the following equipment and materials for sample preparation (subsampling), sorting, and taxonomic identifications.

4.3.4.1 Sample Preparation (Subsampling) and Sorting Equipment/Materials

- U.S. 35 sieve (500 μm)
- Round buckets
- Standardized, possibly, gridded screen (40 Mesh (380-μm openings, T304 stainless steel wire, 34GA (0.010"))
- 6-cm scoop
- White plastic or enamel pan (6" x 9") for sorting
- Teaspoon

- Permanent ink pen (e.g Pigma Micron® pen)
- Dropper
- Fine-tipped forceps (watchmaker type, straight and curved)
- Vials with caps or stoppers
- Sample labels for vials
- 70-80% ethanol
- Stereo zoom microscope (6-10X magnification)

4.3.4.2 Taxonomy Identification Equipment/Materials

- Stereo dissecting microscope with fiber optics light source (50-60X magnification)
- Compound microscope (10, 40, and 100X objectives, with phase-contrast capability)
- Digital camera with high resolution capability mounted on a microscope
- Petri dishes
- Microscope slides (1" x 3" flat, precleaned)
- Cover slips (appropriately sized)
- CMCP-10 (or other appropriate mounting medium)
- Permanent ink pen (e.g Pigma Micron® pen)
- Dropper
- Fine-tipped forceps (watchmaker type, straight and curved)
- Vials with caps or stoppers
- Sample labels for vials
- 70 80% non-denatured ethanol in plastic wash bottle
- Taxonomic Bench Sheet (Attachment 4.1 provides an example)
- Hand tally counter

4.4 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel should start the following login steps within 24 clock hours of receiving a delivery.

- 1. Record receipt of samples in the NARS IM system (within 24 clock hours) and the laboratory's Information Management System (LIMS). Assign the appropriate chronological bench number to each sample. Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Inspect each jar THE SAME DAY THEY ARE RECEIVED:
 - a. Add 70-80% formalin to the jar, if necessary (i.e., to cover the contents completely).
 - b. Verify that the site identification and sample number on the label also appear on the chain of custody form in the shipment.
 - c. Notify the EPA HQ Laboratory Review Coordinator (see contact information in Chapter 2) if any jars were broken and/or there are discrepancies between the custody form and jars.

- 3. Store the sample containers at room temperature until sorting begins. If the sample will be stored for a long time before sorting, replace the formalin with ethanol for better preservation of the organisms.
- 4. Maintain the chain-of-custody form with the samples; it will be needed if the samples are transported to any other location (e.g., for taxonomic identification, external QC evaluation).
- 5. Verify that the login information includes the required data elements in Table 4.1. After completing all required elements, provide the information to the data entry personnel.

Table 4.4.1 Benthics Macroinvertebrates Login: Required Data Elements

Table 4.4.1 Dentines Wacromvertebrates Login. Required Data Elements			
FIELD	FORMAT	DESCRIPTION	
LAB NAME	Character	Name of lab	
LAB ID (optional)	Character	Lab sample id	
DATE RECEIVED	MMDDYY	Date sample was received by lab	
SITE ID	Character	NCCA site identification code as used on sample label	
VISIT NUMBER	Numeric	Sequential visits to site (1 or 2, if specified on label)	
SAMPLE ID	Numeric	Sample number as used on field sheet (on sample label)	
DATE COLLECTED	Date	Date sample was taken	
SALINITY	Numeric	Salinity: Value is provided on the sample label	
CONDITION_CODE	Character	Condition codes describing the condition of the sample upon arrival at the laboratory.	
		Flag	Definition
		OK	Sample is in good condition
		C	Sample container is cracked
		L	Sample or container is leaking
		ML	Sample label is missing
		NP	Not enough preservative used
		Q	Other quality concerns, not identified above
			(explain in COND_COMMENTS)
COND_COMMENTS	Character	Explanation for Q FLAG (if needed)	

4.5 Sample Preparation and Picking Organisms

This section describes the steps for the sorter in preparing the sample and picking organisms.

- 1. Remove the lid from the sample container and remove the internal sample label.
- 2. Carefully decant the formalin from the sample container by pouring the fluid through a sieve (U.S. 35) into a separate container. Inspect the mesh of the sieve for any organisms and return any organisms found to the sample container so they can be included in the sample sort process.
- 3. Remove sieved organisms from the sample container and place into a sorting tray.

- 4. Sort all samples under a minimum of 6x (maximum of 10x) dissecting microscope. Remove the macroinvertebrates from the detritus with forceps. In general, do not remove:
 - o Empty snail or bivalve shells
 - Organisms of water surface-dwelling or strict water column² arthropod taxa, and meiofauna.
 - o Incidentally-collected terrestrial taxa.
 - o Fragments such as legs, antennae, gills, wings, or tails.

For Oligochaeta, attempt to remove only whole organisms or fragments that include the head. In other words, do not remove fragments without the head.

- o In case of uncertainties, place the organism in the sort vial for the taxonomist to make the final determination.
- 5. Place picked organisms of the same type into a single set of jars and vials containing 70-80% ethanol.
- 6. This QC step is performed if: 1) the sorter (sorter A) has not reached 90% proficiency in 5 consecutive samples (referred to as the "proficiency QC check" below); or 2) this sample is the 1 in 10 sample QC check for experienced sorters (referred to as the "periodic QC check" below). For this step, a second sorter (sorter B):
 - o Performs QC checks using the same power microscope as the sorter;
 - Extracts any missed organisms found in the pickate from Sorter A and places them into the sample vial, or other suitable sample vial;
 - o Notes the number of organisms missed; and
 - o Adds that number to the final count of the sample.
 - Calculates the PSE for the sample (see Section 4.3.1 for definition; equation 1). If the PSE is:
 - <90% and the sample is the:
 - Proficiency QC check, a second sorter must check the next 5 samples until the original sorter has PSE≥90% for 5 consecutive samples.
 - Periodic QC check, then a second sorter examines the original sorter's samples since the last QC check for missed organisms. The original sorter must again demonstrate proficiency by achieving a PSE≥90% in 5 consecutive samples.
 - \geq 90% and the sample is the:
 - Proficiency QC check, the sample counts towards the 1 in 5 consecutive samples used to establish proficiency.
 - Periodic QC check, no corrective action is required.
 - Records the results from the QC step. The laboratory must record the results from all QC steps, even if they exceed the frequency required by this step. The laboratory must provide the sorter QC results to EPA upon request.

²Strict water column taxa are those that do not have at least one life stage that is benthic (i.e., bottom-dwelling).

- 7. Remove the remaining material left on the sorting pan (i.e. material such as sticks, organic debris) and place it in a separate container with preservative (70-80% ethanol). Label the container "Pickate," on both internal and external labels.
- 8. Label the vials and jars of sorted organisms and material using permanent ink (e.g., using a Pigma Micron® pen). Internal sample labels should be made of cotton rag paper or an acceptable substitute.
- 9. Retain the vials and materials for the time period specified in Section 4.8.
- 10. Thoroughly clean all sample preparation and sorting equipment and make sure all equipment is free of organisms prior to sorting the next sample.

4.6 Taxonomic Identification

The taxonomist performs the following steps in identifying the benthic macroinvertebrate organisms:

- 1. Upon receipt of a set of sample vials from the sorter:
 - a. Compare all site identification codes and sample numbers on the form with those entered on the labels of samples, and resolve any discrepancies with the sorter.
 - b. Determine if any vials are broken. For any broken vial, attempt to recover as much of the sample as possible. Describe the damage in the LAB_COMMENTS field in the database.
 - c. Maintain the chain-of-custody form with the sample vials; it will be needed to return/store them.
- 2. Empty one sample vial at a time into a small Petri dish. Add 70-80% ethanol to keep the organisms covered. Remove the internal sample label and complete the top portion of a Taxonomic Bench Sheet (for an example, see Attachment 4.1), using the information from the label. Depending on the type of organisms, select the appropriate step:
 - a. For all *Chironomidae* organisms, extract the organisms from the Petri dish.
 - i. Prepare slide mounts using CMCP-10 (or CMC-9, CMC-10, or other media) and applying a coverslip. All organisms must be visible, which generally means a maximum of 10-20 organisms per slide. Label the slides with the same sample identification code or log-in number as the ethanol organisms.
 - ii. If the laboratory prefers to use another method than slide mounting, the EPA External QC Coordinator will grant a waiver if the following applies:
 - 1) The request is for a laboratory located at a single location. For example, EPA would *not* consider the combined qualifications of a prime contract laboratory and its subcontract laboratories. Instead, for whichever laboratories met the requirements, EPA would evaluate and grant (or deny) a waiver for the prime contract laboratory separate from each of its subcontractor laboratories.

BENTHIC MACROINVERTEBRATES

- 2) The request for a waiver must identify and describe a minimum of three studies. For each study, the external QC evaluation must demonstrate that the laboratory met or exceeded the NCCA QC requirements (i.e., PDE≤5% and PTD≤15%) for its *Chironomidae* organisms.
- 3) The laboratory agrees to mount the organisms on slides if it fails one of the periodic (NCCA) external QC evaluations, as follows:
 - a. It must mount all *Chironomidae* organisms in samples processed since the previous external QC evaluation (i.e., for which it met the PDE and PTD requirements).
 - b. It must continue to mount all *Chironomidae* organisms for the unprocessed samples.
- b. For all other organisms, remove similar organisms to other dishes (keep these covered with 70-80% ethanol).
- 3. View the sample to ensure that all necessary diagnostic characters have been observed, according to the taxonomic key or other literature using:
 - a. A stereo dissecting microscope for organisms in dishes.
 - b. A compound microscope for slides of Chironomidae and Oligochaeta organisms
- 4. Identify organisms to the lowest practical taxonomic level (species is the target for all organisms with the exception of meiofauna, (due to being smaller than 0.5 mm). Additional exceptions include Oligochaeta (Class) and Chironomidae (Family) in samples from marine, polyhaline and mesohaline regions **ONLY**. If a laboratory or individual taxonomist is having trouble reaching species for a taxonomic group (not for an individual organism which might be damaged or otherwise difficult to identify), the lab must contact the NCCA project lead for guidance. Add any necessary data qualifiers (see list provided with Required Data Elements in Table 4.2).
 - a. Enter the Taxonomic Serial Number (TSN) as it appears in the column "Unique Identifier" of the taxa list provided by EPA.
 - b. Note whether the identification of a group of organisms is distinct (Distinct=Y/N) from other organisms in the same sample as follows:
 - i. If the organisms can be identified to the target level, then Distinct="Y."
 - ii. If an organism cannot be identified to the target level then assign values as follows:
 - 1) If at least some of the organisms in the sample can be identified to the target level, then:
 - a. Distinct="Y" for organisms identified at the target level; and
 - b. Distinct="N" for organisms that were identified at a higher taxonomic level (e.g., family) that may contain a target level taxa already identified in a given sample (e.g., genus).
 - c. An example would be, if some organisms from a sample are identified to *Macoma*, but other organisms in the sample could only be identified to *Tellinidae* and/or

Veneroida, then *Macoma* would be distinct, but *Tellinidae* and/or *Veneroida* would not be Distinct.

- 2) If none of the organisms in the sample could be identified at the target level, then:
 - a. Distinct="Y" for organisms identified at the lowest taxonomic level (e.g., family); and
 - b. Distinct="N" for organisms identified at a higher level (e.g., order).
 - c. For example, if a taxonomist can identify a number of *Veneroida* (Order) families, but a number of the organisms could not be taken past *Veneroida*, then the individual families would be distinct, but the order would not be distinct.

Record the identifications. For example, using the taxonomic bench sheet in Attachment 4.1, record the identification in the Column labeled "taxon." Enter the number of larvae, pupae, and adults, or total count (e.g. mollusks), if appropriate life history column does not apply, of each taxon under the appropriate columns.

- iii. If the target taxonomic level cannot be achieved due to immature or damaged organisms this should be noted in the data file in the QA_FLAG field (e.g., QA_FLAG=IM). Table 4.2 provides other codes for the QA_FLAG field.
- iv. If damaged organisms can be identified, they are counted ONLY if the:
 - 1) Fragment includes the head, and, in the case of arthropods, the thorax:
 - 2) Oligochaetes have a sufficient number of segments in the head;
 - 3) Mollusk shell (bivalve or gastropod) is occupied by a organism;
 - 4) Organism is the sole representative of a taxon in the sample.
- v. If a unique taxon is determined for which the appropriate taxonomic level is not available in the literature and there are other taxa in that taxonomic level:
 - 1) Provide good quality digital photographs of the organism to outside experts for identification; and
 - 2) Include the tentative identification in the database with a data qualifier code of QA_FLAG='UN' so that these organisms can be distinguished from other organisms in the data analysis.
 - 3) When the outside expert identifies the organism, update the database with the correct identification.
- 5. Compare taxa names from the taxa list provided by EPA to the names used for the identifications. Check the non-matches for the following common problems and correct them.
 - a. Abbreviations
 - b. Extra information identifiers (e.g., sp., spp., , nr., cf., genus 1, w/ hair chaetae)
 - c. Extra character (e.g., "?", "Acentrella ?turbida", blank space)
 - d. The word "probably" or "prob" (e.g., "Microcylloepus prob. similis")
 - e. Double names (e.g., Callibaetis callibaetis)
 - f. Common misspellings
 - g. Tribes/subfamilies/subgenus sometimes may not appear
 - h. Species with incorrect genus (Hydatopsyche betteni)
 - i. Split level taxonomy (e.g., Cricotopus/Orthocladius) Invalid name (e.g., taxonomic change, synonym; Sphaeriidae vs. Pisiidae)
- 6. Complete the identification by entering the totals for each developmental stage and the total number of each taxon in the cells at the bottom of the sheet. Cross-check to be sure the totals were summed correctly.
- 7. Provide the data to the Internal Taxonomic Officer for another review to confirm that the identifications use the same nomenclature as the taxa list provided by EPA and the laboratory's reference collection.

BENTHIC MACROINVERTEBRATES

- 8. Make two copies of the bench sheet or computer file used to record the identifications. They are distributed as follows: 1) the project file; and 2) EPA's External QC Coordinator.
- 9. Prepare a list of primary and secondary technical literature used in completing the identifications. Provide complete citations in bibliographic format, including authors' names, date of publication, title of document, name of journal or publisher, volume and page numbers, or ISBN number, as appropriate. These citations will be kept on file with the Internal Taxonomic QC Officer, who will periodically review the reference collection to ensure that it is complete.
- 10. Verify that the reference collection contains at least one organism that represents each genus (or lowest taxonomic level) identified from all sample. For any missing references, choose an appropriate organism(s) from the sample to represent a taxon name in the master taxa list:
 - a. Place the physical specimen in the reference library.
 - b. Place two labels in the sample container to identify: organisms placed in the reference collection, and those in the non-reference organisms.
 - c. Obtain a good quality representative digital photographs of the specimen (see instructions in Section 4.3.1).
- 11. If the Internal Taxonomy QC Officer selects the sample for a QC check, the Internal Taxonomy QC Officer re-counts and re-identifies the organisms in the sample following the same steps above for the original taxonomist. One in 10 of the taxonomist's samples must be checked. The Internal Taxonomy QC Officer records the independent verifications on a bench sheet or computer file. The Internal Taxonomy QC Officer will also supply a list of taxa that were found to be problematic during their QC sorting check, which can be submitted in an Excel or Word document format. (If the Internal Taxonomy QC Officer performs the QC check more frequently, then all QC data must be submitted.)
- 12. Carefully return the rest of the organisms to the original sample vial, fill with 70-80% ethanol, and cap tightly.
- 13. Re-package the samples and slide-mounted organisms carefully, and sign and date the chain-of-custody form. Return or store the samples according to laboratory protocols and requirements in Section 4.8.
- 14. Verify that all required data elements in Table 4.2 have been recorded by the taxonomist and Internal Taxonomy QC Officer. If the results were recorded on paper, provide the Taxonomic Bench Sheet to the data entry personnel.

Table 4.2 Benthic Macroinvertebrates Taxonomic Identification: Required Data Elements

FIELD	FORMAT	DESCRIPTION
LAB NAME	Character	Name of lab

C L L	
RR_{A}	
PTE]	3
VFR	
	1
282	(
∀ ∑	77.7
ر ا)
Ė	7717
Ţ	١

FIELD	FORMAT	DESCRIPTION			
LAB ID (optional)	Character	Lab sample id			
DATE RECEIVED	Date	Date sample was received by lab			
SITE ID	Character	NCCA site identification code as used on sample label			
VISIT NUMBER	Numeric	Sequential visits to site (1 or 2, if specified on label)			
SAMPLE ID	Numeric	Sample number as used on field sheet (on sample label)			
DATE COLLECTED	Date	Date sample was taken			
DATE TAXON	Date	Date that the taxonomist started identifying organisms in the sample			
ANALYST NAME	Character	Name of taxonomist or Internal Taxonomy QC Officer (if record provides results of QC check)			
QC VERIFICATION	Character	Y if the record provides the results from the QC check			
FAMILY	Character	Taxonomic family			
SUBFAMILY	Character	Taxonomic subfamily			
TRIBE	Character	Taxonomic tribe			
GENUS GROUP	Character	Taxonomic genus group (e.g., thienemannimyia)			
GENUS	Character	Taxonomic genus			
SPECIES	Character	Taxonomic species			
TSN	Numeric	Taxonomic Serial Number as defined by "UniqueIdentifier"			
		in taxa list provided by EPA. If taxon is not in this list,			
		provide citation for reference used to identify organism in CITATION field			
LAB TIN	Character	Lab taxa ID number			
(OPTIONAL)		Euo taxa ib namoer			
TAXANAME	Character	Unique taxon name in the taxa list provided by EPA			
ABUNDANCE	Numeric	Number of individual larvae or immature bugs			
LARVAE					
ABUNDANCE	Numeric	Number of individual pupae			
PUPAE					
ABUNDANCE	Numeric	Number of individual adults			
ADULT					
ABUNDANCE	Numeric	Total number of individuals			
TOTAL					
DISTINCT	Character	Distinct taxa in sample (y/n) (See description in Section 4.6)			
CITATION	Character	Citation for reference used to identify organism, if taxon not			
		present in taxa list provided by EPA database			
QA FLAG (if	Character	QA/QC flag (lab may use its own flags, if defined in			
appropriate)		QA_COMMENTS field or provided to NARS IM team)			
		Flag Definition			
		DD Damaged Organism, poor condition or fragments			
		IM Immature			
		IN Indeterminate (explain in QA_COMMENTS field)			
		NP Not enough preservative used			
		NT Not able to meet target level for identification (may			
		be used with other codes, or explain in			
		QA_COMMENTS field)			
		S Sample shipping problem (explain in			
		QA_COMMENTS field)			

FIELD	FORMAT	DESCRIPTION		
		UN	Unknown. Identification is tentative. Organism has been sent to expert taxonomist for definitive identification.	
		Q	Other quality concerns, not identified above	
QA_COMMENTS	Character	Explanation for QA FLAG (if needed)		
LAB COMMENTS	Character	Genera	al laboratory analysis comments	

4.7 Data Entry

Tables 4.1 and 4.2 identify the required data elements that the sorting and taxonomic laboratories must provide to EPA, preferably in EPA's data template, available separately from EPA. In addition, the laboratory must provide the resume or *curriculum vitae* for each taxonomist who identifies benthic macroinvertebrates for the NCCA samples. The resume or *cv* for each taxonomist is submitted once to EPA's External QC Coordinator.

4.8 Sample and Record Retention

The laboratory shall retain:

- 1. The sample materials, including vials, slides, and sorting residuals, for a minimum of 3 years from the date the EPA publishes the final report. During this time, the laboratory shall store the materials in a cool location away from sunlight. The laboratory shall periodically check the sample materials for degradation and refill jars and vials with 70-80% ethanol if necessary.
- 2. Original records, including laboratory notebooks and the reference library, for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

4.9 External Taxonomic Quality Control

EPA requires that all NCCA laboratories ("primary laboratories") participate in the External Taxonomic Quality Control Evaluation. Each taxonomist must participate in the QC evaluation, even if the taxonomist is under subcontract with, or consulting for, another firm.

In contrast to the internal QC evaluation in Section 4.6 that verify adherence to the procedures and ensures in-laboratory consistency between taxonomists, the purpose of the external QC evaluation is to ensure consistency between laboratories and taxonomists. To achieve this objective, EPA compares the primary laboratory results to those from a second laboratory, considered a quasi "gold standard" for taxonomic evaluations.

The External QC Coordinator, who is an EPA staff member, is responsible for selecting and managing the "QC contractor." To eliminate the appearance of any inherent bias, the QC contractor must be dedicated to QA/QC functions, and thus, must not be a primary laboratory or a field sampling contractor for NCCA. The QC contractor is responsible for complying with instructions from the External QC Coordinator; obtaining and managing the secondary laboratory; coordinating and paying for shipments of the QC samples between locations; comparing sample identifications by different laboratories; facilitating reconciliation teleconferences; and preparing brief summary reports.

The External QC Coordinator will arrange for the QC contractor to conduct a minimum of two QC evaluations. To the extent practicable, the External QC Coordinator and QC contractor will schedule batch evaluations evenly throughout the project period.

Each QC evaluation consists of the following steps:

- 1. In consultation with the QC contractor, the External QC Coordinator determines an appropriate time to conduct the evaluation based upon the total number of samples assigned to the laboratory, the delivery schedule, processing schedule, and the following constraints:
 - a. Availability of samples from other laboratories. For example, if three state laboratories are each processing less than 30 samples, the External QC Coordinator might combine their samples into one batch for the QC evaluation.
 - b. If a primary laboratory is responsible for processing 100 samples or more for the NCCA, the External QC Coordinator will split their samples into several batches (e.g., each 50 to 100 samples) so that EPA can evaluate and correct performance on an ongoing basis.
- 2. The External QC Coordinator provides the QC contractor with a list of laboratories and processed samples. Sample identification includes the site identification code, sample number, and taxonomist who performed the identifications.
- 3. The QC contractor randomly selects 10% of the samples from each NCCA laboratory, subject to the following constraints:
 - a. If the primary laboratory received fewer than 30 samples, then the QC contractor randomly selects three samples for the evaluation.
 - b. For each taxonomist identified on the list, the QC contractor ensures that the selection includes one or more of his/her samples.
 - c. The External QC Coordinator may elect to provide an initial evaluation of the national laboratory by selecting a small batch from the samples that the laboratory completed in the first 2-3 months.
- 4. The QC contractor provides a list of the QC samples, and instructions, to the External QC Coordinator and each primary laboratory participating in the evaluation. Although the External QC Coordinator and QC contractor may tailor the instructions for the participating taxonomists' preferences, the instructions are likely to specify the following:

containers.

- a. Pack and ship the OC samples to the central holding facility designated by the OC contractor. Instructions are likely to require that the: i. Shipments contain chain-of-custody documentation for all slides and
 - ii. Containers (e.g., slides, vials) include the site identification code and sample number.
 - iii. Containers cannot be marked in any way that might identify the taxonomic classification for any organism.
 - iv. The number of taxa in a vial or container should be based on practical considerations (e.g., size of animals and amount of ethanol needed for preservation, amount of ethanol allowed in a single shipment to meet DOT shipping requirements).
- b. Track the QC samples using forms provided by the QC contractor.
- c. Email a spreadsheet with the data for the QC samples to the External QC Coordinator. (EPA requires that all labs use its spreadsheet template for recording the taxonomic data.)
- 5. The QC contractor reviews the condition of the QC samples (e.g., verifies that the containers do not identify taxon for any organism) and ships the samples to the secondary laboratory along with instructions and the EPA template for reporting data.
- 6. Within 24 hours of receipt, the secondary laboratory:
 - a. Notifies the QC contractor that it has received the samples;
 - b. Faxes or emails any additional receipt records, including discrepancies, within 24 hours: and
 - c. Completes any other instructions from the QC contractor.
- 7. The secondary laboratory:
 - a. Re-identifies and re-counts following the procedures in the Method, except does not:
 - i. Develop a reference library.
 - ii. Photograph organisms unless the taxa are identified for reconciliation discussion.
 - iii. Perform any internal OC checks.
 - b. Records the required data elements in Section 4.7.
 - c. Enters the data using EPA's spreadsheet template for the taxonomic data.
 - d. Emails the completed spreadsheet to the QC contractor.
- 8. The QC contractor compares the original taxonomic results (i.e., data) generated by the primary laboratory to the taxonomic results generated by the secondary laboratory for each sample. As part of this evaluation, the QC contractor calculates PDE and PTD using the equations in Section 4.3.1 and compares their values to the QC requirements in the Section 4.10.
- 9. If any samples exceed the PDE or PTD limits in Section 4.10, the QC contractor consults with the External QC Coordinator to determine if reconciliation calls are necessary to

- 10. The QC contractor schedules and facilitates reconciliation teleconferences with EPA and the laboratories.
 - a. In preparation for the teleconferences:
 - i. The QC contractor instructs the secondary laboratory to photograph representative specimens for each taxon identified for discussion.
 - ii. The QC contractor provides the participants with a spreadsheet that includes:
 - 1. List of samples and taxon identifications for discussion;
 - 2. Relevant data from the primary and secondary laboratories; and
 - 3. PDE and PTD values.
 - iii. The primary and secondary laboratories provide participants with the relevant reference (or citation) and photograph for each taxonomic identification for the discussion.
 - iv. The QC contractor emails a meeting announcement for a convenient time for all participants. The email identifies instructions for accessing the External QC Coordinator's toll-free teleconference line.
 - b. Within a week after the teleconference, the QC contractor sends an email to the External QC Coordinator and other teleconference participants that summarizes:
 - i. Agreements to use common nomenclature for discrepancies;
 - ii. Commitments to reevaluate identifications by reexamining samples;
 - iii. Application of changes that are appropriate for all samples, not just the QC samples (e.g., common nomenclature)
 - iv. Items that will not be resolved for some reason (e.g., sample degraded during shipment).
- 11. After completing the reconciliation calls, the participants complete the following steps:
 - a. Secondary laboratory:
 - i. Reexamines samples as deemed necessary during the reconciliation call
 - ii. Updates its database with changes to:
 - 1. QC samples per reexamination and other items in the QC contractor email; and
 - 2. Non-QC samples as appropriate (e.g., nomenclature changes apply to all samples, not just QC samples).
 - iii. Provides database to QC contractor.
 - b. QC contractor confirms that the secondary laboratory (i.e., its subcontractor) completed its assignments before allowing the secondary laboratory to move to the next step.
 - c. Secondary laboratory stores its original records, including laboratory notebooks and the reference library, for a minimum of 10 years from the date that EPA publishes the final report.
 - d. Secondary laboratory and QC contractor follow steps 4 and 5 above to return the samples to the primary laboratory.

- e. After receiving the samples (and tracking per step 4), the primary laboratory:
 - i. Reexamines samples as deemed necessary during the reconciliation call;
 - ii. Updates its database with changes to:
 - 1. QC samples per reexamination and other items in the QC contractor email; and
 - 2. Non-QC samples as appropriate (e.g., nomenclature changes apply to all samples, not just QC samples)
 - iii. Provides the revised database to the External QC Coordinator (not the QC contractor). It also confirms that it has completed all relevant items identified in the QC contractor's email summary of the teleconferences (from Step 10.b).
- f. QC contractor provides EPA with a report or memorandum that:
 - i. Identifies the participating laboratories, with the following information about each laboratory:
 - 1. Laboratory name
 - 2. Address
 - 3. Contact person (name, telephone, and email)
 - ii. Quantifies the taxonomic precision (PDE and PTD) as they were prior to the reconciliation call;
 - iii. Assesses data acceptability;
 - iv. Highlights taxonomic problem areas;
 - v. Identifies any discrepancies for which the External QC Coordinator determined that a reconciliation teleconference was not necessary;
 - vi. Identifies primary and secondary laboratory commitments to change its identifications or provide additional review of any organisms; and
 - vii. Provides recommendations for improving precision for other samples not included in the QC evaluation.
- 12. After review, the External QC Coordinator:
 - a. Submits the report, and draft technical direction with next steps for the laboratory, to the EPA staff managing or coordinating with the primary laboratory.
 - b. Determines if significant differences within the batch of QC samples warrant reidentification of samples by the primary laboratory and a second QC evaluation by the secondary laboratory. If deemed necessary, EPA will instruct the primary laboratory to include the samples for review with the next batch of QC samples.

As an additional verification on the generation of the data, EPA may conduct assistance visits at the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter. The objective of the visit would be to:

- Confirm the laboratory is properly implementing the steps in the method.
- Assist with questions from laboratory personnel.
- Suggest corrections if any errors are made.

4.10 Quality Assurance/Quality Control (QA/QC)

Equation 4.1 Percent sorting efficiency (PSE)

Number of organisms found by the sorter (A) compared to the combined (total) number of found by the sorter (A) and the number recovered by the QC Officer (B) from Sorter A's pickate for a sample. PSE should be $\geq 90\%$.

$$PSE = \frac{A}{A+B} \times 100$$

Equation 4.2 Percent disagreement in enumeration (PDE)

Measure of taxonomic precision comparing the number of organisms, n_1 , counted in a sample by the primary taxonomist with the number of organisms, n_2 , counted by the internal or external QC taxonomist. PDE should be $\leq 5\%$.

$$PDE = \frac{\left| n_1 - n_2 \right|}{n_1 + n_2} \times 100$$

Equation 4.3 Percent taxonomic disagreement (PTD)

Measure of taxonomic precision comparing the number of agreements (positive comparisons, $comp_{pos}$) of the primary taxonomist and internal or external QC taxonomists. In the following equation, N is the total number of organisms in the larger of the two counts. PTD should be $\leq 15\%$.

$$PTD = \left[1 - \left(\frac{comp_{pos}}{N}\right)\right] \times 100$$

Table 4.3 Benthic Macroinvertebrates: Measurement Data Quality Objectives

Variable or Measurement	Precision	Accuracy
Sort and Pick	90% ^a	90% ^a
Identification	85% ^b	95% ^c

NA = not applicable; ^a As measured by PSE; ^b As measured by (100%-PTD); ^c As measured by (100%-PDE)

Table 4.4 Benthic Macroinvertebrates: Laboratory quality control

Check or Sample Description	Frequency	Acceptance Criteria	Corrective Action			
SAMPLE PROC	SAMPLE PROCESSING AND SORTING					
Sample pickate	10% of all	PSE ≥ 90%	If < 90%, examine all residuals			
examined by	samples		of samples by that sorter and			
another sorter	(minimum of 1)		retrain sorter			

Check or Sample Description	Frequency	Acceptance Criteria	Corrective Action
	completed per sorter		
IDENTIFICATION	N		
Duplicate identification by Internal Taxonomy QC Officer	1 in 10 samples per taxonomist,	PTD ≤15%	If PTD >15%, reidentify all samples completed by that taxonomist since last meeting the acceptance criteria, focusing on taxa of concern
Independent identification by outside, expert, taxonomist	All uncertain taxa	Uncertain identifications to be confirmed by expert in particular taxa	Record both tentative and independent IDs
External QC	10% of all samples completed per laboratory	PDE ≤ 5% PTD ≤ 15%	If PDE > 5%, implement recommended corrective actions. If PTD > 15%, implement recommended corrective actions.
Use of widely/commonly accepted taxonomic references by all NCCA labs	For all identifications	All keys and references used by each lab must be on bibliography prepared by one or more additional NCCA labs or in The taxa list provided by EPA. This requirement demonstrates the general acceptance of the references by the scientific community.	If a lab proposes to use other references, the lab must obtain prior permission from External QC Officer before submitting the data with the identifications based upon the references.
Prepare reference collection	Each new taxon per laboratory	Complete reference collection to be maintained by each individual laboratory	Internal Taxonomy QC Officer periodically reviews data and reference collection to ensure reference collection is complete and identifications are accurate
DATA VALIDAT	ION		
Taxonomic "reasonableness" checks	All data sheets	Taxa known to occur for coastal waters or Great Lakes.	Second or third identification by expert in that taxon

4.11 References

Epler, J.H. 2001. Identification manual for the larval chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13. North Carolina Department of Environment and Natural Resources, Raleigh, NC, and St. Johns River Water Management District, Palatka, FL. 526 pp.

BENTHIC MACROINVERTEBRATES

Merritt, R.W., K.W. Cummins, and M.B. Berg (editors). 2008. An Introduction to the Aquatic Insects of North America, 4rd edition. Kendall/Hunt Publishing Company, Dubuque, Iowa. Stribling, J.B., S.R. Moulton, and G.T. Lester. 2003. "Determining the quality of taxonomic data." Journal of the North American Benthological Society 22(4):621-631.

USEPA. 2012. National Rivers and Streams Assessment 2013-2014: Laboratory Operations Manual. EPA-841-B-12-010. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Attachment 4.1: Benthic Macroinvertebrates: Taxonomy Bench Sheet (example)

Laboratory Information	Sample Information
Project ID	Sample ID
Station Name	Site ID
Station Location	Date Collected
Station Number	Field Crew ID

Taxonomist Name	
Date 1st Organism Identified in Sample:	QC Check? Y / N

TSN (Use # in	Taxon	Distinct	Counts Taxon:	of Organ	isms in t	he	Cumulative Number of	Data Qualifier
UniqueIdentifier from taxa list provided by		(Y/N)	Total (any stage)	Larvae	Pupae	Adults	Organisms in Sample	(Codes in Table 4.2)
EPA)								

Comments:

5.0 WHOLE BODY FISH PROCESSING AND CONTAMINANT ANALYSIS

This chapter describes fish processing and analysis requirements for whole body fish samples. The purpose is to determine concentrations of contaminants in fish samples collected in the 2015 NCCA and related studies. The laboratory shall perform analysis to determine the lipid content, concentrations of metals, mercury, pesticides, and PCBs found in fish within coastal waters and Great Lakes. EPA also may require the national contract laboratory to analyze the samples for PAHs; however, EPA will not require the State laboratories to analyze for them.

At each sampling site, the Field Operations Manual (FOM) instructs the crews to collect five fish of the same species (or 10 sea urchins of any species) and similar size for each sample. The crew, or EPA's batch laboratory, then ships the fish specimens on dry ice to the laboratory.

In the following discussion, Sections 5.1, 5.2, and 5.3 summarize the procedure; health and safety concerns; and definitions and required resources. Section 5.4 provides the steps for acknowledging sample receipt. Section 5.5 provides the steps for creating whole fish composites. Sections 5.6 – 5.7 provide the minimum requirements that the laboratory must meet in performing the contaminant analyses and the required data elements. Section 5.8 describes EPA's external review of laboratory operations and other quality measures. Section 5.9 identifies references used in developing the procedure.

5.1 Summary of the Procedure

This chapter describes the fish processing and contaminant determination of whole fish samples collected for EPA's 2015 National Coastal Condition Assessment (NCCA). To ensure consistent and uncontaminated fish preparation activities across all samples, it is important that all NCCA participating laboratories adhere to the fish preparation procedures described in Section 5.5. The procedure is an adaption of instructions developed for fish tissue preparation for the National Rivers and Streams Assessment. As described in Section 5.6 the laboratory may choose to use any method that meets EPA's specifications for contamination measurements unless contractually bound to use specific methods (note, those methods must still meet EPA's specifications for contamination measurements)..

5.2 Health and Safety Warnings

The laboratory must require its staff to abide by appropriate health and safety precautions. In addition to the laboratory's usual requirements such as a Chemical Hygiene Plan, the laboratory must adhere to the following health and safety procedures:

- 1. Laboratory facilities must properly store and dispose of solutions of weak acid.
- 2. Laboratory personnel must wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear, gloves).

- 3. When working with potential hazardous chemicals (e.g., weak acid), laboratory personnel must avoid inhalation, skin contact, eye contact, or ingestion. Laboratory personnel must avoid contacting skin and mucous membranes with acid. If skin contact occurs, remove clothing immediately. Wash and rinse the affected skin areas thoroughly with large amounts of water.
- 4. When operating grinding equipment, the laboratory personnel must exercise caution.

5.3 Definitions and Required Resources (Personnel, Laboratories, and Equipment)

This section provides definitions and required resources for using the procedure.

5.3.1 Definitions

The procedure uses the following terms:

Detection Limit is the minimum concentration at which the analyte can be *detected* with confidence. In other words, the outcome can be reported with confidence that it is greater than zero (i.e., present in the sample). Also see "Sample-Specific Detection Limit."

Duplicates are defined as two aliquots of the same sample which are analyzed separately using identical procedures. The results are used to evaluate the precision of the laboratory analyses.

Fish Composite: Each composite consists of all parts of the fish including the head, skin, internal organs, muscle, and bones. For sea urchins, it includes only the gonad tissue because it is essentially the only tissue present. Unless otherwise specified, references to "fish" include "sea urchins." With the exception of sea urchins, NCCA does not provide support for analyses of any other invertebrates such as crustacean (e.g., lobster, crabs).

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management System (NARS IM): The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. Freshwater and coastal samples will be collected during the field stage of NCCA.

Non-routine sample: A non-routine sample is any sample that does not meet the definition of a routine sample. See Section 5.5.1 for more information.

Percent Recovery: Recovery is measured by comparing the concentrations of a sample split into two parts; and one part is spiked with a known concentration value. C_s is the

concentration measured in the spiked part; C is the concentration measured in the unspiked part; and s is the known concentration amount for the spike. The following equation is used to calculate the percent recovery:

$$\%Rs = \frac{C_s - C}{s} \times 100$$

Relative Standard Deviation (RSD): The precision at each concentration is reported in terms of the RSD. To calculate the RSD, first calculate the standard deviation, *S*, as follows:

$$S = \left[\frac{1}{n-1} \sum_{k=1}^{n} (C_s - \bar{C})^2\right]^{1/2}$$

where n is the number of replicate samples, C, is the concentration measure for the k^{th} sample, and \bar{C} is the average concentration of the replicate samples. Then, RSD is calculated as:

$$RSD = \left| \frac{S}{\overline{C}} \right| \times 100$$

Reporting Limit: A reporting limit is the point at which the measured value of the analyte can be reported with confidence.

Routine sample: A routine composite sample consists of individual adult fish of a single species that meet EPA's length requirement (Length of smallest fish in the composite must be at least 75% of the length of the longest fish),, and sufficient number of fish to meet target mass of 300 grams. See Section 5.5.1 for more information.

Sample-Specific Detection Limit: Most samples will have a sample-specific detection equal to the method's detection limit. For diluted samples, the sample-specific detection limit will be the product of the method's detection limit and the dilution factor. Typical values for the dilution factors will be 10 or 100.

Spiked Sample: See Percent Recovery definition for purpose of spiked samples.

TOCOR: Task Order Contracting Officer's Representative is EPA's contact person for laboratories under contract to EPA.

5.3.2 General Requirements for Laboratories

<u>Competency:</u> To demonstrate its competency, the laboratory shall provide analyte and matrix specific information to EPA. EPA will accept one or more of the following as a demonstration of competency:

• Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.

• Documentation detailing the competency of the organization, including professional certifications for fish-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.

Also, the lab must provide a demonstration of competency with fish samples in achieving the method detection limits, accuracy, and precision targets.

Quality assurance and quality control requirements.

To demonstrate its expertise in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

5.3.3 Personnel

The procedure refers to the following personnel:

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual.

External QC Coordinator is an EPA staff person who is responsible for selecting and managing the "**QC contractor**." To eliminate the appearance of any inherent bias, the QC contractor must be dedicated to QA/QC functions, and thus, must not be a primary laboratory or a field sampling contractor for NCCA. The QC contractor is responsible for complying with instructions from the External QC Coordinator; coordinating and paying for shipments of the performance samples to participating laboratories; comparing immunoassay results from the laboratories; and preparing brief summary reports.

5.3.4 Equipment/Materials

The procedures require the following equipment and information:

- o Scale
- o Powder-free nitrile gloves
- Tape measure
- o 5% nitric acid
- o Deionized water (DI water)
- Grinding equipment
- Glass containers
- o Jars

5.4 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery. The laboratory must inspect the samples promptly on receipt. As samples arrive, the laboratory must:

- 1. Log the samples into the National Aquatic Resource Survey Information Management system (NARS-IM) within 24 clock hours. Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Check that each shipping container has arrived undamaged. Check the temperature of one of the samples in the cooler using a thermometer that reads to at least -20 °C (i.e., the expected temperature of frozen samples), or an infra-red (IR) temperature "gun" and record the reading. Record the condition and temperature of the sample in the database using the codes in Table 5.1.
- 3. Compare the information on the label on each individual fish specimen to the sample tracking form for each composite and verify that each specimen was included in the shipment and is properly wrapped and labeled. The crew labels each fish specimen using the sample identification code and appends a specimen identification code. For example, if the sample number is "NCCA15-1111," then the crew might label specimen "A" as "NCCA15-1111.A." Record the number of fish in each sample.
- 4. Weigh each sample (i.e., all fish specimens collectively), record the weight in the database, and confirm that the sample meets the weight requirements of 140 grams (g) for a routine sample. If the sample weight is less than the required minimum, contact EPA for instructions, which are likely to involve preparing fewer aliquots for possibly fewer types of analyses than originally intended (e.g., perhaps EPA might eliminate the pesticides analysis for the sample).
- 5. Verify that all required data elements, per Table 5.1, have been recorded. If any elements are missing, then enter them into the database.
- 6. Transfer the samples to the freezer for long-term storage. Except during processing and analysis stages, the samples must be stored frozen to less than or equal -20 °C.
- 7. Notify the EPA immediately about any problems involving sample integrity, conformity, or inconsistencies as soon as possible following sample receipt and inspection.

Table 5.1 Whole Body Fish Login: Required Data Elements

Variable	Туре	Description
SITE_ID	Character	Site identification code
SAMPLE	Character	Sample number
DATE_COLLECT	Date	Date that the field crew collected the sample

Variable	Туре	Description		
	ARRIVAL_TEMP	Numeric	Temperature of	of sample upon arrival at the
			laboratory (fis	h should be frozen).
	NUMBER_FISH	Numeric	Number of fis	h in the sample
	SAMPLE_WT	Numeric	Total weight of	of sample (all fish)
	CONDITION_COD	Character	Condition cod	es describing the condition of
	Е		the sample up	on arrival at the laboratory;
			leave blank fo	r control
			Flag	Definition
			OK	Sample is in good condition
			С	Sample wrapping is cracked
			L	Sample or container is
				leaking
			ML	Sample label is missing
			NF	Sample is not at proper
				temperature
			Q	Other quality concerns, not
				identified above
	COND_COMMEN T	Character	Explanation fo	or Q FLAG (if needed)

5.5 Whole Fish Preparation and Homogenization Procedures

This section describes the whole fish preparation and homogenization procedures. As described in Section 5.5.1, if a laboratory determines that a sample is non-routine, the laboratory contacts the EPA HQ NCCA Laboratory Review Coordinator (Chapter 2 provides contact information) for additional instructions before continuing with the compositing and homogenization procedures in Section 5.5.2. Section 5.5.3 describes rigorous equipment cleaning and rinsate collection steps used before the compositing and homogenization steps in Section 5.5.4.

5.5.1 Sample Classification: Routine or Non-Routine

Each sample is either a "routine" composite sample, or a "non-routine" composite sample, based on the following definitions:

- Routine sample A routine composite sample consists of individual adult fish of a single species that meet EPA's length and other requirements. For example, the species must be one of the target species identified in Appendix B of this LOM. The laboratory homogenizes the fish to prepare one composite sample.
- Non-routine sample A non-routine sample is any sample that does not meet the
 definition of a routine sample. When field crews collect non-routine samples,
 depending on the circumstances, EPA will provide instructions for processing, or
 possibly destroying, the non-routine samples. These instructions also may include
 discarding some of the fish in the composite sample based on size before
 proceeding with homogenizing. For non-routine composites, the laboratory
 homogenizes only the designated specimens, i.e., those that EPA identifies by
 specimen number.

Note: Non-routine samples do not include samples from an incorrect sampling location, an unnecessary duplicate sample, or inappropriate fish species. EPA does not plan on using these "invalid" samples, so it is imperative that the sample preparation laboratory not process any sample without specific instructions from EPA. Therefore, laboratories shall retain such samples in frozen storage until EPA determines the appropriate course of action, which may include processing the sample. If the status of any composite sample in the instructions is not clear, the laboratory must contact EPA and wait for clarification.

5.5.2 Fish Examination and Preparation

This section describes the steps for fish examination and preparation.

- 1. Put on powder-free nitrile gloves (if not already gloved) before unpacking individual fish specimens. For sea urchins, wear thick rubber gloves to provide protection from the urchin spines. As samples are unpacked and unwrapped, inspect each fish carefully for any damage (e.g., tears in the skin or punctures in the gut). Document any damage in comments per Table 5.2.
- 2. The field crews measured the total length of each fish specimen in the field and recorded those lengths on the sample tracking form. Because of the importance of length measurements, EPA requires laboratories to perform a second series of measurements of the length for each fish. Because it may be difficult to reproduce the field measurements of fish length when the specimens are still partially frozen, begin processing the specimens in the following steps:
 - a. Lay them out in order by specimen number (e.g., the portion of the sample ID after the decimal point)
 - b. Allow them to partially thaw to the point that each specimen can be laid relatively flat.
 - c. Using the length data on the sample tracking form (or the relative length order data in the fish sample processing instructions spreadsheet), confirm that the specimen ID for the longest specimen recorded on the tracking form is the same as the specimen ID on the label of the longest specimen. Repeat this relative length comparison for each of the other specimen IDs to ensure that the length orders based on the recorded lengths in the sample tracking form are consistent with the specimen IDs on the individual fish labels. This check is important for confirming that the field crews attached the correct label to each fish in the composite sample.
 - d. Record the required data elements per Table 5.2 for the length of each species.
- 8. Weigh each fish to the nearest gram (wet weight) prior to any sample processing. In the database, record the required weight data elements per Table 5.2 for each specimen.
- 9. Identify and record the species of each fish specimen. Confirm that the species is one of the target species listed in Appendix B of this LOM.
- 10. Determine if the sample is routine or non-routine (per classification definitions in Section 5.5.1) and record its classification and any applicable fish code from Table 5.3. Return

any non-routine sample to the freezer and contact the EPA HQ NCCA Laboratory Review Coordinator for processing instructions (see Chapter 2 for contact information).

- 11. Verify that all required data elements, per Tables 5.2 and 5.3, have been recorded. If any elements are missing, then enter them into the database.
- 12. Rinse each fish with deionized water and remove any adhering slime as a precautionary measure to treat for possible contamination from sample handling in the field. Use HDPE wash bottles for rinsing fish and for cleaning homogenization equipment and utensils. Do **NOT** use Teflon® wash bottles for these procedures.
- 13. Return to freezer for storage until ready to homogenize the sample. If the laboratory intends to proceed directly to homogenization, then allow the sample to partially thaw while cleaning the equipment as described in the next section.

Table 5.2 Whole Body Fish: Data Elements for Each Fish Specimen

Tuole 3.2 Villore Body Tisht Butte Brements for Euch Tish Specimen			
Variable	Туре	Description	
SITE_ID	Character	Site identification code	
SAMPLE	Character	Sample number	
SPECIMEN_ID	Character	Identification code assigned to a single fish	
SPECIES	Character	Species of fish	
FISH_WT	Numeric	Weight of fish	
WT_UNIT	Character	Units of fish weight (kg, lb)	
FISH_LEN	Numeric	Length of fish	
LEN_UNIT	Character	Units of fish length (cm, in)	
COMMENT	Character	Comment about condition of fish or other observations	

Table 5.3 Whole Body Fish: Data Elements from Examination of Each Sample

Variable	Туре	Description			
SITE_ID	Character	Site identification code			
SAMPLE	Character	Sample number			
	SAMPLE_CLASS	Character	Sample cl routine	assification: Routine or Non-	
	FISH CODE	Character		scribing any deviations from the eria for fish collection for each	
			Flag	Definition	
			SP	Not all specimens are of the same species	
			LE	Not all specimens lengths are within 75% of longest fish	
			NS	Specimen number is fewer than minimum of 5 or greater than 20 maximum	

Variable	Туре	Description		
			WT	Mass does not meet minimum
				of 140 grams *
			LL	Longest fish exceeds 400 mm
		<u> </u>		maximum length
		LS Shortest fish below 100 mm		
		minimum length		
			Q	Other quality concerns, not
				identified above

^{*} Field crews are required to collect a minimum of 300 grams, but the minimum required for laboratory analyses is 140 grams.

5.5.3 Equipment Cleaning and Rinsate Collection

This section describes the rigorous cleaning required to protect against cross-contamination of samples. To verify that the cleaning procedures are effective, EPA requires the collection of rinsate samples as described below.

- 1. Before processing any sample, thoroughly clean all of the homogenization equipment. Disassemble the homogenization equipment (i.e., blender, grinder, or other device) and thoroughly clean all surfaces and parts that contact the sample. Similarly, clean all knives, cutting boards, and other utensils used. The cleaning steps are as follows:
 - a. Wash with a detergent solution (phosphate- and scent-free) and warm tap water
 - b. Rinse three times with warm tap water
 - c. Rinse three times with deionized (DI) water
 - d. Rinse with acetone
 - e. Rinse three times with DI water
 - f. Rinse with (not soak in) 5% nitric acid
 - g. Rinse three times with DI water
 - h. Allow the components to air dry
 - i. Reassemble the homogenization equipment
- 2. Once per batch (i.e., once per maximum of 20 samples), collect rinsate samples for use in assessing any equipment contamination. To minimize the number of project samples that might be affected by cross contamination, collect the normal rinsate samples on the first day that samples in a batch of 20 are processed. Ideally (not required), the laboratory will vary the point at which the rinsates are collected on that first day over the course of the project (e.g., between the 1st and 2nd samples for one batch, the 2nd and 3rd samples for another batch, etc.). Prior to reassembling the homogenization equipment, use the following steps to prepare enough rinsate samples for the relevant QA/QC activities:
 - a. Prepare each **hexane rinsate sample** by pouring a 100-mL portion of pesticide-grade hexane over all parts of homogenization equipment, including the cutting boards and knives, and collect it in a clean glass container. Place an additional 100-mL aliquot of clean hexane in a similar glass container for use as a solvent blank. Allow the solvent to evaporate from the equipment. Per QA/QC requirements, the laboratory will analyze the rinsate and solvent blank for the

- Polychlorinated biphenyls (PCBs), pesticides, and Polycyclic Aromatic hydrocarbons (PAHs) selected for NCCA analysis.
- b. Once the hexane has evaporated, prepare **each DI water rinsate** using 250 mL of DI water. Collect the DI water rinsate in a clean glass or HDPE container. Place a second aliquot of DI water in a separate similar clean container for use as a blank. Acidify these two samples to pH < 2 with nitric acid. Per QA/QC requirements, the laboratory will analyze the rinsate and blank samples for metals and mercury.
- c. Store the rinsates and blanks at a cold, not freezing, temperature (<6 °C).

5.5.4 Compositing and Homogenization Procedure

This section describes the steps for a "batch" homogenization method that uses the entire homogenized volume of all fish specimens to prepare the composite. In contrast to an "individual" method that would combine equal weights of tissue from each specimen, the batch homogenization method uses the complete specimens regardless of each individual specimen's proportion to one another. The steps are as follows:

- 1. Change gloves *between* samples. The technician may use the same gloves in handling all fish *within* a given sample.
- 2. Partially thaw samples for ease of grinding during homogenization.
- 3. For sea urchins, prepare the sea urchin for compositing by cracking open the shell of each sea urchin in the sample. From all of the sea urchins in the sample, extract and composite only the gonad tissue. (The gonad tissue is essentially the only tissue present in sea urchins.)
- 4. Process each sample using a size-appropriate homogenization apparatus (e.g., automatic grinder or high-speed blender). If difficulties arise with the samples sticking to equipment, try the following:
 - a. Chill the grinder briefly with a few small pieces or pellets of dry ice.
 - b. Add pellets of dry ice to the specimens as they enter the grinder.
- 5. Mix the specimens thoroughly until completely homogenized as evidenced by a final composite sample of soupy composition with uniform color and texture. Visible chunks or pieces of skin, bone, or tissue (e.g., liver tissue has red bits) will hinder extraction and digestion and, therefore, are NOT acceptable.
- 6. Grind the sample a second time, using the same grinding equipment. It is not necessary to clean the grinding equipment between grinding cycles of the same sample. This second grinding should proceed more quickly. The final sample must have a soupy composition with uniform color and texture. If there are obvious differences in color or texture, grind the entire sample a third time.
- 7. Prepare the sample aliquots for each type of analysis (e.g., mercury, PCBs) and place any remaining sample materials in a separate jar. Table 5.4 provides target mass weights needed for each type of analysis. When filling jars, leave sufficient space, at least 20%,

at the top of each jar to allow for expansion of the tissue as it freezes. *Jars filled beyond* 80% capacity may break when freezing. Wipe off the outside of the jars to remove any residue or moisture. Label each container and place inside one heavy-weight food-grade self-sealing plastic freezer bag to avoid sample loss due to breakage. Freeze the tissue aliquots at -20 °C, and maintain samples in the freezer until analysis.

- 8. For one sample in every batch (same batch as specified for the rinsate samples collected in Section 5.5.3), the laboratory conducts triplicate analyses of the lipid content to confirm that the grinding has resulted in an homogeneous sample. As with the collection of rinsate samples, the laboratory performs the homogeneity testing on the first day on which samples in a batch of 20 are processed. However, the sample chosen for homogeneity testing must be one that yields enough tissue mass to support the added mass needed for triplicate lipid aliquots (15 to 30 g).
 - a. The laboratory selects one sample processed on the first day of every batch that will provide well over 140 g of total tissue mass.
 - b. From that sample, place three 5- to 10-g aliquots in clean glass or plastic containers of suitable size and label as appropriate.
 - c. Calculate the mean lipid content (in percent), the standard deviation (SD), and the relative standard deviation (RSD) as follows:

mean % lipids =
$$\frac{\sum_{i=1}^{3} (\% \text{ lipids})_{i}}{3}$$

$$SD = \sqrt{\frac{\sum\limits_{i=1}^{3} (\% \text{ lipids}_{i} - \text{mean lipids})^{2}}{2}}$$

$$RSD = \frac{SD}{mean}$$

- d. If the RSD of the triplicate results is:
 - Less than or equal to the QC criterion, then the homogenization effort is judged to be sufficient for all samples in that QC batch.
 - Otherwise, corrective action consists of regrinding all of the aliquots from each composite sample in the affected batch until meeting the QC criterion. This may entail retrieving all sample aliquots (see Table 5.4) from the freezer, allowing them to partially thaw, homogenizing them again, determining new lipids results, and performing a new homogenization QC determination. New sample containers are required for any rehomogenized samples. Also, follow the steps in Section 5.5.3 for cleaning the equipment between each composite sample in rehomogenizing the samples.

- e. For this sample analyzed in triplicate, record the lipid content measured in the first analysis.
- 9. Before homogenizing the next sample, clean the **grinding equipment and all other sample preparation equipment** using the procedures described in Section 5.5.3.

Table 5.4. Whole Body Fish: Initial Aliquot Requirements

Analysis	Target Mass	Sample Jar Requirements
Mercury	5 - 10 g	50-mL HDPE straight-sided jar with foil-lined lid , or conical HDPE tube with snap top
Metals other than mercury	5 - 10 g	50-mL HDPE straight-sided jar with foil-lined lid , or conical HDPE tube with snap top
PCBs	30 - 35 g	125-mL straight-sided amber or clear glass jar with PTFE-lined lid
Pesticides	30 - 35 g	125-mL straight-sided amber or clear glass jar with PTFE-lined lid
PAHs (only by EPA request)	30 – 35 g	125-mL straight-sided amber or clear glass jar with PTFE-lined lid
Lipids	10 - 15 g	Laboratory's choice, as this aliquot will be used in-house to determine the lipid content of the sample
Maximum*	140 g	

^{*}In the event that insufficient fish tissue mass exists to prepare the required number of aliquots, contact EPA for instructions.

5.6 Contaminant Analysis: Requirements

The laboratory shall perform analysis of the homogenized composites to determine the lipid content, concentrations of metals, mercury, pesticides, and PCBs. EPA also may require the national contract laboratory to analyze the samples for PAHs; however, EPA will not require the State laboratories to analyze for them. With the exception of sea urchins, NCCA does not provide support for analyses of any other invertebrates such as crustaceans (e.g., lobster, crabs).

After preparing the fish composites as described in Section 5.5, laboratories may choose to use any analysis method, including those in Table 5.5, that measures contaminants to the levels of the method detection limits identified in Table 5.6. In addition, the method must meet the target precision of 30% and the target accuracy as follows:

- Metals: 20%
- Organics (PCBs, pesticides, and PAHs): 35%

The laboratory must store the fish samples frozen at a maximum of -20° C and complete the analyses within one year.⁷

Table 5.5 Whole Body Fish: Analytical Methods

Analysis	Extraction	Methods that Meet the QA/QC Requirements (any method that meets the QA/QC requirements is acceptable)
Metals (except Mercury)	Any method using microwave	EPA Method 6020A ⁹
Mercury	assisted digestion ⁸	EPA Method 245 ¹⁰
PCBs, Pesticides, PAHs	EPA Method 3540C ¹¹	EPA Method 8270 ¹²
Percent Lipids	Any method using hexane	EPA Method 9071B ¹³

Table 5.6 Whole Body Fish: Lipids and Required Contaminants

Туре	UNITS	Parameter	CAS Number	PCB Numbe r (where applicabl e)	MDL Targe t
LIPID	% Wet Weight	% LIPID			
		Aluminum	7429-90-5		10.0
		Arsenic	7440-38-2		2.0
METAL	μg/wet g (mg/L)	Cadmium	7440-43-9		0.2
		Chromium	7440-47-3		0.1
		Copper	7440-50-8		5.0
		Iron	7439-89-6		50.0
		Lead	7439-92-1		0.1

⁷ NCCA allows for a 1-year holding time because of the sheer volume of sample collected in a short amount of time. Generally, EPA recommends different holding times, see for example Appendix J "Recommended procedures for preparing whole fish composite homogenate samples" in *Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1 (Fish Sampling and Analysis)*, 3rd Edition, 2000. EPA #823-B-00-007. Retrieved from

http://water.epa.gov/scitech/swguidance/fishshellfish/techguidance/risk/upload/2009_04_23_fish_advice_volume1_v1cover.pdf.

http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_245_7.pdf.

⁸ For example, see Method 3150A "Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils," retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf.

⁹ For example, Method 6020A "Inductively Coupled Plasma-Mass Spectrometry" retrieved from http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/6020a.pdf.

¹⁰ For example, Method 245.7 "Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0" (EPA-821-R-05-001, February 2005), retrieved from

¹¹ For example, see Method 3540C "Soxhlet Extraction" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3540c.pdf.

¹² For example, Method 8270D "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.

¹³ Method 9171B "n-Hexane Extractable Material (HEM) for Sludge, Sediment, And Solid Samples," retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9071b.pdf.

Туре	UNITS	Parameter	CAS Number	PCB Numbe r (where applicabl e)	MDL Targe t
		Mercury	7439-97-6		0.01
		Nickel	7440-02-0		0.5
		Selenium	7782-49-2		1.0
		Silver	7440-22-4		0.3
		Tin	7440-31-5		0.05
		Vanadium	7440-62-2		1.0
		Zinc	7440-66-6		50.0
		2,2',3,3',4,4',5,5',6,6'-		209	2.0
		Decachlorobiphenyl	2051-24-3		
		2,4'-Dichlorobiphenyl	34883-43-7	8	2.0
		2,2',3,4',5,5',6-Heptachlorobiphenyl	35065-29-3	180	2.0
		2,2',3,3'4,4',5,6-Octachlorobiphenyl	52663-78-2	195	2.0
		2,2',3,4 ,5,5',6-Heptachlorobiphenyl	52663-68-0	187	2.0
		2,2',3,3',4,4'-Hexachlorobiphenyl	38380-07-3	128	2.0
		2,2',3,3'4,4',5-Heptachlorobiphenyl	35065-30-6	170	2.0
		2,2',3,4,4',5'-Hexachlorobiphenyl	35065-28-2	138	2.0
		2,2',4,4',5,5'-Hexachlorobiphenyl	35065-27-1	153	2.0
PCB	ng/wet g	2,2',3,3',4,4',5,5',6-		206	2.0
PCB	(µg/L)	Nonachlorobiphenyl	40186-72-9		
		2,3,3',4,4'-Pentachlorobiphenyl	32598-14-4	105	2.0
		2,2',4,5,5'-Pentachlorobiphenyl	37680-73-2	101	2.0
		2,3',4,4',5-Pentachlorobiphenyl	31508-00-6	118	2.0
		2,3,3',4,6'-Pentachlorobiphenyl	38380-03-9	110	2.0
		3,3',4,4',5-Pentachlorobiphenyl	57465-28-8	126	2.0
		2,2',3,5'-Tetrachlorobiphenyl	41464-39-5	44	2.0
		3,3',4,4'-Tetrachlorobiphenyl	32598-13-3	77	2.0
		2,2',5,5'-Tetrachlorobiphenyl	35693-99-3	52	2.0
		2,3',4,4'-Tetrachlorobiphenyl	32598-10-0	66	2.0
		2,2',5-Trichlorobiphenyl	37680-65-2	18	2.0
		2,4,4'-Trichlorobiphenyl	7012-37-5	28	2.0
		2,4'-DDD	53-19-0		2.0
		2,4'-DDE	3424-82-6		2.0
		2,4'-DDT	789-02-6		2.0
		4,4'-DDD	72-54-8		2.0
		4,4'-DDE	72-55-9		2.0
	ng/wet g	4,4'-DDT	50-29-3		2.0
	(µg/L)	Aldrin	309-00-2		2.0
		Alpha-BHC	319-84-6		2.0
		Beta-BHC	319-85-7		2.0
		Delta-BHC	319-86-8		2.0
		Alpha-Chlordane	5103-71-9		2.0
		Gamma-Chlordane	5566-34-7		2.0
		Dieldrin	60-57-1		2.0

Endosulfan I 33213-65-9 Endosulfan Sulfate 1031-07-8 Endrin 72-20-8 Endrin 72-20-8 Endrin Aldehyde 7421-93-4 Endrin Ketone 53494-70-5 Heptachlor 76-44-8 Heptachlor Epoxide 1024-57-3 Hexachlorobenzene 118-74-1 Lindane 58-89-9 Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benza(a)anthracene 200-280-6 Benzo(b)fluoranthene 207-08-9 Benzo(s)fluoranthene 207-08-9 Benzo(a)pyrene 191-24-27-2 Benzo(a)pyrene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(c)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 192-39-5 I-Methylnaphthalene 90-12-0	MDL Targe t
Endosulfan Sulfate Endrin Endrin Forther Forther Endrin Endrin Endrin Retone Endrin Aldehyde Endrin Ketone Endrin Ketone Forther Endrin Ketone Forther Endrin Ketone Forther Endrin Ketone Forther Forther Endrin Ketone Forther Forther Forther Forther Endrin Ketone Forther	2.0
Endrin 72-20-8 Endrin Aldehyde 7421-93-4 Endrin Ketone 53494-70-5 Heptachlor 76-44-8 Heptachlor Epoxide 1024-57-3 Hexachlorobenzene 118-74-1 Lindane 58-89-9 Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 207-99-2 Benzo(g,h,i)perylene 191-24-27-2 Benz(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 190-92-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Endrin Aldehyde 7421-93-4 Endrin Ketone 53494-70-5 Heptachlor 76-44-8 Heptachlor Epoxide 1024-57-3 Hexachlorobenzene 118-74-1 Lindane 58-89-9 Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(a)pyrene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Endrin Ketone 53494-70-5 Heptachlor 76-44-8 Heptachlor Epoxide 1024-57-3 Hexachlorobenzene 118-74-1 Lindane 58-89-9 Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26680-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(a)pyrene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 1182-65-0 Dibenz(a,h)anthracene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Heptachlor	2.0
Heptachlor Epoxide	2.0
Hexachlorobenzene	2.0
Lindane 58-89-9 Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Mirex 2385-85-5 Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Cis-Nonachlor 5103-73-1 Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 PAHs* Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 1193-39-5 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Oxychlordane 26880-48-8 Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 PAHs* Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Trans-Nonachlor 39765-80-5 Acenaphthene 83-32-9 Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Acenaphthylene 208-96-8 Anthracene 120-12-7 Benz(a)anthracene 200-280-6 Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Benz(a)anthracene 200-280-6	2.0
Benzo(b)fluoranthene 205-99-2 Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 193-39-5	2.0
Benzo(k)fluoranthene 207-08-9 Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Benzo(g,h,i)perylene 191-24-27-2 Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Benzo(a)pyrene 50-32-8 Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Benzo(e)pyrene 192-97-2 Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Biphenyl 92-54-4 Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Chrysene 218-01-9 Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Dibenz(a,h)anthracene 53-70-3 Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
PAHs* Dibenzothiophene 132-65-0 2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
2,6-Dimethylnaphthalene 581-42-0 Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Fluoranthene 205-99-2 Fluorene 86-73-7 Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
Indeno(1,2,3-c,d)pyrene 193-39-5	2.0
	2.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0
2-Methylnaphthalene 91-57-6	2.0
1-Methylphenanthrene 832-69-9	2.0
Naphthalene 91-20-3	2.0
Perylene 198-55-0	2.0
Phenanthrene 85-01-8	2.0
Pyrene 129-00-0	2.0
2,3,5-Trimethylnaphthalene 2245-38-7	2.0

^{*} EPA also may require the national contract laboratory to analyze the samples for PAHs; however, EPA will not require the State laboratories to analyze for them.

minimum of 500 grams

5.7 Data Entry

Tables 5.1 (Section 5.4), 5.2 (Section 5.5), 5.3 (Section 5.5), and 5.7 (below) identify the required data elements that laboratories must provide to EPA, preferably in EPA's data template, available separately from EPA.

Table 5.7 Whole Body Fish: Data Elements for Each Sample

Variable	Туре	Description			
SITE_ID	Character	Site identification code or type of QC sample (e.g., LAB BLANK)			
SAMPLE	Character	Sample number, LCS, QCCS, Blank, Matrix Spike, or Rinsate			
REPEAT	Numeric	Duplicate or	Duplicate or Triplicate (otherwise blank)		
DATE_COLLEC T	Date	Date that the field crew collected the sample			
	ARRIVAL_TEMP	Numeric		of sample upon arrival at the sh should be frozen).	
	NUMBER_FISH	Numeric		sh in the sample	
	SAMPLE_WT	Numeric		of sample (all fish)	
	SAMPLE_CLASS	Character		fication: Routine or Non-	
	CONDITION CODE	Character	Condition codes describing the condition the sample upon arrival at the laboratory leave blank for control		
			Flag	Definition	
			OK	Sample is in good condition	
			С	Sample wrapping is cracked	
			L	Sample or wrapping is leaking	
			ML	Sample label is missing	
			NF	Sample is not at proper temperature	
	COND_COMME NT	Character	Explanation for Q FLAG (if needed)		
	FISH CODE	Character		oing any deviations from the	
			criteria for fis	h collection for each sample	
			Flag	Definition	
			SP	Not all specimens are of the	
				same species	
			LE	Not all specimens lengths are within 75% of longest	
				fish	
			NS	Specimen number is fewer than minimum of 5 or	
				greater than 20 maximum	
			WT	Mass does not meet	

Variable	Туре	Description		
			LL	Longest fish exceeds 400
				mm maximum length
			LS	Shortest fish below 100 mm
				minimum length
			Q	Other quality concerns, not
				identified above
PARAMETER	Character	Analyte name		
CAS_NO	Character			ponding to the analyte
LABNAME	Character	•	me (abbreviatio	on)
METHOD	Character	Laboratory me		
ANALYST	Character			n who performed the analysis
REVIEWER	Character			erson who provided a separate
			eview of the dat	
				sed for the analysis – provide
INSTRUMENT	Character			y the particular instrument in
D 4 mm		the laboratory		
DATE	Date	Date that the s	sample homoger	nization started
PREPARED			1 &	
DATE	Date	Date that the sample analysis started		
ANALYSIS		Unique laboratory quality control lot numbers assigned to		
		the batch of samples. The lot number must associate each		
QC_BATCH_LO	Character			
T	Character	batch of field samples to the appropriate rinsates,		
		laboratory control sample, matrix spike, laboratory duplicate, and method blank samples.		
HOLDING TIME	Y/N	Analysis performed within holding time		
MATRIX	Character	Fish		
	Character		etection limit (h	pased upon lab's historical
MDL	Numeric	data)	ctection mint (b	ased upon lab s instolled
LRL	Numeric		limit (based up	on lab's historical data)
DILUTION	Numeric			•
RECOVERY	Numeric	Dilution of sample (blank or 1 if no dilution) Only for appropriate QC samples		
RESULT	Numeric	Concentration value		
		Reason for qualification in RESULT_QUAL (usually		
REASON	Character	blank)		
RESULT_QUAL	Character	Data qualifier (usually blank)		
UNIT	Character	Unit of measurement for RESULT, MDL, and RL		
Apply laboratory defined QC codes and of				
QC_CODE	Character	* * *	•	of laboratory's code as part of
		the case narrative		
Explain situation that created OC code, or an		QC code, or any unusual		
COMMENT	Character	aspects of the analysis		
appears of the analysis				

5.8 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements.

5.8.1 Assistance Visits

Assistance visits are intended to familiarize EPA with actual procedures being implemented by different laboratories; and to ensure a clear and consistent understanding of procedures and activities by both EPA and the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter.

5.8.2 QC Samples

Once or twice during the performance period, the External QC Coordinator will provide one or two identical sets of QC samples to all participating laboratories. Each set will contain up to five QC samples. As determined by the External QC Coordinator, the QC samples may be synthetic; aliquots of additional samples collected at NCCA sites; or reference samples obtained from an organization such as the National Institute of Standards. Each laboratory will run the QC samples following the same procedures used for the other samples. The External QC Coordinator will compare the results to the expected value and determine consistency between laboratories (e.g., determine if one laboratory is consistently higher or lower than all others). Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any unique laboratory practices that might account for differences between the laboratory and others. The contractor shall analyze the external QC samples using the same procedures as those for the field samples.

5.8.3 Summary of QA/QC Requirements

QC protocols are an integral part of all analytical procedures to ensure that the results are reliable and the analytical stage of the measurement system is maintained in a state of statistical control. The laboratory must conduct QC analyses for each batch of samples. Each batch shall consist of no more than 20 samples. Unique laboratory quality control lot numbers must be assigned to each batch of samples. The lot number must associate each batch of field samples to the appropriate measures such as laboratory control sample, matrix spike, laboratory duplicate, and method blank samples. Also, each laboratory QC samples (i.e., preparation and instrument blanks, laboratory control sample (LCS), spike/duplicate, etc.) must be give a unique sample identification. Table 5.8 provides a summary of the quality control requirements.

Table 5.8 Whole Body Fish: Quality control activities

Quality Control Activity	Description and Requirements	Corrective Action
Demonstrate competency for analyzing fish samples with the required methods	Demonstration of competency with fish samples in achieving the method detection limits. accuracy, and precision targets	EPA will not approve any laboratory for NCCA sample processing if the laboratory cannot demonstrate competency. In other words, EPA will select another laboratory that can demonstrate competency for its NCCA samples.

Quality Control Activity	Description and Requirements	Corrective Action
Check condition of sample when it arrives.	Sample issues, such as punctures or rips in wrapping; missing label; temperature; adherence to holding time requirements; sufficient volume for test. All samples should arrive at the laboratory in a frozen state.	Assign appropriate condition code identified in Table 5.1.
Store sample appropriately. While stored at the laboratory, the sample must be kept at a maximum temperature of -20° C.	Check the temperature of the freezer per laboratory's standard operating procedures.	Record temperature of sample upon arrival at the laboratory. If at any other time, samples are warmer than required, note temperature and duration in comment field.
Determine if all fish meet the criteria	Evaluate if the sample contains fish of the same species and are similar in size (within 75%), and provides enough material to run the analysis	Contact the EPA HQ NCCA Laboratory Review Coordinator* for a decision on fish selection and/or chemical analysis.
Analyze sample within holding time	The test must be completed within the holding time (i.e., 28 days for mercury; 6 months for other metals; and 1 year for all others). If the original test fails, then the retest also must be conducted within the holding time.	Perform test, but note reason for performing test outside holding time. EPA expects that the laboratory will exercise every effort to perform tests before the holding time expires.
Perform once at the start of each batch to evaluate the labeled compound recovery (LCR) in a Laboratory Control Sample (LCS). This tests the performance of the equipment.	Control limits for recovery cannot exceed 100±20%.	First, prepare and analyze one additional LCS. If the second blank meets the requirement, then no further action is required. If the second LCS fails, then determine and correct the problem before proceeding with any sample analyses.
Perform once at the start of each batch to evaluate the entire extraction and analysis process using a Method Blank	Control limits cannot exceed the laboratory reporting level (LRL).	First, prepare and analyze one additional blank. If the second blank meets the requirement, then no further action is required. If the second blank fails, then determine and correct the problem (e.g., homogenization, reagent contamination, instrument calibration, or contamination introduced during filtration) before proceeding with any sample analyses. Reestablish statistical

Quality Control Activity	Description and Requirements	Corrective Action
		control by analyzing three blank samples. Report values of all blanks analyzed.
Check calibration immediately before and immediately after the sample batch is run (abbreviated as QCCS for quality control check sample)	Results must be ±10% of each other or as specified in method criteria	If calibration fails before analysis, recalibrate and reanalyze QCCS until it passes. If check fails after all samples in the batch have been analyzed, verify the QCCS reading. If the QCCS reading fails a second time, then reanalyze all samples in the batch and report both sets of results. For the first run, include a data qualifier that indicates that the QCCS reading taken immediately following the first run failed. For the second run, include a data qualifier that indicates that it is the second set and whether the QCCS reading immediately following that second run passed. No sample is to be analyzed more than twice.
Evaluate rinsates for first sample in each batch. This evaluation is a surrogate for assessing crosscontamination.	Results must be below the LRL.	If first rinsate is above LRL, analyze rinsate from a second sample. If second rinsate sample also has results above the LRL, then assign a data qualifier to all samples in the batch for the parameters with results above the LRL in the rinsates. Also, improve procedures for cleaning all surfaces, knives, and homogenization equipment between samples.
Compare lipids in triplicate for the first sample in each batch. This evaluation is a surrogate for assessing homogenization.	Substitute the LRL for any value below the LRL before calculating the RSD. If the RSD of the triplicate results is ≤20%, then the homogenization effort is judged to be sufficient for all samples in the batch.	If the RSD could not be achieved, then regrind all samples in the batch one or more times as described in Section 5.5
Compare results of one laboratory duplicate sample or matrix spike duplicate sample for each batch	Results must be within the target precision goal in Table 5.8.1 (30% for all analytes).	If both results are below LRL, then conclude that the test has passed. Otherwise, prepare and analyze a split from different sample in the batch. If the second result is within the target precision goal (see Table 5.8.1) of the original sample, then

Quality Control Activity	Description and Requirements	Corrective Action
		report the data and findings for both QC samples. However, if the two results differ by more than the target precision goal, review precision of QCCS measurements for batch; check preparation of split sample; etc. and report evaluation and findings in the case narrative. Consult with the EPA HQ NCCA Laboratory Review Coordinator* to determine if reanalysis of the entire batch (at the laboratory's expense) is necessary. If no reanalysis is necessary, report and quantify all samples in batch. If reanalysis is necessary, then report all QC sample and the 2 nd analysis of the batch. If the second set also is unacceptable, then assign a data
Compare results of one matrix spike sample per batch to evaluate performance in matrix	Evaluate performance after the first 3 batches. Ideally, control limits for recovery will not exceed the target accuracy goal (Table 5.8.1), but this may not be realistic for all parameters with this matrix.	code to each sample in the batch. If both results are below LRL, then conclude that the test has passed for the batch. Otherwise, if any results are not within the target accuracy goal for the 3 batches, within 2 working days, contact the EPA HQ NCCA Laboratory Review Coordinator* to discuss method performance and potential improvements. Continue to perform the test for every batch. Report the results from the original analysis, the matrix spike, matrix spike duplicate, and %recovery.
Maintain the required MDL identified in the Section 5.6	Evaluate for each sample	If MDL could not be achieved, then provide dilution factor or QC code and explanation in the comment field.
Use consistent units for QC samples and field samples	Verify that all units are provided in wet weight units and consistently within each indicator type as follows: Metals in µg/g or ppm. PCBs, pesticides, and PAHs in ng/g or µg/L.	If dry units are reported for any sample (QC or field), reanalyze the sample and report only the reanalysis results. If it is not possible to provide the results in wet units, then assign a QC code and describe the reason for dry

Quality Control Activity	Description and Requirements	Corrective Action
		units in the comments field of the database.
Maintain completeness	Completeness objective is 95% for all parameters.	Contact EPA HQ NCCA Laboratory Review Coordinator* immediately if issues affect laboratory's ability to meet completeness objective.

^{*}Chapter 2 provides contact information for the EPA HQ NCCA Laboratory Review Coordinator. Laboratories under contract to EPA must contact the Task Order's Contracting Officer's Representative (TOCOR) instead of the Laboratory Review Coordinator.

5.9 Sample and Record Retention

The laboratory shall retain:

- 1. The sample materials, including vials, for a minimum of 3 years from the date the EPA publishes the final report. During this time, the laboratory shall freeze the materials. The laboratory shall periodically check the sample materials for degradation.
- 2. Original records, including laboratory notebooks and the reference library, for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

5.10 References

All references are from U.S. Environmental Protection Agency:

Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1 (Fish Sampling and Analysis), 3rd Edition, 2000. Appendix J "Recommended procedures for preparing whole fish composite homogenate samples". EPA #823-B-00-007. Retrieved from http://water.epa.gov/scitech/swguidance/fishshellfish/techguidance/risk/upload/2009_04_23_fish_advice_volume1_v1cover.pdf.

Method 245.7 "Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0" (EPA-821-R-05-001, February 2005), retrieved from http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_2_45_7.pdf.

Method 3150A "Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils," retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf.

Method 6020A "Inductively Coupled Plasma-Mass Spectrometry" retrieved from http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/6020a.pdf.
Method 8270D "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) retrieved from Method 8270D "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry.

Method 9171B "n-Hexane Extractable Material (HEM) for Sludge, Sediment, And Solid Samples," retrieved from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9071b.pdf.

6.0 SEDIMENT CONTAMINANT, GRAIN SIZE, AND TOC ANALYSES

This chapter describes the analysis requirements for sediment samples. The purpose is to determine concentrations of contaminants, grain size, and total organic carbon (TOC) in sediment samples collected in the 2015 NCCA and related studies. The laboratory shall perform analysis to determine the moisture content, concentrations of metals, mercury, pesticides, and PCBs found in sediments in coastal waters and Great Lakes.

At each sampling site, the Field Operations Manual (FOM) instructs the crews to collect sediment samples. The field crew then ships the samples on wet ice to either its own state laboratory or EPA's batching laboratory. Once the samples arrive, the laboratory will freeze the samples for the contaminant analyses and refrigerate the grain size and TOC samples.

In the following discussion, Sections 6.1, 6.2, and 6.3 summarize the procedure; health and safety concerns; and definitions and required resources. Section 6.4 provides the steps for acknowledging sample receipt. Sections 6.5 – 6.6 provide the minimum requirements that the laboratory must meet in performing the contaminant analyses and the required data elements. Section 6.7 describes EPA's external review of laboratory operations and other quality measures. Section 6.8 identifies references used in developing the procedure.

6.1 Summary of the Procedure

This chapter describes the contaminant, grain size, and TOC determination of sediment samples collected for EPA's 2015 National Coastal Condition Assessment (NCCA). As described in Section 6.5, unless otherwise contractually bound by other requirements, the laboratory may choose to use any method that meets EPA's specifications for contamination measurements.

6.2 Health and Safety Warnings

The laboratory must require its staff to abide by appropriate health and safety precautions. In addition to the laboratory's usual requirements such as a Chemical Hygiene Plan, the laboratory must adhere to the following health and safety procedures:

- 1. Laboratory facilities must properly store and dispose of solutions of weak acid.
- 2. Laboratory personnel must wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear, gloves).
- 3. When working with potential hazardous chemicals (e.g., weak acid), laboratory personnel must avoid inhalation, skin contact, eye contact, or ingestion. Laboratory personnel must avoid contacting skin and mucous membranes with acid. If skin contact occurs, remove clothing immediately. Wash and rinse the affected skin areas thoroughly with large amounts of water.

6.3 Definitions and Required Resources (Personnel, Laboratories, and Equipment)

This section provides definitions and required resources for using the procedure.

6.3.1 Definitions

The procedure uses the following terms:

Detection Limit is the minimum concentration at which the analyte can be *detected* with confidence. In other words, the outcome can be reported with confidence that it is greater than zero (i.e., present in the sample). Also see "Sample-Specific Detection Limit."

Duplicates are defined as two aliquots of the same sample which are analyzed separately using identical procedures. The results are used to evaluate the precision of the laboratory analyses.

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management System (NARS IM): The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. Freshwater and coastal samples will be collected during the field stage of NCCA.

Percent Recovery: Recovery is measured by comparing the concentrations of a sample split into two parts; and one part is spiked with a known concentration value. C_s is the concentration measured in the spiked part; C is the concentration measured in the unspiked part; and s is the known concentration amount for the spike. The following equation is used to calculate the percent recovery:

$$\%Rs = \frac{C_s - C}{s} \times 100$$

Relative Percent Difference (RPD): Relative percent difference compares the matrix spike (S) and the matrix spike duplicate (D) using the following equation:

$$RPD = \frac{|S - D|}{(S + D)/2} \times 100$$

Reporting Limit: A reporting limit is the point at which the measured value of the analyte can be reported with confidence.

Sample-Specific Detection Limit: Most samples will have a sample-specific detection equal to the method's detection limit. For diluted samples, the sample-specific detection limit will be the product of the method's detection limit and the dilution factor. Typical values for the dilution factors will be 10 or 100.

Spiked Sample: See Percent Recovery definition for purpose of spiked samples.

TOC: Total Organic Carbon

TOCOR: Task Order Contracting Officer's Representative is EPA's contact person for laboratories under contract to EPA.

6.3.2 General Requirements for Laboratories

<u>Competency</u>. To demonstrate its competency, the laboratory shall provide analyte and matrix specific information to EPA. EPA will accept one or more of the following as a demonstration of competency:

- Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
- Documentation detailing the competency of the organization, including professional certifications for water-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.
- Demonstration of competency with sediment samples in achieving the method detection limits, accuracy, and precision targets.

Quality assurance and quality control requirements.

To demonstrate its competency in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

6.3.3 Personnel

The procedure refers to the following personnel:

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual.

External QC Coordinator is an EPA staff person who is responsible for selecting and managing the "**QC contractor**." To eliminate the appearance of any inherent bias, the QC contractor must be dedicated to QA/QC functions, and thus, must not be a primary laboratory or a field sampling contractor for NCCA. The QC contractor is responsible for complying with instructions from the External QC Coordinator; coordinating and paying for shipments of the performance samples to participating laboratories; comparing immunoassay results from the laboratories; and preparing brief summary reports.

6.3.4 Equipment/Materials

The analytical methods, selected by the laboratory, specify the required equipment.

6.4 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery. The laboratory must inspect the samples promptly on receipt. As samples arrive, the laboratory must:

- 1. Log the samples into the National Aquatic Resource Survey Information Management system (NARS-IM) within 24 clock hours. Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Check that each shipping container has arrived undamaged. Check the temperature of one of the samples in the cooler using a thermometer that reads from 21 °C (i.e., room temperature) down to -20 °C or lower (i.e., the expected temperature of frozen samples), or an infra-red (IR) temperature "gun" and record the reading. Field crews ship sediment samples on wet ice; the batch laboratory freezes the sample and ships with dry ice. Record the condition and temperature of the sample in the database using the codes in Table 6.1.
- 3. Verify that all required data elements, per Table 6.1, have been recorded. If any elements are missing, then enter them into the database.
- 4. Transfer the samples to the freezer for long-term storage. Except during processing and analysis stages, the samples must be stored frozen to less than or equal -20 $^{\circ}$ C.
- 5. Notify the EPA immediately about any problems involving sample integrity, conformity, or inconsistencies as soon as possible following sample receipt and inspection.

Table 6.1 Sediment Chemistry, Grain Size, and TOC Login: Required Data Elements

Variable	Туре	Description	
SITE_ID	Character	Site identification code	
SAMPLE	Character	Sample num	ber
DATE_COLLECT	Date	Date that the	e field crew collected the sample
	ANALYSIS_TYPE	Character	Contaminant, TOC, or GRAIN SIZE
	ARRIVAL_TEMP	Numeric	Temperature of sample upon arrival at the laboratory
	CONDITION_COD E	Character	Condition codes describing the condition of the sample upon arrival at the
			laboratory; leave blank for control

Variable	Туре	Description		
			Flag	Definition
			OK Sample is in good condition	
			C	Sample container is cracked
		L Sample or container is		Sample or container is
		leaking		leaking
		ML Sample label is missing		Sample label is missing
			Q	Other quality concerns, not
				identified above
	COND_COMMEN	Character	Explanation for Q FLAG (if needed)	
	T			

6.5 Laboratory Analysis: Requirements

The laboratory shall perform analysis of the sediment samples to determine the moisture content, grain size, and concentrations of TOC, metals, mercury, pesticides, PAHs, and PCBs.

Table 6.2 identifies the storage requirements. Laboratories may choose to use any analysis method, including those in Table 6.2, which measures the parameters to the levels of the method detection limits identified in Table 6.3. In addition, the contaminant analysis method must meet the precision and accuracy targets of 30% and 20%, respectively. For each batch of contaminant samples, precision is assessed using the relative percent difference (RPD) between the matrix spike (MS) and the matrix spike duplicate (MSD); and accuracy by the average percent recovery (%Rs) between the matrix spike and matrix spike duplicate. Section 6.3.1 provides the equations used to calculate the RPD and %Rs. The precision and accuracy targets for each batch of TOC are both 10% and determined by the RPD of one sample and its duplicate (for precision) and the analysis of Certified Reference Material (CRM; for accuracy). The grain size target precision is 10% as determined using a Laboratory Control Sample (LCS) (accuracy is not applicable).

Table 6.2 Sediment Chemistry, Grain Size, and TOC: Analytical Methods

Storage Requirements	Туре	Methods that Meet the QA/QC Requirements (any method that meets the QA/QC requirements is acceptable)
Freeze samples with maximum of -20° C	Metals (except Mercury)	Extraction: EPA Method 3051A Analysis: EPA Method 6020A ¹⁴

- Method 3051A "Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, And Oils" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf; and
- Method 6020A "Inductively Coupled Plasma-Mass Spectrometry" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6020a.pdf.

¹⁴ For example, see:

	Mercury	EPA Method 245.7 ¹⁵
	PCBs, Pesticides, PAHs	Extraction: EPA Method 3540C
		Analysis: EPA Method 8270D ¹⁶
	TOC	Lloyd Kahn Method ¹⁷
Refrigerate at 4°C	Grain Size	Any method that reports the
(do not freeze)		determination as %silt and meets
		QA/QC requirements

Table 6.3 Sediment Chemistry, Grain Size, and TOC: Required Parameters

I able 6.	5 Scullicii	t Chemistry, Grain Size, and 100	. Required I ai		
Туре	UNITS	Parameter	CAS Number	PCB Number (where applicabl e)	MDL Targ et
	% sand and % silt/clay	Grain Size	not applicable		0.05%
	mg/kg	Total Organic Carbon (TOC)	not applicable		0.01%
		Aluminum	7429-90-5		1500
		Antimony	7440-36-0		0.2
		Arsenic	7440-38-2		1.5
		Cadmium	7440-43-9		0.05
	dry weight	Chromium	7440-47-3		5.0
		Copper	7440-50-8		5.0
META		Iron	7439-89-6		500
L	μg/g	Lead	7439-92-1		1.0
L	(ppm)	Manganese	7439-96-5		1.0
		Mercury	7439-97-6		0.01
		Nickel	7440-02-0		1.0
		Selenium	7782-49-2		0.1
		Silver	7440-22-4		0.3
		Tin	7440-31-5		0.1
		Vanadium	7440-62-2		1.0
		Zinc	7440-66-6		2.0
	dry weight	2,2',3,3',4,4',5,5',6,6'-		209	1.0
PCB	ng/g	Decachlorobiphenyl	2051-24-3		
	(ppb)	2,4'-Dichlorobiphenyl	34883-43-7	8	1.0
		2,2',3,3',4,4',5-Heptachlorobiphenyl	35065-30-6	170	1.0

¹⁵ For example, see Method 245.7 "Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0" (EPA-821-R-05-001, February 2005), retrieved June 27, 2014 from http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007 07 10 methods method 245 7.pdf. 16 For example, see:

Method 3540C "Soxhlet Extraction" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3540c.pdf; and

[•] Method 8270D "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.pdf.

¹⁷ For example, the "Lloyd Kahn Method" developed by Lloyd Kahn at EPA Region II and retrieved from www.nj.gov/dep/srp/guidance/rs/lloydkahn.pdf.

	ANALY SES
	AND
TO THE	SIZE,
	KAIN
5	SK/
ļ	Z,
•	_
K A T A T	IINA
	IAMINA
	ONTAMINA
	NI CONTAMINA
	MENI CONTAMINA
	SEDIMENI CONTAMINA

Туре	UNITS	Parameter	CAS Number	PCB Number (where applicabl e)	MDL Targ et
		2,2',3,4',5,5',6-Heptachlorobiphenyl	52663-68-0	187	1.0
		2,2',3,4',5,5',6-Heptachlorobiphenyl	35065-29-3	180	1.0
		2,2',3,3',4,4'-Hexachlorobiphenyl	38380-07-3	128	1.0
		2,2',3,4,4',5'-Hexachlorobiphenyl	35065-28-2	138	1.0
		2,2',4,4',5,5'-Hexachlorobiphenyl	35065-27-1	153	1.0
		2,2',3,3',4,4',5,5',6-		206	1.0
		Nonachlorobiphenyl	40186-72-9	200	1.0
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	52663-78-2	195	1.0
		2,3,3',4,4'-Pentachlorobiphenyl	32598-14-4	105	1.0
		2,2',4,5,5'-Pentachlorobiphenyl	37680-73-2	101	1.0
		2,3',4,4',5-Pentachlorobiphenyl	31508-00-6	118	1.0
		2,3,3',4,6'-Pentachlorobiphenyl	38380-03-9	110	1.0
		3,3',4,4',5-Pentachlorobiphenyl	57465-28-8	126	1.0
		2,2',3,5'-Tetrachlorobiphenyl	41464-39-5	44	1.0
		3,3',4,4'-Tetrachlorobiphenyl	32598-13-3	77	1.0
		2,2',5,5'-Tetrachlorobiphenyl	35693-99-3	52	1.0
		2,3',4,4'-Tetrachlorobiphenyl	32598-10-0	66	1.0
		2,2',5-Trichlorobiphenyl	37680-65-2	18	1.0
		2,4,4'-Trichlorobiphenyl	7012-37-5	28	1.0
		2,4'-DDD	53-19-0		1.0
		2,4'-DDE	3424-82-6		1.0
		2,4'-DDT	789-02-6		1.0
		4,4'-DDD	72-54-8		1.0
		4,4'-DDE	72-55-9		1.0
		4,4'-DDT	50-29-3		1.0
		Aldrin	309-00-2		1.0
		Alpha-BHC	319-84-6		1.0
		Beta-BHC	319-85-7		1.0
		Delta-BHC	319-86-8		1.0
	dry weight	Alpha-Chlordane	5103-71-9		1.0
PEST	ng/g	Gamma-Chlordane	5566-34-7		1.0
1201	(ppb)	Dieldrin	60-57-1		1.0
	(FF-)	Endosulfan I	959-98-8		1.0
		Endosulfan II	33213-65-9		1.0
		Endosulfan Sulfate	1031-07-8		1.0
		Endrin	72-20-8		1.0
		Endrin Aldehyde	7421-93-4		1.0
		Endrin Ketone	53494-70-5		1.0
		Heptachlor	76-44-8		1.0
		Heptachlor Epoxide	1024-57-3		1.0
		Hexachlorobenzene	118-74-1		1.0
		Lindane	58-89-9		1.0
		Mirex Cia Nagashlar	2385-85-5		1.0
		Cis-Nonachlor	5103-73-1		1.0

Туре	UNITS	Parameter	CAS Number	PCB Number (where applicabl e)	MDL Targ et
	Oxychlordane		26880-48-8		1.0
		Trans-Nonachlor	39765-80-5		1.0
		Acenaphthene	83-32-9		10
		Acenaphthylene	208-96-8		10
		Anthracene	120-12-7		10
		Benz(a)anthracene	200-280-6		10
		Benzo(b)fluoranthene	205-99-2		10
		Benzo(k)fluoranthene	207-08-9		10
		Benzo(g,h,i)perylene	191-24-27-2		10
		Benzo(a)pyrene	50-32-8		10
		Benzo(e)pyrene	192-9		10
		Biphenyl	92-54-4		10
		Chrysene	218-01-9		10
	dry weight	Dibenz(a,h)anthracene	53-70-3		10
PAHs	ng/g	Dibenzothiophene	132-65-0		10
	(ppb)	2,6-Dimethylnaphthalene	581-42-0		10
		Fluoranthene	205-99-2		10
		Fluorene	86-73-7		10
		Indeno(1,2,3-c,d)pyrene	193-39-5		10
		1-Methylnaphthalene	90-12-0		10
		2-Methylnaphthalene	91-57-6		10
		1-Methylphenanthrene	832-69-9		10
		Naphthalene	91-20-3		10
		Perylene	198-55-0		10
		Phenanthrene	85-01-8		10
		Pyrene	129-00-0		10
		2,3,5-Trimethylnaphthalene	2245-38-7		10

6.6 Data Entry

Table 6.4 identifies the required data elements that laboratories must provide to EPA, preferably in EPA's data template, available separately from EPA. If the laboratory applies its own QC codes, the data transmittal should define the codes.

Table 6.4 Sediment Chemistry, Grain Size, and TOC: Data Elements for Each Sample

Variable	Туре	Description
SITE_ID	Character	Site identification code or type of QC sample (e.g., LAB BLANK)
SAMPLE	Character	Sample number, LCS, QCCS, Blank, Matrix Spike, or CRM
ANALYSIS_TYPE	Character	Contaminant, TOC, or GRAIN SIZE
REPEAT	Numeric	Duplicate
DATE_COLLECT	Date	Date that the field crew collected the sample

Variable	Туре	Description		
ARRIVAL_TEMP	Numeric	Temperature of sample upon arrival at the laboratory		
CONDITION_CODE	Character	Condition codes describing the condition of the sample upon		
		arrival at the laboratory; leave blank for control		
		Flag Definition		
		OK Sample is in good condition		
		C Sample container is cracked		
		L Sample or container is leaking		
		ML Sample label is missing		
		VT Volume not sufficient for testing		
		VR Volume not sufficient for a retest, if required		
		1		
		Q Other quality concerns, not identified above		
COND COMMENT	Character	Explanation for Q FLAG (if needed)		
PARAMETER	Character	Analyte name		
CAS_NO	Character	CAS Registry number		
LABNAME	Character	Laboratory name (abbreviation)		
METHOD	Character	Laboratory method used		
ANALYST	Character	Last name or initials of person who performed the analysis		
		Last name or initials of the person who provided a separate		
REVIEWER	Character	independent review of the data		
		Identification of instrument used for the analysis – provide		
INSTRUMENT Character enou		enough information to identify the particular instrument in the		
		laboratory		
DATE PROCESSED	Date	Date that the analysis started		
		Unique laboratory quality control lot numbers must be		
		assigned to each batch of samples. The lot number must		
QC_BATCH_LOT	Character	associate each batch of field samples to the appropriate		
		laboratory control sample, matrix spike, laboratory duplicate,		
		method blank, and CRM samples.		
HOLDING TIME	Y/N	Analysis performed within holding time		
MATRIX	Character	Sediment (Water also is a permissible value if the laboratory		
WATKIX	Character	analyzes a very liquid sediment sample as water)		
MDL	Numeric	Lab method detection limit (based upon lab's historical data)		
LRL	Numeric	Lab reporting limit (based upon lab's historical data)		
MOISTURE	Numeric	Moisture in the sample (value used by lab to convert wet units		
WOISTORE	TVUITICTIC	to dry)		
MOIST_UNIT	Character	Unit used to report moisture (% or mg/kg)		
DILUTION	Numeric	Dilution of sample (blank or 1 if no dilution)		
RECOVERY	Numeric	Only for appropriate QC samples		
RESULT	Numeric	Concentration value		
REASON	Character	Reason for qualification in RESULT_QUAL (usually blank)		
RESULT_QUAL	Character	Data qualifier (usually blank)		
UNIT	Character	Unit of measurement for RESULT, MDL, and RL		
		Apply laboratory defined QC codes and describe in the		
		comments field. Provide set of laboratory's code as part of the		
		case narrative		

Variable	Туре	Description
COMMENT	Character	Explain situation that created QC code, or any unusual aspects of the analysis

6.7 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements.

6.7.1 Assistance Visits

Assistance visits are intended to familiarize EPA with actual procedures being implemented by different laboratories; and to ensure a clear and consistent understanding of procedures and activities by both EPA and the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter.

6.7.2 QC Samples

Once or twice during the performance period, the External QC Coordinator will provide one or two identical sets of QC samples to all participating laboratories. Each set will contain up to five QC samples. As determined by the External QC Coordinator, the QC samples may be synthetic; aliquots of additional samples collected at NCCA sites; or reference samples obtained from an organization such as the National Institute of Standards. Each laboratory will run the QC samples following the same procedures used for the other samples. The External QC Coordinator will compare the results to the expected value and determine consistency between laboratories (e.g., determine if one laboratory is consistently higher or lower than all others). Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any unique laboratory practices that might account for differences between the laboratory and others. The contractor shall analyze the external QC samples using the same procedures as those for the field samples.

6.7.3 Summary of QA/QC Requirements

QC protocols are an integral part of all analytical procedures to ensure that the results are reliable and the analytical stage of the measurement system is maintained in a state of statistical control. The laboratory must conduct QC analyses for each batch of samples. Each batch shall consist of no more than 20 samples. Unique laboratory quality control lot numbers must be assigned to each batch of samples. The lot number must associate each batch of field samples to the appropriate measures such as laboratory control sample, matrix spike, laboratory duplicate, and method blank samples. Also, each laboratory QC samples (i.e., preparation and instrument blanks, laboratory control sample (LCS), spike/duplicate, etc.) must be given a unique sample identification. Table 6.5 provides a summary of the quality control requirements.

Table 6.5 Sediment Chemistry, Grain Size, and TOC: Quality control activities for samples

Activity	Evaluation	Corrective Action
Demonstrate competency for analyzing sediment samples to meet the performance measures	Demonstration of competency with sediment samples in achieving the method detection limits, accuracy, and precision targets.	EPA will not approve any laboratory for NCCA sample processing if the laboratory cannot demonstrate competency. In other words, EPA will select another laboratory that can demonstrate competency for its NCCA samples.
Check condition of sample when it arrives.	Sample issues such as cracked container; missing label; sufficient volume for test.	Assign appropriate condition code identified in Table 6.4.
Store sample appropriately. While stored at the laboratory, the sample must be kept at a temperature ≤-20° C except jars for grain analyses are refrigerated at 4°C.	Check the temperature of the refrigerator/freezer and refrigerator per laboratory's standard operating procedures.	Record temperature of sample upon arrival at the laboratory. If at any other time, samples are warmer than required, note temperature and duration in comment field. Data analyst will consider temperature deviations in evaluating the data. He/she will flag the deviations and determine whether the data appear to be affected and/or the data should be excluded from the analyses.
Analyze sample within holding time	The test must be completed within the holding time of 1 year. If the original test fails, then the retest also must be conducted within the holding time.	Perform test, but note reason for performing test outside holding time. EPA expects that the laboratory will exercise every effort to perform tests before the holding time expires.
Perform once at the start of each batch to evaluate the labeled compound recovery (LCR) in a Laboratory Control Sample (LCS). This tests the performance of the equipment.	Control limits for recovery cannot exceed 100±20%.	First, prepare and analyze one additional LCS. If the second blank meets the requirement, then no further action is required. If the second LCS fails, then determine and correct the problem before proceeding with any sample analyses.
Perform once at the start of each batch to evaluate the entire extraction and analysis process using a Method Blank	Control limits cannot exceed the laboratory reporting level (LRL).	First, prepare and analyze one additional blank. If the second blank meets the requirement, then no further action is required. If the second blank fails, then determine and correct the problem (e.g., contamination, instrument calibration) before proceeding with any sample analyses. Reestablish statistical

Activity	Evaluation	Corrective Action
		control by analyzing three blank samples. Report values of all blanks analyzed.
Check calibration immediately before and immediately after the sample batch (abbreviated as QCCS for quality control check sample)	Results must be ±10% of each other or as specified in method criteria	If calibration fails before analysis, recalibrate and reanalyze QCCS until it passes. If check fails after all samples the batch have been analyzed, verify the QCCS reading. If the QCCS reading fails a second time, then reanalyze all samples in the batch and report only the set of results associated with the acceptable QCCS reading. Also report all QCCS readings for the batch.
Compare results of one laboratory duplicate sample (for TOC) or matrix spike duplicate sample (for contaminants) for each batch (not required for grain size)	Results must be within the target precision goal in Section 6.5.	If both results are below LRL, then conclude that the test has passed. Otherwise, prepare and analyze a split from different sample in the batch. If the second result is within the target precision goal (see Section 6.5) of the original sample, then report the data and findings for both QC samples. However, if the two results differ by more than the target precision goal, review precision of QCCS measurements for batch; check preparation of split sample; etc. and report evaluation and findings in the case narrative. Consult with the EPA HQ NCCA Laboratory Review Coordinator to determine if reanalysis of the entire batch (at the laboratory's expense) is necessary. If no reanalysis is necessary, report and quantify all samples in batch. If reanalysis of the batch. If the second set also is unacceptable, then assign a data code to each sample in the batch.
Compare results of one matrix spike sample per batch to evaluate performance in matrix	Evaluate performance after the first 3 batches; and then every subsequent batch. Ideally, control limits for recovery will not	If both the original and duplicate results are below LRL, then conclude that the test has passed for the batch. Otherwise, if any

Activity	Evaluation	Corrective Action
(not required for TOC and grain size)	exceed the target accuracy goal, but this may not be realistic for all parameters with this matrix.	results are not within the target accuracy goal for the first 3 batches, within 2 working days, contact the EPA HQ NCCA Laboratory Review Coordinator to discuss method performance and potential improvements. After achieving acceptable results or EPA's permission to continue, perform the test for every subsequent batch. For each batch, report the results from the original analysis and its duplicate and their RPD for TOC; the matrix spike, matrix spike duplicate, RPD and %recovery for contaminants.
Compare results of TOC Certified Reference Material once per each batch	Value must be within 10% of the certified value.	If value is outside the acceptable range, analyze a second CRM. If the second CRM also is measured outside the acceptable range, then determine and correct the problem (e.g., contamination, instrument calibration) before reanalyzing all samples in the batch.
Maintain the required MDL identified in Section 6.5	Evaluate for each sample	If MDL could not be achieved, then provide dilution factor or QC code and explanation in the comment field.
Participate in External Quality Control	Evaluate QC samples provided by the External QC Coordinator	Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any deviations from the Method or unique laboratory practices that might account for differences between the laboratory and others. With this additional information, the External QC Coordinator will determine an appropriate course of action, including no action, flagging the data, or excluding some or all of the laboratory's data.
Maintain completeness	Completeness objective is 95% for all parameters.	Contact EPA HQ NCCA Laboratory Review Coordinator immediately if issues affect

Activity	Evaluation	Corrective Action
		laboratory's ability to meet
		completeness objective.

^{*}Chapter 2 provides contact information for the EPA HQ NCCA Laboratory Review Coordinator. Laboratories under contract to EPA must contact the Task Order's Contracting Officer's Representative (TOCOR) instead of the Laboratory Review Coordinator.

6.8 Sample and Record Retention

The laboratory shall retain:

- 1. The sample materials, including vials, for a minimum of 3 years from the date the EPA publishes the final report. During this time, the laboratory shall freeze the materials used in the contaminant analyses and refrigerate those used for the grain size and TOC. The laboratory shall periodically check the sample materials for degradation.
- 2. Original records, including laboratory notebooks and the reference library, for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

6.9 References

All references are from U.S. Environmental Protection Agency:

Method 245.7 "Mercury in Water by Cold Vapor Atomic Fluorescence Spectrometry, Revision 2.0" (EPA-821-R-05-001, February 2005), retrieved June 27, 2014 from http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_2 45_7.pdf.

Method 3051a "Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, And Oils" retrieved June 27, 2014 from

http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf.

Method 3150A "Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils," retrieved June 27, 2014 from

http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf.

Method 3540C Method 3540C "Soxhlet Extraction" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3540c.pdf.

Method 6020A "Inductively Coupled Plasma-Mass Spectrometry" retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6020A.pdf.

Method 8270D "Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) retrieved June 27, 2014 from

http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270D.pdf.

Method 9171B "n-Hexane Extractable Material (HEM) for Sludge, Sediment, And Solid Samples," retrieved June 27, 2014 from http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9071b.pdf.

WATER CHEMISTRY AND chlorophyll α

7.0 WATER CHEMISTRY AND CHLOROPHYLL A

This chapter describes the analysis requirements for water quality samples. The purpose is to determine concentrations of water quality parameters and chlorophyll a in water quality samples collected in the 2015 NCCA and related studies. The laboratory shall perform analysis to determine levels of ammonia (NH₃), nitrate (NO₃), nitrate-nitrite (NO₃-NO₂), total nitrogen (TN), total phosphorous (TP) and ortho-phosphate (PO₄) (also called soluble reactive phosphorus (SRP), pH, conductivity and chlorophyll a found in coastal waters and Great Lakes. In addition, the laboratory shall measure chloride (Cl) and sulfate (SO₄) levels in Great Lakes samples.

In the following discussion, Sections 7.1, 7.2, and 7.3 summarize the procedure; health and safety concerns; and definitions and required resources. Section 7.4 provides the steps for acknowledging sample receipt. Sections 7.5 – 7.6 provide the minimum requirements that the laboratory must meet in performing the analyses and the required data elements. Section 7.7 describes EPA's external review of laboratory operations and other quality measures. Section 7.8 identifies references used in developing the procedure.

7.1 Summary of the Procedure

This chapter describes the analysis of ammonia, nitrate-nitrite, total nitrogen, total phosphorous and ortho-phosphate, nitrate, pH, conductivity and chlorophyll *a*, and chloride samples collected for EPA's 2015 National Coastal Condition Assessment (NCCA). As described in Section 7.5, unless otherwise contractually bound by other requirements, the laboratory may choose to use any method that meets EPA's specifications for contamination measurements.

7.2 Health and Safety Warnings

The laboratory must require its staff to abide by appropriate health and safety precautions. In addition to the laboratory's usual requirements such as a Chemical Hygiene Plan, the laboratory must adhere to the following health and safety procedures:

- 1. Laboratory facilities must properly store and dispose of solutions of weak acid.
- 2. Laboratory personnel must wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear, gloves).
- 3. When working with potential hazardous chemicals (e.g., weak acid), laboratory personnel must avoid inhalation, skin contact, eye contact, or ingestion. Laboratory personnel must avoid contacting skin and mucous membranes with acid. If skin contact occurs, remove clothing immediately. Wash and rinse the affected skin areas thoroughly with large amounts of water.

WATER CHEMISTRY AND chlorophyll α

7.3 Definitions and Required Resources (Personnel, Laboratories, and Equipment)

This section provides definitions and required resources for using the procedure.

7.3.1 Definitions

The procedure uses the following terms:

Cl: Chloride

Detection Limit is the minimum concentration at which the analyte can be *detected* with confidence. In other words, the outcome can be reported with confidence that it is greater than zero (i.e., present in the sample) Also see "Sample-Specific Detection Limit."

Duplicates are defined as two aliquots of the same sample which are analyzed separately using identical procedures. The results are used to evaluate the precision of the laboratory analyses.

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management System (NARS IM): The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. Freshwater and coastal samples will be collected during the field stage of NCCA.

NH₃: Ammonia

NO₃: Nitrate

NO₃-NO₂: Nitrate-nitrite

Percent Recovery: Recovery is measured by comparing the concentrations of a sample split into two parts; and one part is spiked with a known concentration value. C_s is the concentration measured in the spiked part; C is the concentration measured in the unspiked part; and s is the known concentration amount for the spike. The following equation is used to calculate the percent recovery:

$$\%Rs = \frac{C_s - C}{s} \times 100$$

Relative Standard Deviation (RSD): The precision at each concentration is reported in terms of the RSD. To calculate the RSD, first calculate the standard deviation, *S*, as follows:

$$S = \left[\frac{1}{n-1} \sum_{k=1}^{n} (C_s - \bar{C})^2 \right]^{1/2}$$

where n is the number of replicate samples, C, is the concentration measure for the k^{th} sample, and \bar{C} is the average concentration of the replicate samples. Then, RSD is calculated as:

$$RSD = \left| \frac{S}{\overline{C}} \right| \times 100$$

Reporting Limit: A reporting limit is the point at which the measured value of the analyte can be reported with confidence.

Sample-Specific Detection Limit: Most samples will have a sample-specific detection equal to the method's detection limit. For diluted samples, the sample-specific detection limit will be the product of the method's detection limit and the dilution factor. Typical values for the dilution factors will be 10 or 100.

SO₄: Sulfate.

Spiked Sample: See Percent Recovery definition for purpose of spiked samples.

SRP: Soluble Reactive Phosphorus (also called orthophosphate)

TN: Total nitrogen

TP: Total phosphorous

7.3.2 General Requirements for Laboratories

<u>Expertise</u>. To demonstrate its competency/expertise, the laboratory shall provide EPA with performance data demonstrating their proficiencies in analyzing water quality samples. In addition, the laboratory must provide one or more of the following:

- Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
- Documentation detailing the expertise of the organization, including professional certifications for water-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.

Quality assurance and quality control requirements.

To demonstrate its expertise in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), Laboratory Quality Assurance Manuals, QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

7.3.3 Personnel

The procedure refers to the following personnel:

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual.

7.3.4 Equipment/Materials

The analytical method, selected by the laboratory, identifies the necessary equipment.

7.4 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery. For each sampled site, the lab will receive the following samples on wet ice:

- One 250 ml amber bottle labeled 'CHEM' for water chemistry analyses
- A filter in a 50 ml tube for chlorophyll a labeled 'CHLA'

Additionally, as a separate batch shipment the lab will receive 250 ml bottles labeled 'NUTS' for dissolved nutrients analyses (either from the crews or from an EPA batching laboratory). Crews and the batch lab will maintain these samples frozen but will ship overnight on wet ice.

The laboratory technician must inspect the samples promptly on receipt and:

- 1. Log the samples into the National Aquatic Resource Survey Information Management system (NARS-IM) within 24 clock hours. Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Check that each shipping container has arrived undamaged. Check the temperature of one of the samples in the cooler using a thermometer that reads to at least -20 °C (i.e., the expected temperature of frozen samples), or an infra-red (IR) temperature "gun" and record the reading. Temperature of the wet ice shipments should be 4 °C or at less. Record the condition and temperature of the sample in the database using the codes in Table 7.1.
- 3. Verify that all required data elements, per Table 7.1, have been recorded in the NARS IM database. If any data elements are missing, then enter them into the database.
- 4. Transfer the samples for storage as follows:

- a. Water chemistry aliquots are prepared following the requirements in Section 7.5 and then are stored in a refrigerator at 4° C.
- b. Chlorophyll-a filters to the freezer for no more than 30 days before analysis. Except during processing and analysis stages, the filter must be stored frozen to less than or equal -20 °C \pm 2°.
- c. Dissolved nutrient samples are prepared following the requirements in Section 7.5 and then are stored in a refrigerator at 4° C.
- 5. Notify the EPA immediately about any problems involving sample integrity, conformity, or inconsistencies as soon as possible following sample receipt and inspection.

Table 7.1 Water Chemistry Login: Required Data Elements

Variable	Туре	Description			
SITE_ID	Character	Site identification code	Site identification code		
SAMPLE	Character	Sample number			
DATE_COLLECT	Date	Date that the field crew co	ollected the sample		
ANALYSIS_TYPE	Character	Water Chemistry or Chlor	ophyll α or Nutrients		
ARRIVAL_TEMP	Numeric		Temperature of sample upon arrival at the laboratory (CHEM, CHLA and NUTS sample will be on wet ice);		
CONDITION_CO DE	Character	Condition codes describing the condition of the sample upon arrival at the laboratory; leave blank for control			
		Flag	Definition		
		OK	Sample is in good condition		
		C Sample container is cracked			
		L Sample or container is leaking			
		ML	Sample label is missing		
		NF	Sample is not at proper temperature		
		Q	Other quality concerns, not identified above		
COND_COMMEN T	Character	Explanation for Q FLAG	(if needed)		

7.5 Preparation of Water Chemistry Aliquots

Figure 7.1 presents the sample preparation processing steps for the water chemistry indicators, including filtering and acidifying.

For the dissolved nutrient (NUTS) sample, the laboratory technician:

- 1. Thaws the frozen sample.
- 2. Splits the sample into two aliquots as shown in figure 7.1.
- 3. Adds ultra-pure acid (H_2SO_4 , depending on the analytes, see Table 7.2) to one of the two aliquots. Caps the bottle tightly and inverts the bottle several times to mix.
- 4. Stores all aliquots in a refrigerator at 4°C.

For the unfiltered, water chemistry (CHEM) sample, the laboratory technician

- 1. Thaws the frozen sample.
- 2. Splits the sample into two aliquots as shown in figure 7.1.
- 3. Adds ultra-pure acid (H₂SO₄,) to one aliquot of the unfiltered, CHEM sample. Caps the bottle tightly and inverts the bottle several times to mix.
- 4. Stores all aliquots in a refrigerator at 4°C.

If the dissolved nutrient sample is compromised in some way, the laboratory technician will filter a new sample from the water chem (CHEM) sample as follows:

- 1. Uses 0.4μm pore size polycarbonate filters for all filtration.
- 2. Rinses vacuum filter funnel units thoroughly with reverse-osmosis (RO) or de-ionized (DI) water (ASTM Type II reagent water) five times before each use and in between samples. After placing a filter in the funnel unit, run approximately 100 mL of RO or DI water through the filter, with vacuum pressure, to rinse the filter. Discard the rinse water.
- 3. Places the appropriate sample bottle under the funnel unit and filter sample directly into the bottle. If a new filter is needed, remove the sample bottle, and rinse the new filter with 100 mL of RO or DI water before continuing.
- 4. After all filtered and unfiltered aliquots are collected, adds ultra-pure acid (H₂SO₄, depending on the analyte, see Table 7.2) to the sample in the aliquot container. Cap tightly and invert the bottle several times to mix.
- 5. Stores all aliquots in a refrigerator at 4°C.

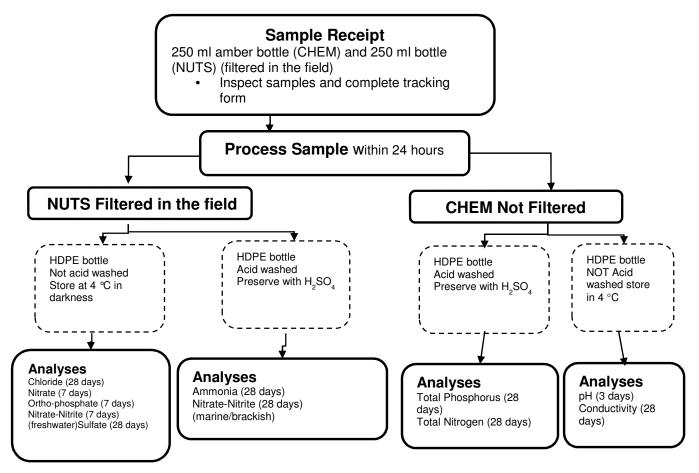


Figure 7.1 Water Chemistry and Dissolved Nutrient Samples: Receipt and Holding Times

Table 7.2 Water chemistry: acid preservatives added for various indicators

	Preservatives
	H ₂ SO ₄ Used for:
Indicators	
	NH ₄
	Total N
	Total P
	NO ₂ -NO ₃

7.6 Water Chemistry and Chlorophyll a Analysis: Requirements

The laboratory shall perform analysis of the samples to determine the ammonia (NH₃), chloride and sulfate (Great Lakes only), nitrate-nitrite (NO₃-NO₂), total nitrogen (TN), total phosphorous (TP) and ortho-phosphate, nitrate (NO₃), and chlorophyll *a*. As an alternative to specifying laboratory methods for sample analysis, NCCA uses a performance-based approach that defines a set of laboratory method performance requirements for data quality as shown in Table 7.3. Method performance requirements for this project identify the reporting limit, precision, and accuracy objectives for each parameter. NCCA is designating the reporting limit as the lowest

value that the laboratory needs to quantify (as opposed to just detecting the parameter in the sample), and is the value of the lowest non-zero calibration standard that the laboratory must use. EPA has set the value to double the long-term method detection limit (LT-MDL), following guidance presented in Oblinger, Childress et al. (USGS, 1999)18.

NCCA expresses precision and accuracy objectives in both absolute and relative terms following Hunt and Wilson (1986). The transition value is the value at which performance objectives for precision and accuracy switch from absolute (\leq transition value) to relative (> transition value). For pH, the objectives are established for samples with lower, midrange and higher pH levels.

For duplicate samples, NCCA estimates the precision as the pooled standard deviation (calculated as the root-mean square) of all samples at the lower concentration range, and as the pooled percent relative standard deviation of all samples at the higher concentration range. For standard samples (of known concentration), precision is estimated as the standard deviation of repeated measurements across batches at the lower concentration range, and as percent relative standard deviation of repeated measurements across batches at the higher concentration range. Accuracy is estimated as the difference between the mean measured value and the target value of a performance evaluation and/or internal reference samples at the lower concentration range measured across sample batches, and as the percent difference at the higher concentration range.

Table 7.4 summarizes the analytical methods used at the NCCA central laboratory (EPA ORD-Corvallis). Other participating laboratories may use alternative analytical methods for each target analyte as long as they can satisfactorily demonstrate the alternative method is able to achieve the performance requirements as listed in Table 7.3. Appendix A identifies the information that the laboratory should provide to the NCCA Laboratory Review Coordinator to use in determining whether the laboratories meet the necessary requirements.

¹⁸ If a laboratory has questions related to meeting the -LT-MDL, they may contact the NCCA Laboratory Review Coordinator to discuss concerns.

Table 7.3 Water Chemistry and Chlorophyll-a: Laboratory Method Performance Requirements

Parameter	Units	Potential Range of Samples ¹	Method Detection Limit Objective ²	Transitio n Value ³	Precision Objective	Accuracy Objective
Ammonia (NH ₃)	mg N/L	0 to 17	0.01 marine (0.7 µeq/L) 0.02 freshwater	0.10	± 0.01 or ±10%	± 0.01 or ±10%
Chloride (Cl)	mg Cl/L	0 to 5,000	0.20 (6 µeq/L)	1	± 0.10 or ±10%	± 0.10 or ±10%
Conductivity	μS/cm at 25°C	1-66,000	1.0	20	±2 or ±10%	±2 or ± 5%
Nitrate-Nitrite (NO ₃ -NO ₂)	mg N/L	0 to 360 (as nitrate)	0.01 marine 0.02 freshwater	0.10	± 0.01 or ±10%	± 0.01 or ±10%
pH (Laboratory)	Std Units	3.5-10	N/A	5.75, 8.25	\leq 5.75 or \geq 8.25 = \pm 0.07; 5.75-8.25 = \pm 0.15	\leq 5.75 or \geq 8.25 =±0.15; 5.75-8.25 = ±0.05
Total Nitrogen (TN)	mg N/L	0.1 to 90	0.01	0.10	± 0.01 or ±10%	± 0.01 or ±10%
Total Phosphorous (TP) and ortho-Phosphate	mg P/L	0 to 22 (as TP)	0.002	0.02	± 0.002 or ±10%	± 0.002 or ±10%
Nitrate (NO ₃)	mg N/L	0. to 360	0.01 marine (10.1 µeq/L) 0.03 freshwater	0.1	± 0.01 or ±5%	± 0.01 or ±5%
Sulfate (SO ₄)	mg/L	0 to 5000	0.5 freshwater (10.4 ueq/L)	2.5	±0.25 or ±10%	±0.25 or ±10%
Chlorophyll-a	μg/L in extract	0.7 to 11,000	1.5	15	± 1.5 or ±10%	± 1.5 or ±10%

¹ Estimated from samples analyzed at the EPA Western Ecological Division-Corvallis laboratory between 1999 and 2005

² The method detection limit is determined as a one-sided 99% confidence interval from repeated measurements of a low-level standard across several calibration curves.

³ Value for which absolute (lower concentrations) vs. relative (higher concentrations) objectives for precision and accuracy are used.

⁴ For duplicate samples, precision is estimated as the pooled standard deviation (calculated as the root-mean square) of all samples at the lower concentration range, and as the pooled percent relative standard deviation of all samples at the higher concentration range. For standard samples, precision is estimated as the standard deviation of repeated measurements across batches at the lower concentration range, and as

percent relative standard deviation of repeated measurements across batches at the higher concentration range.

For pH precision, the looser criteria applies to mid-range samples. For NCCA, that is less of a concern than the ability to measure more acidic or basic samples accurately and precisely.

⁵ Accuracy is estimated as the difference between the measured (across batches) and target values of performance evaluation and/or internal reference samples at the lower concentration range, and as the percent difference at the higher concentration range.

Table 7.4 Water Chemistry and Chlorophyll-a: Analytical Methods Used by Central Laboratory, EPA ORD-Corvallis)

J /	OKD-corvains)		
Analyte	Summary of Method ¹⁹	References ²⁰	WRS SOP ²¹
Nitrate+Nitrite,	Ion Chromatography (freshwater	EPA 300.6; SW-846	WRS 36A.0
as N	samples)	9056A; APHA 4110B	(April 2011
	OR		
	FIA automated colorimetric (cadmium	EPA 353.2	WRS 40A.5
	reduction for brackish samples)	APHA 4500-NO ₃ -N-E	(May 2011)
		Lachat 10-107-04-1-C	
Ammonia, as N	FIA automated colorimetric	Lachat 10-107-06-3-D	WRS 30A.4
	(salicylate, dichloroisocyanurate)		(April 2011)
Total nitrogen	Persulfate Digestion; FIA Automated	EPA353.2 (modified)	WRS 34A.5
(TN)	Colorimetric Analysis (Cadmium	APHA 4500-N-C	(April 2011)
	Reduction, sulfanilamide)	(modified)	
		ASTM WK31786	
		U.S. EPA (1987)	
		Lachat 10-107-04-1-C	
		(modified)	
Total phosphorus	Persulfate Digestion; Automated	APHA 4500-P-E	WRS 34A.5
(TP) and ortho-	Colorimetric Analysis (molybdate,	USGS I-4650-03	(April 2011)
Phosphate	ascorbic acid)	U.S. EPA (1987)	
		Lachat 115-01-1-B	
		(modified)	
Nitrate,	Ion Chromatography (Great Lakes	EPA 300.6; SW-846	WRS 40A.5
chloride, sulfate	samples only)	9056A; APHA 4110B	(May 2011)
Chlorophyll-a	Extraction 90% acetone analysis by	EPA 445.0, EPA 446.0	WRS 71A.3
(Chl-a)	fluorometry		(April 2011)
pH (lab)	Automated, using ManSci PC-Titrate	EPA 150.6 (modified)	WRS 16A.0
	w/ Titra-Sip autotitrator and Ross		(April 2011)
	combination pH electrode. Initial pH		
	determination for ANC titration		

¹⁹ FIA=Flow injection analysis. AAS=Atomic Absorption Spectrometry

²⁰ U.S. EPA, 1987. *Handbook of Methods for Acid Deposition Studies: Laboratory Analyses for Surface Water Chemistry*. EPA/600/4-87/026. U.S. Environmental Protection Agency, Office of Research and Development, Washington D.C. APHA= American Public Health Association (*Standard Methods*). ASTM=American Society of Testing and Materials.

²¹ WRS= Willamette Research Station. References are to laboratory SOP being used at central laboratory. Available upon request from the EPA HQ Laboratory Review Coordinator.

Analyte	Summary of Method ¹⁹	References ²⁰	WRS SOP21
Specific conductance @	Electrolytic, Man-Tech TitraSip automated analysis OR manual analysis, electrolytic	EPA 120.6	WRS 16A.0 (April 2011) WRS 11A.4
25°C			(April 2011)

7.7 Data Entry

Table 7.5 identifies the required data elements that laboratories must provide to EPA, preferably in EPA's data template, available separately from EPA.

Table 7.5 Water Chemistry and Chlorophyll-a: Data Elements for Each Sample

Variable	Туре	Description		
SITE_ID	Character	Site identification code or type of QC sample (e.g., LAB BLANK)		
SAMPLE	Character	Sample number, LCS, QCCS, Blank, Matrix Spike, or CRM		
ANALYSIS_TYPE	Character	Contaminant		
REPEAT	Numeric	Duplicate		
DATE_COLLECT	Date	Date that the field crew collected the sample		
ARRIVAL_TEMP	Numeric	Temperature of sample upon arrival at the laboratory		
CONDITION_CODE	Character	Condition codes describing the condition of the sample upon arrival at the laboratory; leave blank for control		
		Flag Definition		
		OK Sample is in good condition		
		C Sample container is cracked		
		L Sample or container is leaking		
		ML Sample label is missing		
		NF Sample is not at proper temperature		
		Q Other quality concerns, not identified above		
COND_COMMENT	Character	Explanation for Q FLAG (if needed)		
PARAMETER	Character	Analyte name		
CAS_NO	Character	CAS Registry number		
LABNAME	Character	Laboratory name (abbreviation)		
METHOD	Character	Laboratory method used		
ANALYST	Character	Last name or initials of person who performed the analysis		
REVIEWER	Character	Last name or initials of the person who provided a separate independent review of the data		
INSTRUMENT	Character	Identification of instrument used for the analysis – provide enough information to identify the particular instrument in the laboratory		
DATE PROCESSED	Date	Date that the analysis started		
QC_BATCH_LOT	Character	Unique laboratory quality control lot numbers must be assigned to each batch of samples. The lot number must associate each batch of field samples to the appropriate laboratory control sample, matrix spike, laboratory duplicate, method blank, and CRM samples.		
HOLDING TIME	Y/N	Analysis performed within holding time		

Variable	Туре	Description
MATRIX	Character	Water
MDL	Numeric	Lab method detection limit (based upon lab's historical data)
LRL	Numeric	Lab reporting limit (based upon lab's historical data)
DILUTION	Numeric	Dilution of sample (blank or 1 if no dilution)
RESULT	Numeric	Concentration value
REASON	Character	Reason for qualification in RESULT_QUAL (usually blank)
RESULT_QUAL	Character	Data qualifier (usually blank)
UNIT	Character	Unit of measurement for RESULT, MDL, and LRL
QC_CODE	Character	Apply laboratory defined QC codes and describe in the comments field. Provide set of laboratory's code as part of the
QC_CODE	Character	case narrative
COMMENT	Character	Explain situation that created QC code, or any unusual aspects
COMMITTION	Character	of the analysis

7.8 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements. QC protocols are an integral part of all analytical procedures to ensure that the results are reliable and the analytical stage of the measurement system is maintained in a state of statistical control. The laboratory must conduct QC analyses for each batch of samples. Each batch shall consist of no more than 20 samples. Unique laboratory quality control lot numbers must be assigned to each batch of samples. The lot number must associate each batch of field samples to the appropriate measures such as laboratory control sample, matrix spike, laboratory duplicate, and method blank samples. Also, each laboratory QC samples (i.e., preparation and instrument blanks, laboratory control sample (LCS), spike/duplicate, etc.) must be give a unique sample identification. Table 7.5 provides a summary of the quality control requirements.

Table 7.5 Water Chemistry and Chlorophyll-a: Quality control activities for water quality samples

QC Sample Type and Description	Indicators	Description	Frequency	Acceptance Criteria	Corrective Action
Demonstrate competency for analyzing water samples to meet the performance measures	All	Demonstration of past experience with water samples in achieving the method detection limits	Once	See Appendix A	EPA will not approve any laboratory for NCCA sample processing if the laboratory cannot demonstrate competency. In other words, EPA will select another laboratory that can

WATER CHEMISTRY AND chlorophyll α

QC Sample Type and Description	Indicators	Description	Frequency	Acceptance Criteria	Corrective Action
					demonstrate competency for its NCCA samples.
Check condition of sample when it arrives.	All	Sample issues such as cracked container; missing label; temperature; adherence to holding time requirements; sufficient volume for test.	Once	No sample issues or determination that sample can still be analyzed	Lab determines if the sample can be analyzed or has been too severely compromised (e.g., contamination). Assign appropriate condition code identified in Table 7.1.
Store sample appropriately.	All	Check the temperature of the refrigerator per laboratory's standard operating procedures.	Record temperature of sample upon arrival at the laboratory. Check temperature of the refrigerator/freezer where samples are stored at least daily if using a continuous temperature logger and twice daily (once at beginning of the day and once at the end) not using a continuous logger.	While stored at the laboratory, the sample must be kept at a maximum temperature of 4° C (for aliquots except chlorophyll a) and -20° C for the chlorophyll a sample.	If at any time samples are warmer than required, note temperature and duration (either from the continuous temperature log or from the last manual reading) in comment field. Lab will still perform test. EPA expects that the laboratory will exercise every effort to maintain samples at the correct temperature.

yll a
lorophy
AND ch
MISTRY
CHE
WATER

QC Sample	Indicators	Description	Frequency	Acceptance	Corrective
Type and Description	indicators	Description	Frequency	Criteria	Action
Analyze sample within holding time	All			The test must be completed within the holding time specified in the analytical method.	Perform test in all cases, but note reason for performing test outside holding time. EPA expects that the laboratory will exercise every effort to perform tests before the holding time expires.
Analyze Laboratory/ Reagent Blank	All		Once per day prior to sample analysis	Control limits ≤ MDL	Prepare and analyze new blank. Determine and correct problem (e.g., reagent contamination, instrument calibration, or contamination introduced during filtration) before proceeding with any sample analyses. Reestablish statistical control by analyzing three blank samples.
Analyze Filtration Blank	All dissolved analytes	ASTM Type II reagent water processed through filtration unit	Prepare once per week and archive Prepare filter blank for each box of 100 filters, and examine the results before any other filters are used from that box.	Measured concentrations <mdl< td=""><td>Measure archived samples if review of other laboratory blank information suggest source of contamination is sample processing.</td></mdl<>	Measure archived samples if review of other laboratory blank information suggest source of contamination is sample processing.

WATER CHEMISTRY AND chlorophyll α

QC Sample Type and Description	Indicators	Description	Frequency	Acceptance Criteria	Corrective Action
Determine LT-MDL Limit for Quality Control Check Sample (QCCS)	All	Prepared so concentration is four to six times the LT-MDL objective	Once per day	Target LT-MDL value (which is calculated as a 99% confidence interval)	Confirm achieved LRL by repeated analysis of LT- MDL QCCS. Evaluate affected samples for possible re- analysis.
Analyze Calibration QCCS	All		Before and after sample analyses	±10% or method criteria	Repeat QCCS analysis. Recalibrate and analyze QCCS. Reanalyze all routine samples (including PE and field replicate samples) analyzed since the last acceptable QCCS measurement.
Analyze Laboratory Duplicate Sample	All		One per batch	Control limits < precision objective	If results are below LRL: Prepare and analyze split from different sample (volume permitting). Review precision of QCCS measurements for batch. Check preparation of split sample. Qualify all samples in batch for possible reanalysis.

ಶ	
_	
h	
orophyl	
ĭ	
Shl	
ਹ	
О	
Z	
< <	
\succeq	
K	
ST	
\equiv	
回	
田	
\mathcal{O}	
TER (
Ä	
7	
$\stackrel{\sim}{>}$	

000	1		I =	I A	•
QC Sample Type and Description	Indicators	Description	Frequency	Acceptance Criteria	Corrective Action
Analyze Standard Reference Material (SRM)	When available for a particular indicator		One analysis in a minimum of five separate batches	Manufacturers certified range	Analyze standard in next batch to confirm suspected inaccuracy. Evaluate calibration and QCCS solutions and standards for contamination and preparation error. Correct before any further analyses of routine samples are conducted. Reestablish control by three successive reference standard measurements that are acceptable. Qualify all sample batches analyzed since the last acceptable reference standard measurement for possible reanalysis.
Analyze Matrix Spike Samples	Only prepared when samples with potential for matrix interferences are encountered		One per batch	Control limits for recovery cannot exceed 100±20%	Select two additional samples and prepare fortified subsamples. Reanalyze all suspected samples in batch by the method of

QC Sample Type and Description	Indicators	Description	Frequency	Acceptance Criteria	Corrective Action
					standard additions. Prepare three subsamples (unfortified, fortified with solution approximately equal to the endogenous concentration, and fortified with solution approximately twice the endogenous
Use consistent units for QC samples and field samples	All	Verify that all units are provided consistently within each indicator.	Data reporting	For each indicator, all field and QC samples are reported with the same measurement units	concentration). If it is not possible to provide the results in consistent units, then assign a QC code and describe the reason for different units in the comments field of the database.
Maintain completeness	All	Determine completeness	Data reporting	Completeness objective is 95% for all indicators (useable with or without flags).	Contact EPA HQ NCCA Laboratory Review Coordinator* immediately if issues affect laboratory's ability to meet completeness objective.

^{*}Chapter 2 provides contact information for the EPA HQ NCCA Laboratory Review Coordinator. Laboratories under contract to EPA must contact the Task Order's Contracting Officer's Representative (TOCOR) instead of the Laboratory Review Coordinator.

7.9 Sample and Record Retention

WATER CHEMISTRY AND chlorophyll α

The laboratory shall retain:

- 1. The sample materials for a minimum of 1 year after collection. During this time, the laboratory shall store the materials cold (e.g., 4 ° C) and in darkness. The lab shall retain the sample materials from the 1 year point until the EPA publishes the final report at ambient temperatures.
- 2. Original records, including laboratory notebooks for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

7.10 References

Hunt, D.T.E. and A.L. Wilson. 1986. *The Chemical Analysis of Water: General Principles and Techniques*. 2nd ed. Royal Society of Chemistry, London, England.

USEPA, 1987. *Handbook of Methods for Acid Deposition Studies: Laboratory Analyses for Surface Water Chemistry*. EPA/600/4-87/026. U.S. Environmental Protection Agency, Office of Research and Development, Washington D.C.

USEPA. 1997. *Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices – 2nd Edition*. EPA No. 600-R-97-072. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, retrieved June 30, 1997 from http://www.epa.gov/microbes/documents/marinmet.pdf.

USEPA. September 1997. Method 353.4 "Determination of Nitrate and Nitrite in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis, Revision 2.0", retrieved June 30, 2014 from http://www.epa.gov/microbes/documents/m353 4.pdf.

USGS. 1999. "New reporting procedures based on long-term method detection levels and some considerations for interpretations of water-quality data provided by the U.S. Geological Survey National Water Quality Laboratory." Open-File Report: 99-193 by Childress, Oblinger, *et al.*, retrieved June 30, 2014 from http://pubs.usgs.gov/of/1999/0193/report.pdf.

Youden, W.J. 1969. Ranking laboratories by round-robin tests. In *Precision Measurement and Calibration*. H.H. Ku, ed. NBS Special Publication 300, Vol. 1. U.S. GPO Washington, D.C.

8.0 SEDIMENT TOXICITY TESTING

This chapter describes the analysis requirements for sediment toxicity testing. The purpose is to assess the toxicity of sediment samples collected in the 2015 NCCA and related studies.

At each sampling site, the Field Operations Manual (FOM) instructs the crews to collect sediment samples. The field crew then ships the samples on wet ice to the laboratory. If EPA uses a batching laboratory, it will refrigerate the samples, before shipping on wet ice to the analysis laboratory.

In the following discussion, Sections 8.1, 8.2, and 8.3 summarize the procedure; health and safety concerns; and definitions and required resources. Section 8.4 provides the steps for acknowledging sample receipt. Sections 8.5 – 8.6 provide the minimum requirements that the laboratory must meet in performing the analyses and the required data elements. Section 8.7 describes EPA's external review of laboratory operations and other quality measures. Section 8.8 identifies references used in developing the procedure.

8.1 Summary of the Procedure

This chapter describes toxicity testing of sediment samples collected for EPA's 2015 National Coastal Condition Assessment (NCCA). As described in Section 8.5, unless otherwise contractually bound by other requirements, the laboratory may choose to use any method that meets EPA's specifications.

8.2 Health and Safety Warnings

The laboratory must require its staff to abide by appropriate health and safety precautions. In addition to the laboratory's usual requirements such as a Chemical Hygiene Plan, the laboratory must adhere to the following health and safety procedures:

- 1. Laboratory facilities must properly store and dispose of solutions of weak acid.
- 2. Laboratory personnel must wear proper personal protection clothing and equipment (e.g. lab coat, protective eyewear, gloves).
- 3. When working with potential hazardous chemicals (e.g., weak acid), laboratory personnel must avoid inhalation, skin contact, eye contact, or ingestion. Laboratory personnel must avoid contacting skin and mucous membranes with acid. If skin contact occurs, remove clothing immediately. Wash and rinse the affected skin areas thoroughly with large amounts of water.

8.3 Definitions and Required Resources (Personnel, Laboratories, and Equipment)

This section provides definitions and required resources for using the procedure.

8.3.1 Definitions

The procedure uses the following terms:

Replicates are defined as two or more aliquots of the same sample which are analyzed separately using identical procedures. The results are used to evaluate the precision of the laboratory analyses.

NARS: National Aquatic Resource Surveys. The National Coastal Condition Assessment (NCCA) is part of the NARS program.

NARS Information Management System (NARS IM): The IM system established to support all surveys, including NCCA, in the NARS program. The IM system is used to track the samples from field collection to the laboratory.

NCCA: National Coastal Condition Assessment. Freshwater and coastal samples will be collected during the field stage of NCCA.

%CONT_SURV: Average percentage of organisms that survived in the replicate test chambers over the percent survival in control.

%REP_SURV: Percentage of organisms that survived in the test chamber for each set of replicates.

8.3.2 General Requirements for Laboratories

<u>Expertise</u>. To demonstrate its expertise, the laboratory shall provide EPA with performance data demonstrating their proficiencies in analyzing water quality samples. In addition, the laboratory must provide one or more of the following:

- Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
- Documentation detailing the expertise of the organization, including professional certifications for water-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.

Quality assurance and quality control requirements.

To demonstrate its expertise in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

Preparation for the work

To demonstrate its preparation for the work, the laboratory shall provide documentation that it has complied with the following control analyses prior to the start of any work.

- 1. The laboratory shall ensure that the water source for the overlying water has been demonstrated to support survival, growth, and reproduction of the test organisms. The laboratory shall provide information on how the laboratory maintains the quality of the water used for the tests.
- 2. The laboratory shall ensure that the clean sediment is appropriate for the control tests. The laboratory shall provide information about the sediment chemistry analysis and explanation of how the control sediment was selected
- 3. The laboratory shall ensure that the organisms are healthy for the tests. The laboratory shall provide the source of the organisms; historic information about the culturing; and procedures for evaluating the condition and age of the organism and water quality upon arrival. If the laboratory intends to purchase the organisms (i.e., instead of in-house culturing), identify the commercial source; its shipping arrangements (e.g., test organisms are shipped in well-oxygenated water in insulated containers to maintain temperature during shipment); and evaluation upon arrival at the laboratory (e.g., measuring temperature and dissolved oxygen of the water in the shipping containers to determine if the organisms might have been subjected to low dissolved oxygen or temperature fluctuations).
- 4. The laboratory shall complete a "non-toxicant" test of each new chamber before using the chamber for NCCA samples. A "new" chamber is one that the laboratory has not previously used for any sediment toxicity testing for any client (e.g., replacement glassware). Ideally, although EPA is not requiring it, the laboratory will test freshwater and marine samples in wholly separate chambers.

Test requirements: The test chambers contain control sediment (sometimes called the negative control) and clean overlying water for the amphipod species to be tested. Survival of the test organisms will demonstrate whether facilities, water, control sediment, and handling techniques are adequate to achieve acceptable species-specific control survival. For the test to be acceptable, survival at 10 days must equal or exceed the survival requirements in QA/QC specifications in Section 8.7.

8.3.3 Personnel

The procedure refers to the following personnel:

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual.

External QC Coordinator is an EPA staff person who is responsible for selecting and managing the "**QC contractor**." To eliminate the appearance of any inherent bias, the QC contractor must be dedicated to QA/QC functions, and thus, must not be a primary laboratory or a field sampling contractor for NCCA. The QC contractor is responsible for complying with instructions from the External QC Coordinator; coordinating and paying

for shipments of the performance samples to participating laboratories; comparing results from the laboratories; and preparing brief summary reports.

8.3.4 Equipment/Materials

The analytical method, selected by the laboratory, identifies the necessary equipment.

8.4 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery. The laboratory must inspect the samples promptly on receipt. As samples arrive, the laboratory must:

- 1. Log the samples into the National Aquatic Resource Survey Information Management system (NARS-IM) within 24 clock hours. Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
- 2. Check that each shipping container has arrived undamaged. Check the temperature of one of the samples in the cooler using a thermometer that measures temperatures between 0 °C (refrigerated samples are typically 4 °C) and 30 °C (ambient room temperature is typically less than 26 °C), or an infra-red (IR) temperature "gun" and record the reading. Field crews and the batching laboratory will ship sediment samples on wet ice. Record the condition and temperature of the sample in the database using the codes in Table 8.1.
- 3. Verify that all required data elements, per Table 8.1, have been recorded. If any elements are missing, then enter them into the database.
- 4. Transfer the samples to the refrigerator until ready for toxicity testing. Except during processing and analysis stages, the samples must be stored at 4°C.
- 5. Notify the EPA immediately about any problems involving sample integrity, conformity, or inconsistencies as soon as possible following sample receipt and inspection.

Table 8.1 Sediment Toxicity Login: Required Data Elements

FIELD	FORMAT	DESCRIPTION
LAB ID	Character	Name or abbreviation for laboratory
TYPE	Character	Control or NCCA Sample
DATE RECEIVED	MMDDYY	Date sample was received by lab; leave blank for control
SITE ID	Character	NCCA site id as used on sample label; leave blank for control
VISIT NUMBER	Numeric	Sequential visits to site (1 (or blank) or 2); leave blank for control
SAMPLE ID	Numeric	Sample id as used on field sheet (on sample label); leave blank
		for control
DATE	MMDDYY	Date sample was collected; leave blank for control
COLLECTED		

FIELD	FORMAT	DESCRIPTION	
ARRIVAL_TEMP	Numeric	Temperature of sample upon arrival at the laboratory (it should	
		arrive on	wet ice).
CONDITION	Character	Condition	n codes describing the condition of the sample upon
CODE		arrival at	the laboratory; leave blank for control
		Flag	Definition
		OK	Sample is in good condition
		C Sample container is cracked	
		L Sample or container is leaking	
		ML Sample label is missing	
		NF Sample is not at proper temperature	
		VT Volume not sufficient for testing (VT)	
		VR Volume not sufficient for a retest, if required	
		HT Received outside holding time Q Other quality concerns, not identified above	
COND_COMMENT	Character	Explanation for Q FLAG (if needed)	

8.5 Toxicity Testing: Requirements

The laboratory shall perform toxicity testing of sediment samples. Laboratories may choose to use any analysis method using the required organisms of *Hyalella azteca* (freshwater) or *Leptocheirus plumulosus* (marine). The laboratory's method must meet the quality requirements in Section 8.7, including mean survival of the control's treatments must remain greater than or equal to 80% and 90%, respectively. It is essential that the contractor require that all of its laboratory technicians use the same procedures and meet the required quality elements. At a minimum, the laboratory must:

1. Perform the procedures using the 10-day tests. Possible methods include those described in the following documents:

a. Marine: Test Method 100.4 in EPA 600/R-94/025²² or ASTM E1367-03²³
 b. Freshwater: Test Method 100.1 in EPA 600/R-99/064²⁴ or ASTM E1706²⁵

2. Test the following number of replicates for each sample and control:

a. Marine: 5 replicates with 20 organisms per replicate
b. Freshwater: 4 replicates with 10 organisms per replicate

 22 Chapter 11 in Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, June 1994, retrieved from

http://water.epa.gov/polwaste/sediments/cs/upload/marinemethod.pdf.

²³ American Society for Testing and Materials (ASTM). 2008. E1367-03 "Standard Guide for Conducting 10-Day Static Sediment Toxicity Tests With Marine and Estuarine Amphipods." *Annual Book of Standards, Water and Environmental Technology*, Vol. 11.05, West Conshohocken, PA.

²⁴ Section 11 in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates*, Second Edition, March 2000, retrieved from http://water.epa.gov/polwaste/sediments/cs/upload/freshmanual.pdf.

²⁵ ASTM 2009 E1706. "Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates."

- 3. Test no more than 10 samples and one control within each batch.
- 4. Use the following organisms for the tests:

a. Marine: Leptocheirus plumulosus

b. Freshwater: Hyalella azteca

- 5. Select organisms for each batch of tests that are:
 - a. From the same culture;
 - b. Cultured at the same temperature as will be used for the tests;
 - c. (optional) EPA would prefer but does not require that the organisms are cultured in the same water as that used for testing.
- 6. Use a water source (for the overlying water) demonstrated to support survival, growth, and reproduction of the test organisms.
 - a. For marine sediments, 175 mL of sediment and 800 mL of overlying seawater
 - b. For freshwater sediments, 100mL of sediment and 175mL of overlying freshwater
- 7. Use clean sediment for control tests.
- 8. Implement the following for exposure/feeding
 - a. For marine sediments, exposure is static (i.e., water is not renewed), and the animals are not fed over the 10 d exposure period
 - b. For freshwater, exposure is renewed (i.e., 2 volumes a day) and the animals are fed over the 10 day exposure period
- 9. Follow the following procedure for homogenization/sieving: Water above the sediment is not discarded, but is mixed back into the sediment during homogenization. Sediments should be sieved for marine samples (following the 10 day method) and the sieve size should be noted. For freshwater samples, they should not be sieved to remove indigenous organisms unless there is a good reason to believe indigenous organisms may influence the response of the test organism. For freshwater samples, large indigenous organisms and large debris can be removed using forceps and if sediments must be sieved, the samples should be analyzed before and after sieving (e.g., pore-water metals, DOC, and AVS) to document the influence of sieving on sediment chemistry (note sieve size).

Additional details are provided in the summary tables 8.2 and 8.3.

Table 8.2 Test Conditions for Conducting 10-d Sediment Toxicity Tests for marine sediments

Parameter	Conditions	
1. Test type:	Whole sediment toxicity test, static	
2. Temperature:	25 ℃ for L. plumulosus	
3. Salinity	20‰	
4. Light quality:	Wide-spectrum fluorescent lights	
5. Illuminance:	500 – 1000 lux	
6. Photoperiod:	24L:0D	
7. Test chamber:	1 L glass beaker or jar with ~10 cm I.D.	

8. Sediment volume:	175 mL (2 cm)
Overlying water volume:	800 mL
Renewal of overlying	None
water:	
11. Size and life stage of	L. plumulosus: 2-4 mm (no mature males or females)
amphipods:	
12. Number of organisms	20 per test chamber
per chamber:	
13. Number of replicate	5 (required)
chambers/treatment:	
14. Feeding:	None
15. Aeration:	Water in each test chamber should be aerated overnight before start of
	test and throughout the test aeration at rate that maintains ≥90%
	saturation of dissolved oxygen concentration
16. Overlying water:	Clean sea water, natural or reconstituted water
17. Overlying water quality:	Temperature daily; pH, ammonia, salinity, and DO at test start and
	end.
18. Test duration:	10 d
19. Endpoints:	Survival
20. Test acceptability:	Minimum mean control survival of 90%

Table 8.3 Test Conditions for Conducting 10-d Sediment Toxicity Tests for freshwater sediments

Parameter	Conditions
1. Test type:	Whole-sediment toxicity test with renewal of overlying water
2. Temperature:	23°± 1°C
3. Light quality:	Wide-spectrum fluorescent lights
4. Illuminance:	100 to 1000 lux
5. Photoperiod:	16L:8D
6. Test chamber:	300 mL high-form beaker
7. Sediment volume	100 mL
8. Overlying water volume:	175 mL
9. Renewal of overlying water:	2 volume additions/d; continuous or intermittent (<i>e.g.</i> , 1 volume addition every 12 h)
10. Age of organisms:	7- to 14-d old at the start of the test (1- to 2-d range in age)
11. Number of organisms/ chamber:	10
12. Replicate chambers/treatment:	4 required
13. Feeding:	YCT food, fed 1.0 mL daily (1800 mg/L stock) to each test chamber.
14. Aeration:	None unless DO in overlying water drops below 2.5 mg/L
15. Test duration:	10 d
16. Endpoint:	Survival
17. Test acceptability:	Min. mean control survival of 80%.

8.6 Data Entry

for the replicates and batches. Laboratories must provide the data elements to EPA, preferably in EPA's data template, available separately from EPA.

Table 8.3 Sediment Toxicity Replicates: Laboratory method performance requirements

FIELD FORMAT DESCRIPTION

LAB ID Character Name or abbreviation for laboratory

TYPE Character Control or NCCA Sample

Tables 8.3 and 8.4 identify the required data elements describing the test conditions and outcomes

FIELD	FORMAT	DESCRIPTION	
LAB ID	Character	Name or abbreviation for laboratory	
TYPE	Character	Control or NCCA Sample	
SAMPLE ID	Numeric	Sample id as used on field sheet (on sample label); leave blank for control	
RETEST	Y or blank	Y for yes if the sample is being retested; blank if original test or control	
CHAMBER ID	Character	Identification code for test chamber	
BATCH ID	Character	Identification code for batch	
REPLICATE	Numeric	Replicate number: 1-5 for marine; 1-4 for freshwater	
TEST TYPE	Character	Marine or Freshwater	
ORGANISM	Character	Leptocheirus plumulosus (marine) or Hyalella azteca (freshwater)	
NO_SURVIVED	Numeric	Number of organisms that survived out of 20 (marine) and 10 (freshwater)	
%REP_SURV	Numeric	Percentage of organisms that survived in the test chamber for the replicate	
REP_COMMENT	Character	Any comments about the test procedures or any abnormalities	
%CONT_SURV	Numeric	Optional Field: Average percentage of organisms that survived in the replicate test chambers over the percent survival in control.	

Table 8.4 Laboratory method performance requirements for sediment toxicity batches

FIELD	FORMAT	DESCRIPTION	
BATCH ID	Character	Identification code for batch	
BATCH_SAMPLES	Numeric	Number of NCCA samples in the batch (integer≤10) excluding	
		the control	
TEST TYPE	Character	Marine or Freshwater	
ORGANISM	Character	Leptocheirus plumulosus (marine) or Hyalella azteca (freshwater)	
CONTROL	Character	Source of control sediment	
START_DATE	MMDDYY	Date that the laboratory starts the test procedure for the batch	
END_DATE	MMDDYY	Date that the laboratory ends the test procedure for the batch	
%SURV	Numeric	%Survival for the sample (or control) calculated using the	
		%REP_SURV	
BATCH_PASS	P/F	Indicate if the batch passed (P) or failed (F) the QA/QC	
		requirements (e.g., control achieved required survival rates)	
QC_CODE	Character	Laboratory assigned code for QC issues with the sample	
QC_DESCRIPTION	Character	Description of conditions associated with the QC_CODE	
SURV_COMMENT	Character	Any comments about the test procedures or any abnormalities	

SEDIMENT TOXICITY TESTI

8.7 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements.

8.7.1 Assistance Visits

Assistance visits are intended to familiarize EPA with actual procedures being implemented by different laboratories; and to ensure a clear and consistent understanding of procedures and activities by both EPA and the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter.

8.7.2 QC Samples

Once or twice during the performance period, the External QC Coordinator will provide one or two identical sets of QC samples to all participating laboratories. Each set will contain up to five QC samples. As determined by the External QC Coordinator, the QC samples may be synthetic; aliquots of additional samples collected at NCCA sites; or reference samples obtained from an organization such as the National Institute of Standards. Each laboratory will run the QC samples following the same procedures used for the other samples. The External QC Coordinator will compare the results to the expected value and determine consistency between laboratories (e.g., determine if one laboratory is consistently higher or lower than all others). Based upon the evaluation, the External QC Coordinator may request additional information from one or more laboratories about any unique laboratory practices that might account for differences between the laboratory and others. The contractor shall analyze the external QC samples using the same procedures as those for the field samples.

8.7.3 Summary of QA/QC Requirements

QC protocols are an integral part of all analytical procedures to ensure that the results are reliable and the analytical stage of the measurement system is maintained in a state of statistical control. The laboratory must conduct QC analyses for each batch of samples. Each batch shall consist of no more than 10 samples. Unique laboratory quality control lot numbers must be assigned to each batch of samples. The lot number must associate each batch of field samples to the appropriate measures such as laboratory control samples. Table 8.5 provides a summary of the quality control requirements.

Table 8.5 Quality control activities for sediment toxicity samples

Activity	Evaluation	Corrective Action
Laboratory demonstrates	EPA will review SOPs, lab	EPA will not approve any
competency for conducting	certifications, past performance	laboratory for NCCA sample
sediment toxicity analyses	results, etc. as part of the lab	processing if the laboratory
	verification process.	cannot demonstrate competency.
		In other words, EPA will select
		another laboratory that can

5
STI
Щ
L
Ľ
CII
\sim
\perp
NT TC
EN
¥
丑
S

Activity	Evaluation	Corrective Action
		demonstrate competency for its
Charle condition of comple when	Comple issues such as another	NCCA samples.
Check condition of sample when it arrives.	Sample issues, such as cracked or leaking container; missing label; temperature; adherence to	Assign appropriate condition code identified in Table 8.1.
	holding time requirements; insufficient volume for test.	
Sample storage	All samples: 4 °C at arrival at the laboratory (temperature recorded at arrival) and while stored at the laboratory.	Record temperature upon arrival at the laboratory. Check temperature of the refrigerator where samples are stored at least daily if using a continuous temperature logger and twice daily (beginning and end of day) if the lab does not have a continuous logger. If refrigerator is warmer than required, note temperature and duration (either from the continuous temperature log or from the last manual reading) in comment field. Lab will still perform test. EPA expects that the laboratory will exercise every effort to maintain samples at the correct temperature.
Holding Time	The test must be completed within 8 weeks after sample collection. If the original test fails, then the retest also must be conducted within the 8 weeks after sample collection.	Perform test, but note reason for performing test outside holding time. EPA expects that the laboratory will exercise every effort to perform tests before the holding time expires.
Check that the organisms are healthy before starting the test	Unhealthy organisms may appear to be discolored, or otherwise stressed (for example, greater than 20 percent mortality for the 48 hours before the start of a test).	Don't start test using unhealthy organisms.
Maintain conditions as required in Section 8.3.	Check conditions (e.g., temperature, DO) each test day. Record conditions in bench sheet or in laboratory database.	Note any deviations in comments field (Table 8.1). In extreme cases, conduct a new toxicity test for all samples

Activity	Evaluation	Corrective Action
		affected by the adverse
		conditions.
Control survival rates	For a test of a batch of samples	Data template includes a field to
	to be considered valid, the	record if a test passed or failed
	control's mean survival in	the control requirements. If a
	Hyalella and Leptocheirus	test fails, retest all samples in
	treatments must remain ≥80%	the batch. Report both the
	and $\geq 90\%$, respectively.	original and retest results. If
		both tests fail, submit data to
		EPA for further consideration.
		Include comments in the data
		template noting any particular
		factors that may have caused the
		test to fail twice.

^{*}Chapter 2 provides contact information for the EPA HQ NCCA Laboratory Review Coordinator. Laboratories under contract to EPA must contact the Task Order's Contracting Officer's Representative (TOCOR) instead of the Laboratory Review Coordinator.

8.8 Sample and Record Retention

The laboratory shall retain:

- 1. The sample materials, including vials until March 31, 2016 which will allow EPA with time to review the data and contact the laboratory with any questions about the samples. Until this time, the laboratory shall refrigerate the sediment samples. The laboratory shall periodically check the sample materials for degradation.
- 2. Original records, including laboratory notebooks, for a minimum of 10 years from the date that EPA publishes the final report.

After the stated time periods, the laboratory shall follow its internal protocols for disposal.

8.9 References

American Society for Testing and Materials (ASTM). 2008. E1367-03 "Standard Guide for Conducting 10-Day Static Sediment Toxicity Tests With Marine and Estuarine Amphipods." Annual Book of Standards, Water and Environmental Technology, Vol. 11.05, West Conshohocken, PA.

ASTM. 2009. E1706. "Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates.

United Stated Environmental Protection Agency (USEPA). 1994. Chapter 11 in Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, retrieved on March 13, 2014 from http://water.epa.gov/polwaste/sediments/cs/upload/marinemethod.pdf.

USEPA. 2000. Section 11 in Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, retrieved on March 13, 2014 from http://water.epa.gov/polwaste/sediments/cs/upload/freshmanual.pdf.

FISH TISSUE FILLET (Great Lakes)

9.0 FISH TISSUE FILLET (GREAT LAKES)

Laboratory Methods incorporated in EPA OST Manuals/QAPP.

10.0 MERCURY IN FISH TISSUE PLUGS

10.1 Summary of the Procedure

This procedure is applicable to the analysis of mercury in fish tissue plugs. The method is performance based. Laboratories may use any method that meets the requirements below to analyze the fish tissue samples (for example, EPA Method 1631). Example SOPs are provided in Appendix D of this LOM.

10.2 General Requirements for Laboratories

<u>Competency</u>. To demonstrate its competency, the laboratory shall provide EPA with performance data demonstrating their proficiencies in analyzing water quality samples. In addition, the laboratory must provide one or more of the following:

- Memorandum that identifies the relevant services that the laboratory provided for the National Aquatic Resource Surveys in the past five years.
- Documentation detailing the expertise of the organization, including professional certifications for water-related analyses, membership in professional societies, and experience with analyses that are the same or similar to the requirements of this method.

Also, the lab must provide a demonstration of past experience with fish tissue samples in applying the laboratory SOP in achieving the method detection limit.

Quality assurance and quality control requirements.

To demonstrate its expertise in quality assurance and quality control procedures, the organization shall provide EPA with copies of the quality-related documents relevant to the procedure. Examples include Quality Management Plans (QMP), QAPPs, and applicable Standard Operating Procedures (SOPs).

To demonstrate its ongoing commitment, the person in charge of quality issues for the organization shall sign the NCCA QAPP Certification Page.

10.2.1 Personnel

Laboratory Technician: This procedure may be used by any laboratory technician who is familiar with the NCCA Quality Assurance Project Plan, and this procedure in the NCCA Laboratory Operations Manual.

10.2.2 Equipment/Materials

The analytical method, selected by the laboratory, identifies the necessary equipment.

10.3 Sample Receipt

Because EPA initiates tracking procedures designed to recover any missing shipment, the laboratory personnel responsible for tracking samples must start the following login steps within 24 clock hours of receiving a delivery.

- 1. Report receipt of samples in the NARS IM sample tracking system (within 24 clock hours). Alternatively, for shipments with a large number of samples, the laboratory may email a spreadsheet with the sample login and sample condition information to NARS-IM (see Chapter 2 for contact information).
 - 2. Inspect each sample THE SAME DAY THEY ARE RECEIVED:
 - a. Verify that the sample IDs in the shipment match those recorded on the:
 - i. Chain of custody forms when the batching laboratory sends the samples to the microcystins laboratory; or
 - ii. Sample tracking form if the field crew sends the shipment directly to the State laboratory.
 - b. Record the information in Table 10.1 into NARS IM, including the Condition Code for each sample:
 - i. OK: Sample is in good condition
 - ii. C: Sample container was cracked
 - iii. L: Sample container is leaking
 - iv. ML: Sample label is missing
 - v. VT: Volume not sufficient for testing
 - vi. W: Sample is warm ($>8^{\circ}$), record the temperature in the comment field, and perform the assay
 - vii. Q: other quality concerns, not identified above.
 - c. If any sample is damaged or missing, contact the EPA HQ Laboratory Review Coordinator to discuss whether the sample can be analyzed. (See contact information in Chapter 2 of the Manual).
 - 3. Store samples in the freezer until sample preparation begins.
 - 4. Maintain the chain of custody or sample tracking forms with the samples.

Table 10.1 Fish Tissue Plugs Login: Required Data Elements

FIELD	FORMAT	DESCRIPTION
LAB ID	text	Name or abbreviation for QC laboratory
DATE RECEIVED	MMDDYY	Date sample was received by lab
SITE ID	text	NCCA site id as used on sample label
VISIT NUMBER	numeric	Sequential visits to site (1 or 2)
SAMPLE ID	numeric	Sample id as used on field sheet (on sample label)
DATE	MMDDYY	Date sample was collected
COLLECTED		
CONDITION	text	Condition codes describing the condition of the
CODE		sample upon arrival at the laboratory.

FIELD	FORMAT	DESCRIPTION	
		Flag	Definition
		OK	Sample is in good condition
		C	Sample container is cracked
		L	Sample or container is leaking
		ML	Sample label is missing
		VT Volume or mass not sufficient for	
		testing (VT)	
		W Sample is warm (>8°)	
		Q Other quality concerns, not identified	
			above
CONDITION	text	Comments about the condition of the sample. If	
COMMENT		the condition code='W' then provide the	
		temperature	

10.4 Quality Measures

This section describes the quality assurance and quality control measures used to ensure that the data will meet NCCA's requirements. Tables 10.2 and 10.3 provide a summary of the measurement data quality objectives and quality control requirements.

10.4.1 Assistance Visits

Assistance visits are intended to familiarize EPA with actual procedures being implemented by different laboratories; and to ensure a clear and consistent understanding of procedures and activities by both EPA and the laboratories. If EPA decides to conduct an assistance visit, a qualified EPA scientist or contractor will administer a checklist based upon the steps described in this chapter.

10.4.2 QC Samples

Once or twice during the performance period, the External QC Coordinator will provide one or two identical sets of QC samples to all participating laboratories. Each laboratory will run the QC samples following the same procedures used for the other samples. The External QC Coordinator will compare the results to the expected value to determine whether the values are within expected ranges. The contractor shall analyze the external QC samples using the same procedures as those for the field samples.

Table 10.2 Measurement data quality objectives

Variable or Measurement	MDL	Quantitation Limit
Mercury	0.47 ng/g	5.0 ng/g

Table 10.3 Quality Control

Table 10.3 Quality Contr Activity	Evaluation/Acceptance Criteria	Corrective Action
Demonstrate competency for analyzing fish samples to meet the performance measures	Demonstration of past experience with fish tissue samples in applying the laboratory SOP in achieving the method detection limit	EPA will not approve any laboratory for NCCA sample processing if the laboratory cannot demonstrate competency. In other words, EPA will select another laboratory that can demonstrate competency for its NCCA samples.
Check condition of sample when it arrives.	Sample issues, such as punctures or rips in wrapping; missing label; temperature; adherence to holding time requirements; sufficient volume for test. All samples should arrive at the laboratory frozen.	Assign an appropriate condition code.
Store sample appropriately. While stored at the laboratory, the sample must be kept at a maximum temperature of -20° C.	Check the temperature of the freezer per laboratory's standard operating procedures.	Record temperature of sample upon arrival at the laboratory. If at any other time, samples are warmer than required, note temperature and duration in comment field.
Analyze sample within holding time	The test must be completed within the holding time (i.e., 1 year). If the original test fails, then the retest also must be conducted within the holding time.	Perform test, but note reason for performing test outside holding time. EPA expects that the laboratory will exercise every effort to perform tests before the holding time expires.
Maintain quality control specifications from selected method/SOP (that meets the measurement data quality objectives)	Data meet all QC specifications in the selected method/SOP.	If data do not meet all QC requirements, rerun sample or qualify data. If the lab believes the data are to be qualified without rerunning sample, the lab must consult with the EPA Survey QA Lead before proceeding.
Maintain the required MDL	Evaluate for each sample	If MDL could not be achieved, then provide dilution factor or QC code and explanation in the comment field.
Use consistent units for QC samples and field samples	Verify that all units are provided in wet weight units and consistently	If it is not possible to provide the results in the same units as most other analyses, then assign a QC code and describe the reason for different units in the comments field of the database.
Maintain completeness	Completeness objective is 95% for all parameters.	Contact the EPA Survey QA Lead immediately if issues affect

Activity	Evaluation/Acceptance Criteria	Corrective Action
		laboratory's ability to meet completeness objective.

11.0 FECAL INDICATOR: ENTEROCOCCI

Laboratory methods incorporated into EPA ORD Manuals/QAPP.

12.0 ALGAL TOXINS, RESEARCH INDICATOR

See Appendix C for USGS Organic Geochemistry Research Laboratory (OGRL) Standard Operating Procedures as modified for use in NCCA 2015 relating to the Algal Toxins Research Indicator.

- Appendix C.1 OGRL-SOP-5400 (as modified for use in NCCA 2015): Analysis of Cyanotoxins and Algal Toxins in Fresh and Marine Surface Water, Accumulations, and Blooms (Internal Standard Calibration of Standard Addition) – LCTX
- Appendix C.2 OGRL-SOP-4520: Sequential Freeze/Thaw Cell-Lysis Procedure for Total and Dissolved Algal Toxin Analysis of Water Samples
- Appendix C.3 OGRL-2010: Data and Information Backup for all OGRL Instruments

APPENDIX A: LABORATORY REMOTE EVALUATION FORMS

APPENDIX A: LABORATORY REMOTE EVALUATION FORMS

Email the completed and signed forms to Kendra Forde (forde.kendra@epa.gov). Questions: Contact Kendra Forde at forde.kendra@epa.gov or 202-566-0417.

same parameters/methods.

NCCA 2015 Document Request Form – Chemistry Laboratories

EPA and its state and tribal partners will conduct the 2015 National Coastal Condition Assessment. NCCA is a survey of the nation's coastal waters and Great Lakes. It is designed to provide statistically valid regional and national estimates of the condition of coastal waters and the Great Lakes. Consistent sampling and analytical procedures ensure that the results can be compared across the country.

As part of the 2015 NCCA, the Quality Assurance Team has been requested to conduct a technical assessment to verify quality control practices in your laboratory and its ability to perform chemistry analyses under this project. Our review will be assessing your laboratory's ability to receive, store, prepare, analyze, and report sample data generated under EPA's 2015 NCCA.

The first step of this assessment process will involve the review of your laboratory's certification and/or documentation. Subsequent actions may include (if needed): reconciliation exercises and/or a site visit. All labs will need to complete the following forms:

All laboratories will be required to complete the following forms and check the specific parameter in which your laboratory will be conducting an analysis for the 2015 NCCA:

□ Wat	er Chemistry and chlorophyll a (all of the analytes identified in the LOM and QAPP)
☐ Micı	rocystin
☐ Mere	cury in Fish Tissue Plugs
☐ Sedi	ment Chemistry
☐ Grai	n Size
☐ Tota	l Organic Carbon (TOC)
If your lab indicator:	has been previously approved within the last 5 years for the water chemistry
	gnature on the attached Laboratory Signature Form indicates that your laboratory
`	follow the quality assurance protocols required for chemistry labs conducting
anal	yses for the 2015 NCCA.
☐ A si	gnature on the Quality Assurance Project Plan (QAPP) and the Laboratory
Ope	rations Manual (LOM) Signature Form indicates that you will follow both the QAPP
and	the LOM.
	not been approved within the last 5 years through the laboratory verification
-	the water chemistry indicator, in order for us to determine your ability to
	as a laboratory in the NCCA, we are requesting that you submit the following
	(if available) for review: Immentation of a successful quality assurance audit from a prior National Aquatic
	ource Survey (NARS) that occurred within the last 5 years.
	umentation showing participation in a previous NARS for Water Chemistry for the
	anichtation showing participation in a previous maiss for water Chellistry for the

Additionally, we request that all labs provide the following information in support of your capabilities, (these materials are required if neither of the two items above are provided):
☐ A copy of your laboratory's <i>accreditations and certifications</i> if applicable (i.e. NELAC,
ISO, state certifications, NABS, etc.).
☐ An updated copy of your laboratory's <i>QAPP</i> and Laboratory Quality Assurance Manuals
☐ Standard Operating Procedures (SOPs) for your laboratory for each analysis to be
performed (if not covered in 2015 NCCA LOM).
☐ Documentation attesting to experience running all analytes for the 2015 NCCA, including
chlorophyll a.

APPENDIX A: LABORATORY REMOTE EVALUATION FORMS

Laboratory Signature Form – Chemistry Laboratories

I	certify that the laboratory,		
located in	, will abide by the following		
standards in performing the follo	owing data analysis and reporting for the 2015		
National Coastal Condition Asse	essment (NCCA).		
This applies to the	chemistry indicator.		

- 1.) Use procedures identified in the 2015 NCCA Laboratory Operations Manual (or equivalent). If using equivalent procedures, please provide the procedures and obtain approval from EPA.
- 2.) Read and abide by the 2015 NCCA Quality Assurance Project Plan (QAPP) and related Standard Operating Procedures (SOPs).
- 3.) Have an organized IT tracking system in place for recording sample tracking and analysis data.
- 4.) Provide Quality Control (QC) data for internal QC check, on a quarterly basis.
- 5.) Provide data using the template provided on the NARS Sharefile.
- 6.) Provide data results in a timely manner. This will vary with the type of analysis and the number of samples to be processed. Sample data must be received no later than May 1, 2016 or as otherwise negotiated with EPA.
- 7.) Participate in a laboratory technical assessment or audit if requested by EPA NCCA staff (this may be a conference call or on-site audit).
- 8.) Agree to analyze for all parameters specified in the LOM for the appropriate indicator(s) identified above, including Chlorophyll-*a*, for water chemistry.

Signature	Date

EPA and its state and tribal partners will conduct the 2015 National Coastal Condition Assessment. NCCA is a survey of the nation's coastal waters and Great Lakes. It is designed to provide statistically valid regional and national estimates of the condition of coastal waters and the Great Lakes. Consistent sampling and analytical procedures ensure that the results can be compared across the country.

As part of the 2015 NCCCA, the Quality Assurance Team has been requested to conduct a technical assessment to verify quality control practices in your laboratory and its ability to perform biology analyses under this project. Our review will be assessing your laboratory's ability to receive, store, prepare, analyze, and report sample data generated under EPA's 2015 NCCA.

The first step of this assessment process will involve the review of your laboratory's certification and/or documentation. Subsequent actions may include (if needed): reconciliation exercises and/or a site visit.

and/or a site visit.
All laboratories will be required to complete the following forms and check the specific parameter in which your laboratory will be conducting an analysis for the 2015 NCCA:
☐ Mercury in Fish Plugs
☐ Benthic Macroinvertabrates
☐ Sediment Toxicity
If your laboratory has been previously approved within the last 5 years for the specific
parameters:
☐ A <i>signature</i> on the attached Laboratory Signature Form indicates that your laboratory
will follow the quality assurance protocols required for biology laboratories conducting analyses for the 2015 NCCA.
☐ A signature on the Quality Assurance Project Plan (QAPP) and the Laboratory
Operations Manual (LOM) Signature Form indicates you will follow both the QAPP and the LOM.
If you have not been approved within the last 5 years through the laboratory verification process for the specific parameters, in order for us to determine your ability to participate as a lab in the NCCA, we are requesting that you submit the following documents (if
available) for review:
☐ Documentation of a successful <i>quality assurance audit</i> from a prior National Aquatic
Resource Survey (NARS) that occurred within the last 5 years.
☐ Documentation showing participation in previous NARS for this particular indicator.
Additionally, we request that all labs provide the following information in support of your

capabilities, (these materials are required if neither of the two items above are provided):

\[\subseteq \text{ A copy of your laboratory's } \] accreditations and certifications if applicable (i.e. NELAC,

ISO, state certifications, NABS, etc.).

APPENDIX A: LABORATORY REMOTE EVALUATION FORMS

Documentation of NABS (or other) *certification* for the *taxonomists* performing analyses (if applicable).
 An updated copy of your Laboratory's *QAPP* and Laboratory Quality Assurance Manuals.
 Standard Operating Procedures (SOPs) for your lab for each analysis to be performed (if not covered in 2015 NCCA LOM).

Laboratory Signature Form – Biology Laboratories

I certify the	at the laboratory
located in	, will abide by the following standards in
performing biology data analysis and reporting fo	or the 2015 National Coastal Condition
Assessment (NCAA).	
This applies to the	biological indicator.
Use procedures identified in the 2015 NCCA Lab equivalent procedures, please provide the procedures (Read and abide by the 2015 NCCA Quality Assurance (SOPs). Have an organized IT tracking system in place for Use taxonomic standards outlined in the 2015 NC Participate in taxonomic reconciliation exercises include conference calls and other laboratory reviperovide Quality Control (QC) data for internal QC basis. Provide data using the template provided on the New Provide data results in a timely manner. This will of samples to be processed. Sample data must be otherwise negotiated with EPA. Samples results for LOM and QAPP must be provided to EPA prior to take place. Participate in a Laboratory technical assessment of may be a conference call or on-site audit). Agree to utilize taxonomic nomenclature and hier	ures and obtain approval from EPA. rance Project Plan (QAPP) and related Standard or recording sample tracking and analysis data. CCA Laboratory Operations Manual. during the field and data analysis season, which iews. C checks, including for sorting, on a monthly NARS Sharefile. I vary with the type of analysis and the number or received no later than May 1, 2016 or as for independent taxonomic QC described in the to final datasets to allow for reconciliation to or audit if requested by EPA NCCA staff (this
Signature	Date

APPENDIX B: TARGET FISH SPECIES FOR WHOLE FISH ANALYSES

Table B.1 Northeast region primary and secondary marine target species - whole body fish tissue collection (Ecofish)

NORTHEAST REGION PRIMARY ECOFISH TARGET SPECIES			
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*
Ictaluridae	Ameiurus catus	White catfish	Primary
ictaturidae	Ictalurus punctatus	Channel catfish	Primary
Moronidae	Morone americana	White perch	Primary
Paralichthyidae	Paralichthys dentatus	Summer flounder	Primary
Pleuronectidae	Pseudopleuronectes americanus	Winter flounder	Primary
Sciaenidae	Cynoscion regalis	Gray weakfish	Primary
Sciaenidae	Sciaenops ocellatus	Red drum	Primary
Sparidae	Stenotomus chrysops	Scup	Primary
NOR	THEAST REGION SECONDARY	Y ECOFISH TARGET SPE	CIES
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*
Achiridae	Trinectes maculatus	Hogchoaker	
Anguillidae	Anguilla rostrata	American eel	Secondary
Atherinopsidae	Menidia menidia	Atlantic silverside	
Batrachoididae	Opsanus tau	Oyster toadfish	
Ephippidae	Chaetodipterus faber	Atlantic spadefish	
Moronidae	Morone saxatilis	Rock fish	Secondary
Mugulidae	Mugil cephalus	Black mullet	
Pomatomidae	Pomatomus saltatrix	Bluefish	Secondary
Sciaenidae	Bairdiella chrysoura	Silver perch	
Sciaenidae	Menticirrhus saxatilis	Northern kingfish	
	Centropristis striata	Black sea bass	
Serranidae	Centropristis striata	Brack sea cass	
Serranidae Triakidae	Mustelus canis	Smooth dogfish	

^{*} Indicates whether species also occurs in the primary or secondary fish plug list

Table B.2 Southeast region primary and secondary marine target species - whole body fish tissue collection (Ecofish)

SOUTHEAST REGION PRIMARY ECOFISH TARGET SPECIES				
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*	
Ariidae	Ariopsis felis	Hardhead sea catfish	Primary	
Affidae	Bagre marinus	Gafftopsail sea catfish	Primary	
	Paralichthys albigutta	Gulf flounder	Primary	
Paralichthyidae	Paralichthys dentatus	Summer flounder	Primary	
	Paralichthys lethostigma	Southern flounder	Primary	
	Cynoscion arenarius	Sand weakfish (or seatrout)	Primary	
S : :1	Cynoscion nebulosus	Speckled trout	Primary	
Sciaenidae	Cynoscion regalis	Gray weakfish	Primary	
	Leiostomus xanthurus	Spot croaker	Primary	
Sparidae	Lagodon rhomboides	Pinfish		
SOUTHEAST REGION SECONDARY ECOFISH TARGET SPECIES				
FAMILY	FAMILY SCIENTIFIC NAME COMMON NAME FISH PLUG LIST*			
Cichlidae	Tilapia mariae	Spotted tilapia		
Haemulidae	Haemulon aurolineatum	Tomtate		
C-::	Bairdiella chrysoura	Silver perch		
Sciaenidae	Menticirrhus americanus	Southern kingfish		
Serranidae	Centropristis striata	Black sea bass		

^{*} Indicates whether species also occurs in the primary or secondary fish plug list

Table B.3 Gulf region primary and secondary marine target species - whole body fish tissue collection (Ecofish)

GULF REGION PRIMARY ECOFISH TARGET SPECIES				
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*	
Ariidae	Ariopsis felis	Hardhead sea catfish	Primary	
Arnuae	Bagre marinus	Gafftopsail sea catfish	Primary	
	Paralichthys albigutta	Gulf flounder	Primary	
Paralichthyidae	Paralichthys dentatus	Summer flounder	Primary	
	Paralichthys lethostigma	Southern flounder	Primary	
	Cynoscion arenarius	Sand weakfish (or seatrout)	Primary	
	Cynoscion nebulosus	Speckled trout	Primary	
Sciaenidae	Cynoscion regalis	Gray weakfish	Primary	
Sciaenidae	Leiostomus xanthurus	Spot croaker	Primary	
	Micropogonias undulatus	Atlantic croaker	Primary	
	Sciaenops ocellatus	Red drum	Primary	
Sparidae	Lagodon rhomboides	Pinfish		
	GULF REGION SECONDARY	ECOFISH TARGET SPECIES		
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*	
C: 1	Caranx hippos	Crevalle jack		
Carangidae	Chloroscombrus chrysurus	Atlantic bumper		
Diodontidae	Chilomycterus schoepfii	Burrfish		
Gerreidae	Eucinostomus gula	Silver jenny		
Haemulidae	Orthopristis chrysoptera	Pigfish		
Ictaluridae	Ictalurus furcatus	Blue catfish		
Lepisosteidae	Lepisosteus oculatus	Spotted gar		
Lutjanidae	Lutjanus griseus	Gray snapper		
Sciaenidae	Pogonias cromis	Black drum		
Serranidae	Diplectrum formosum	Sand perch		
Triglidae	Prionotus scitulus	Leopard searobin		

^{*} Indicates whether species also occurs in the primary or secondary fish plug list

 $Table \ B.4 \ Western \ region \ primary \ and \ secondary \ marine \ target \ species \ - \ whole \ body \ fish \ tissue \ collection \ (Ecofish)$

	WESTERN REGION PRIMARY E	COFISH TARGET SPECIES	
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*
Atherinopsidae	Atherinops affinis	Topsmelt silverside	
Cottidae	Leptocottus armatus	Pacific staghorn sculpin	Primary
Conidae	Oligocottus rimensis	Saddleback sculpin	
Cynoglossidae	Symphurus atricaudus	California tonguefish	
Embiotocidae	Cymatogaster aggregata	Shiner perch	Primary
Embiotocidae	Embiotoca lateralis	Striped seaperch	Primary
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback	
	Paralichthys californicus	California flounder	Primary
Paralichthyidae	Citharichthys sordidus	Pacific sanddab	Primary
	Citharichthys stigmaeus	Speckled sanddab	
	Isopsetta isolepis	Butter sole	
Pleuronectidae	Parophrys vetulus	English sole	Primary
Pieuronecudae	Psettichthys melanostictus	Pacific sand sole	
	Platichthys stellatus	Starry flounder	Primary
Sciaenidae	Genyonemus lineatus	White croaker	Primary
Serranidae	Paralabrax nebulifer	Barred sand bass	Primary
Serramuae	Paralabrax maculatofasciatus	Spotted sand bass	Primary
	WESTERN REGION SECONDARY	ECOFISH TARGET SPECIES	
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*
Echinodermata/	Tripneustes gratilla	Collector urchin	
Toxopneustidae	(Hawaii ONLY)	Collector urchin	
Batrachoididae	Porichthys notatus	Plainfin midshipman	
Datracholdidae	Porichthys myriaster	Specklefin midshipman	

Chimaeridae	Hydrolagus colliei	Spotted ratfish	
Embiotocidae	Amphistichus argenteus	Barred surfperch	Secondary
Paralichthyidae	Xystreurys liolepis	Fantail sole	
	Pleuronichthys guttulatus	Diamond turbot	Secondary
Pleuronectidae	Microstomus pacificus	Dover sole	Secondary
	Lepidopsetta bilineata	Rock sole	
	Lyopsetta exilis	Slender sole	
Sciaenidae	Umbrina roncador	Yellowfin croaker	

^{*} Indicates whether species also occurs in the primary or secondary fish plug list.

Table B.5 Great Lakes primary and secondary target species - whole body fish tissue collection (Ecofish)

GREAT LAKES PRIMARY ECOFISH TARGET SPECIES				
FAMILY	SCIENTIFIC NAME	COMMON NAME	FISH PLUG LIST*	
Catostomidae	Moxostoma macrolepidotum	Shorthead redhorse	Primary	
	Ambloplites rupestris	Rock bass	Primary	
	Lepomis gibbosus	Pumpkinseed	Primary	
Centrarchidae	Lepomis macrochirus	Bluegill	Primary	
Centrarchidae	Micropterus dolomieu	Smallmouth bass	Primary	
	Pomoxis annularis	White crappie		
	Pomoxis nigromaculatus	Black crappie		
Cottidae	Cottus bairdii	Mottled sculpin	Primary Primary Primary Primary	
Cottidae	Cottus cognatus	Slimy sculpin		
	Couesius plumbeus	Lake chub		
Cyprinidae	Cyprinus carpio	Common carp	Primary	
	Pimephales notatus	Bluntnose minnow		
Esocidae	Esox lucius	Northern pike	Primary	
Esociuae	Esox masquinongy	Muskellunge		
Gasterosteidae	Gasterosteus aculeatus	Three-spined stickleback		
3.1.1.1	Neogobius melanostomus	Round goby		
Gobiidae	Proterorhinus marmoratus	Tubenose goby		
	Ameiurus nebulosus	Brown bullhead	Primary	
Ctaluridae	Ictalurus punctatus	Channel catfish		
	Noturus flavus	Stonecat		
Gadidae	Lota lota	Burbot	Primary	
	Morone americana	White perch		
Moronidae	Morone chrysops	White bass		
Osmeridae	Osmerus mordax	American/ rainbow smelt		
	Gymnocephalus cernuus	Ruffe		
	Perca flavescens	Yellow perch	Primary	
Percidae	Percina caprodes	Logperch	,	
	Sander canadensis	Sauger		
	Sander vitreus	Walleye	Primary	
Percopsidae	Percopsis omiscomaycus	Trout-perch	T TITLE)	
	Coregonus artedi	Cisco/ lake herring		
	Coregonus clupeaformis	Lake whitefish	Primary	
	Oncorhynchus gorbuscha	Pink salmon		
Salmonidae	Oncorhynchus kisutch	Coho salmon	Primary	
	Oncorhynchus mykiss	Rainbow trout		
	Oncorhynchus tshawytscha	Chinook salmon		
	Salvelinus namaycush	Lake trout		
Sciaenidae	Aplodinotus grunniens	Freshwater drum		
	GREAT LAKES SECONDARY E			
FAMILY	SCIENTIFIC NAME	COMMON NAME		
	Catostomus catostomus	Longnose sucker		
Catostomidae	Catostomus commersonii	White sucker	Secondary	
5.0 0.00	Moxostoma anisurum	Silver redhorse	Secondary	
Centrarchidae	Micropterus salmoides	Largemouth bass		
	Alosa pseudoharengus	Alewife		
Clupeidae	Dorosoma cepedianum	American gizzard shad	+	
	Cyprinella spiloptera	Spotfin shiner		
Cyprinidae	Luxilus cornutus	Common shiner		
-ypi iiiuac		Sand shiner		
Esocidae	Notropis stramineus Esox niger	Chain pickerel		

NALYSES	
HOLE FISH	
TARGET FISH SPECIES FOR WHOLE FISH	
ET FISH SPE	
DIX B: TARG	
APPEN	

Fundulidae	Fundulus diaphanus	Banded killifish	
rundundae	Fundulus majalis	Striped killifish	
Ictaluridae	Ameiurus melas	Black bullhead	
	Prosopium cylindraceum	Round whitefish	
Salmonidae	Salmo trutta	Brown trout	Secondary
Samonidae	Salvelinus fontinalis	Brook trout	
	Salvelinus fontinalis x namaycush	Splake	

^{*} Indicates whether species also occurs in the primary or secondary fish plug list

APPENDIX C: ALGAL TOXINS RESEARCH INDICATOR STANDARD OPERATING

APPENDIX C: ALGAL TOXINS RESEARCH INDICATOR STANDARD OPERATING PROCEDURES

Appendix C.1

Title :	Analysis of Cyanotoxins and Algal Toxins in Fresh and Marine Surface Water, Accumulations, and Blooms (Internal	Identifier: OGRL-SOP-5400	Revision :	Effective Date: 8/31/2015
	Standard Calibration or Standard Addition) – LCTX (As modified for NCCA 2015)			

APPROVALS FOR USE			
Author's Name (Print):	Author's Signature:	Date:	
Keith A. Loftin		8/31/2015	
Project Director's Name (Print) Michael T. Meyer	Project Director's Signature	Date: 8/31/2015	
Organic Geochemistry Research Laboratory (OGRL)			

Table of Contents

1.0	SCOPE AND APPLICATION 146	
2.0	TRAINING 146	
3.0	DEFINITIONS 147	
4.0	PERSONNEL HEALTH AND SAFETY 148	
5.0	APPARATUS AND INSTRUMENTATION	148
6.0	CHEMICALS AND REAGENTS 149	
7.0	PROCEDURE 149	
8.0	REFERENCES 154	
9.0	RECORDS AND ARCHIVAL 155	
10.0	QUALITY CONTROL 155	
11.0	ATTACHMENTS 155	
12.0	REVISIONS TO THIS SOP 155	

STANDARD OPERATING PROCEDURE

Analysis of Cyanotoxins and Algal Toxins in Fresh Surface Water, Accumulations, and Blooms (Standard Addition)

NOTE: Laboratory personnel may produce paper copies of this procedure printed from the controlled document file. However, it is their responsibility to ensure that they are trained on and utilizing the current version of this procedure. The procedure author may be contacted if text is unclear.

This is a direct inject analytical method developed for the separation, detection, and quantitation of cyanotoxins and algal toxins in fresh and marine surface water, and cyanobacterial accumulations and blooms by standard addition. Separation and detection of algal toxins is made using multiple reaction monitoring (MRM) mode of a liquid chromatography triple quadrupole mass spectrometer (LC/MS/MS). Quantitation is accomplished by either internal standard calibration curve or single point standard addition described in this SOP at a level equivalent to $1.0~\mu g/L$. Standard addition can be used exclusively or when matrix effects are greater than +/- 20% (28.3% RSD) of spiked concentration. Samples analyzed by this procedure at minimum should be filtered which would be analogous to a dissolved algal toxin concentration or lysed and filtered which would be analogous to a total algal toxin concentration.

1.0 SCOPE AND APPLICATION

- 1.1 This Standard Operating Procedure (SOP) describes the preparation, separation, detection, and quantitation for 14 cyanotoxins and algal toxins by liquid chromatography tandem mass spectrometry (LC/MS/MS) at the USGS Organic Geochemistry Research Laboratory (OGRL) in Lawrence, KS. The LCTX procedure applies to the following compounds in water:
 - anatoxin-a (ANAA), cylindrospermopsin (CYLS), domoic acid (DMAC), microcystin-HtYR (MCHtYR), microcystin-LA (MCLA), microcystin-LF (MCLF), microcystin-LR (MCLR), microcystin-LW (MCLW), microcystin-LY (MCLY), microcystin-RR (MCRR), microcystin-WR (MCWR), microcystin-YR, (MCYR), nodularin-R (NODR), and okadaic acid (OKAC). Simetone is used as an internal standard and L-phenylalanine is used to differentiate anatoxin-a from environmental phenylalanine since they have similar MRM transitions (isobaric compounds) and elute near each other chromatographically.
- 1.3 The minimum reporting limit (MRL) and minimum detection level (MDL) is matrix and compound dependent. However, the MRL to date has ranged from 0.10 μ g/L (0.10 ppb) to 0.30 μ g/L (0.30 ppb) based on a 100 μ L injection depending on toxin.

2.0 TRAINING

The Project Director is responsible for ensuring that all who perform the function(s) described in this SOP for the OGRL are familiar with the objectives of and properly trained in its procedures. In addition, lab technicians using this procedure must document that they have read and understand this procedure in their training folder.

3.0 DEFINITIONS

- 3.1 Liquid Chromatography (LC) An analytical instrument that relies on the interaction of an analyte with a solid stationary phase contained in a column and a liquid mobile phase as it passes through the analytical column (column) carrying the analyte.
- 3.2 Triple Quadrupole Mass Spectrometer (MS/MS)—An analyte detector that can determine the mass of selected fragments and fragments of fragments. This detector is typically used in conjunction with a chromatographic technique.
- 3.3 LC/MS/MS—A hyphenated technique where a liquid chromatograph is used for analyte separation is connected to a tandem mass spectrometer as the detector.
- 3.4 Chromatogram—The data that is acquired from the LC/MS/MS.
- 3.5 Analyte—The compound of interest.
- 3.6 Internal Standard— A standard (preferably an isotope labeled version of the analyte(s) of interest when possible) that is spiked into all samples, blanks and calibration samples. This compound should not be present in the environment and is used to correct for variation in analytical processes or techniques.
- 3.7 Reagent Water—treated water (18.2 M Ω /cm, < 1 ppb Total Organic Carbon (TOC)) generated by the laboratory system at the OGRL.
- 3.8 Stock Standard—a known concentration of an individual compound dissolved in a known volume of solvent. Target concentration is usually 100 µg/mL but can be greater if sufficient standard is available with adequate solubility.
- 3.9 LCTX Working Standard Mix— a reagent water spiked with a known concentration of all cyanotoxins and algal toxins that are determined by this method. This does not include the internal standard, simetone.
- 3.10 Analytical column--A stainless steel column containing a solid, stationary phase used to aid in separation on the LC.
- 3.11 Mobile phase—The solvent or combination of solvents that carries the analyte through the analytical column that aid in separation on the LC.
- 3.12 CAS#--Reference number assigned by Chemical Abstract Services to a chemical.
- 3.13 SOP—Standard operating procedure.
- 3.14 MeOH—Methanol, LC/MS grade or better.
- 3.15 ACN—Acetonitrile, LC/MS grade or better.
- 3.16 Formic Acid—Concentrated formic acid, usually 90% or greater.
- 3.17 THF-Tetrahydrofuran, analytical grade or better.
- 3.18 LCTX—an acronym for the liquid chromatography/triple quadrupole mass spectrometer method of cyanotoxins and algal toxins.
- 3.19 PPE---Personal Protective Equipment
- 3.20 Electrospray positive mode (ES +) —An ionization mode of positive polarity used by the tandem mass spectrometer to aid in fragmentation of positive ions.

- 3.21 Electrospray negative mode (ES -) —An ionization mode of negative polarity used by the tandem mass spectrometer to aid in fragmentation of negative ions.
- 3.22 Multiple Reaction Monitoring (MRM) The scan type used for detection and quantitation of a parent and corresponding daughter fragment of an analyte.
- 3.23 Processed Sample—For purposes of this SOP, this term means that a sample has at minimum been filtered (Dissolved Cyanotoxin Analysis) or lysed and filtered (Total Cyanotoxin Analysis).

4.0 PERSONNEL HEALTH AND SAFETY

- **Note:** This SOP is to be used in conjunction with an approved Chemical Hygiene Plan. Also, consult the Chemical Hygiene Plan for information on and use of all PPE including nitrile gloves, safety glasses, and a lab coat should be worn especially when making stock standard solutions.
- 4.1 Acetontrile, methanol, or tetrahydrofuran should not come in contact with skin or eyes, be inhaled, or be swallowed. Contact lenses should not be worn when working with these chemicals. Should contact occur, immediately wash with water. To prevent inhalation, use a fume hood with a suitable face velocity and cover containers before transporting. If a person breathes large amounts of any of these chemicals, move the exposed person to the fresh air at once. If any of these chemicals has been swallowed, get medical attention immediately by calling 911.
- 4.2 Care should be taken when working with THF, being a cyclic ether, there is concern for peroxide formation. **Do not evaporate THF to dryness!** THF is typically shipped with an inhibitor to prevent peroxide formation. There is no need to remove the inhibitor as part of processes conducted in this SOP. Use as is.
- 4.3 Cyanotoxins and algal toxins, by their very nature, are naturally occurring poisons that must be handled with care. The compounds covered in this SOP have a variety of indications when exposure occurs and relevant concentrations are not well defined for humans. However, in lieu of human acute and chronic toxicity information, mouse bioassays have been used to set suggested exposure thresholds. The World Health Organization has also suggested guidelines for some toxins with respect to drinking water and recreational exposure and US EPA has published health advisory thresholds in finished drinking water for anatoxin-a, cylindrospermopsin, and microcystin-LR.
- 4.4 Leaks may occur in fittings due to the high operating pressure of the LC. Safety goggles should be worn to protect eyes from splash.
- 4.5 The column compartment is hot and precautions should be taken before handling columns or touching the walls of column compartment.
- 4.6 The spray chamber of the MS/MS is very hot, with temperatures in excess of 650°C, and must be allowed to cool before touching.

5.0 APPARATUS AND INSTRUMENTATION

- 5.1 Analytical balance—capable of accurately weighing $0.0500 \text{ g} \pm 0.0001 \text{ g}$.
- 5.2 Top loading balance—capable of accurately weighting 5.0 g \pm 0.1 g

STANDARD OPERATING PROCEDURE

- 5.3 Auto pipettes--10-to 10,000-μL, variable-volume auto pipettes with disposable plastic tips (Rainin, Woburn, MA, or equivalent).
- 5.4 Mechanical vortex mixer.
- 5.5 Data acquisition system—computer and printer compatible with all systems.
- 5.6 Instrument Software LC/MS/MS software used for acquisition and data reduction supplied by LC/MS/MS manufacturer.

6.0 CHEMICALS AND REAGENTS

- 6.1 Mobile phase A, 0.1 % formic acid in reagent water.
- 6.2 Mobile phase B, 0.1 % formic acid in a mixture of 50/50 (v/v) MeOH to ACN.
- 6.3 Active and passive needle rinse solution for LC—Mobile phase B.
- 6.4 Stock solutions of analytes– See attachment A.
- 6.5 Stock internal standard solution, simetone, as received from Chem Services, inc. dissolved in methanol.
- An aqueous 5% tetrasodium ethylene diamine tetraacetic acid (EDTA) solution made in reagent water is added to samples to minimize metal chelation. Volume is dependent on data quality (e.g. higher metals content requires more EDTA.

7.0 PROCEDURE

Note: Deviations from SOPs must be recorded in an appropriate instrument or work log. Include the name of the person recording the deviation, date it occurred and type of deviations, and whether the deviation was corrected (if applicable).

7.1 Preparation of 100 µg/mL individual stock standard solutions of cyanotoxins and algal toxins.

- 7.1.1 It is critical that all work with concentrated standards be conducted in a properly functioning fume hood. Remove all other items from hood that are not necessary for the work of making the stock cyanotoxin and algal toxin standards prior to initiation of stock standard preparation. Place a sign on the hood before beginning work with toxins for other personnel to stay out of this hood until the sign is removed. The sign should read "Stay out until further notice! Cyanotoxin work in progress. Contact: "your name", office number, and phone number with questions. This will be in effect for 24 hours from the conclusion of toxin work with concentrated standards and decontamination of surfaces with 50 % aqueous ethanol solution or 50 % aqueous isopropanol solution. All materials including paper towels, gloves, pipettes, and used pipette tips should be left in the hood for 24 hours also before being bagged, tied off, and disposed in the dumpster. Pipettes can be wiped down with 50 % isopropanol or ethanol solutions.
- 7.1.2 When working with toxins always where nitrile gloves, appropriate safety glasses. A lab coat is recommended or wash your hands and arms with soap and water upon conclusion of work or at breaks.

- 7.1.3 The mass of toxin received from the distributor may be difficult to observe in the vial since standards usually only have 25 to 250 µg of material. This typically results in a thin film that is clear to offwhite. All solutions therefore must be initially made in the original vial. Target volume of stock standards is 0.25 to 1.0 mL with the appropriate solvent. See attachment A for individual stock standard concentration and the appropriate solvent or solvent mixture. Final individual stock standard solution storage can be in screw cap vials from supplier. For those standards arriving with crimp caps and septa the individual stock standard solutions will need to be transferred to separate screw cap LC/MS/MS grade vials.
- 7.1.4 Unless a certificate of analysis is available regarding standard purity assume 100 % purity for now. There are few certified reference materials available for these toxins and there is not an independent testing lab to confirm purity separate from the manufacturer. Aliquouts of standards will be evaluated for purity and the final concentrations will be corrected at that point. (Usually purity is corrected for when making the standards, but correction is not possible in this case since purity is unknown until measured).
- 7.1.5 Add appropriate volume of diluents as listed in Attachment A for a given mass of toxin and vortex capped vial for a couple of minutes. **Keep standards covered in the dark as much as possible when not working with them!** Allow standards to sit at room temperature in the dark for approximately 5 minutes and re-vortex capped vials for approximately 2 minutes. Keep standards at room temperature for 5 more minutes. Record the stock standard concentration, lot number from the manufacturer, name of the preparer and the date prepared in the working standards notebook.

7.2 Preparation of 100 µg/L LCTX Working Standard Mix.

- 7.2.1 Add 50 µL of each 100 µg/mL toxin standard to a labeled 123 mL amber glass bottle. Weigh in 49.3 g of reagent water to the bottle. Cap and invert bottle. (Note: Since this is a research method, the number of standards added to the mix may change over time. The mass of reagent water to add will decrease by the same volume as the total volume of toxin solution added.). Each working standard mix should have a lot number connected to the individual 100 µg/mL individual stock standards. The specific information should be recorded in the working standards notebook (i.e. LCTX-WSM-001).
- 7.2.2 Divide the 100 µg/L LCTX Working Standard Mix into subaliquouts by placing 1.5 mL of the 100 µg/L LCTX Working Standard Mix into labeled screw capped LC vials. Make 10 LC vials at a time since they will last for quite a while. Each vial label should be labeled with a lot number that ties it back to the original 100 µg/L LCTX Working Standard Mix (i.e. LCTX-WSM-001a). Keep the remainder of the 100 µg/L LCTX Working Standard Mix in the original bottle (7.2.1) and remove from freezer for use only when the 1.5 mL aliquots have been used up and make 10 more subaliquots. Store all 100 µg/L LCTX Working Standard Mixes in the appropriate standards freezer until use.
- 7.3 Preparation of the 1.23 mg/mL Stock Internal Standard Solution of Simetone.

- 7.3.1 Weigh 123 mg of Simetone (more if purity is not 100%) into 100mL of MeOH. Mix until simetone completely dissolved. Store in Stock Standards Freezer until needed.
- 7.4 Preparation of 1.23 mg/L Intermediate Internal Standard of Simetone.
 - 7.4.1 Dilute 1 mL of 1.23 mg/mL Stock Internal Standard Simetone Solution with 999 mL of MeOH. Mix and store in the freezer when not in use.
- 7.5 Preparation of 0.123 mg/L Working Internal Standard of Simetone.
 - 7.5.1 Dilute 10 mL of the 1.23 mg/L Intermediate Internal Standard of Simetone with 90 mL of reagent water. Mix and store in the freezer when not in use.
- 7.6 Preparation of LCTX Internal Standard (LCTX ISTD).
 - 7.6.1 Dilute 2.5 mL of the 0.123 mg/L Working Internal Standard with 2.5 mL of reagent water. Label as LCTX ISTD.
- 7.7 Preparation of Check Standards, Blanks, and Samples for LCTX Analytical Run.
 - 7.7.1 Obtain current LCTX run sheet from Project Management Office or off the computer in ResLab (OGRL Computer Network). Each analytical run should consist of the following: Check Standards (2)- 1.0 µg/L, Blanks after each Check Standard and every standard addition (SA) sample, and unspiked (A) and spiked samples (SA-Standard Addition), and duplicate unspiked and spiked samples (at least 1 duplicate for every 10 samples). There should be 15 to 25 samples per analytical run. For every sample there will be two vials—one containing sample and LCTX ISTD solution and the other containing sample and LCTX SA solution.
 - 7.7.2 Make labels for all Check Standards, Blanks, and Samples as indicated by the run sheet. Remember to make labels for the standard addition samples. All labels except for the Blanks go on microvials. Only two Blank labels will be needed per analytical run and those labels will be placed on 2 mL screw capped LC vials. Labels should have the sample name, LCTX Run number, date of preparation, and initials of personnel preparing the analytical run. Initials should be cross-walked to full names in log book.
 - 7.7.3 Apply labels to all vials and organize by analytical run.

7.7.4 Preparation of Blanks

7.7.4.1 Place 2 mL of reagent water into a labeled 2 mL screw capped LC vial. There should be a total of two vials with Blank solution per analytical run.

7.7.5 Preparation of Samples

- 7.7.5.1 Invert all samples 3 times before pipetting.
- 7.7.5.2 Pipette 1.5 mL of filtered sample into a glass LC/MS/MS vial and cap.
- 7.8 Make sure the Source of the MS/MS is clean. If source is not cleaned and you are not trained ask your supervisor for training.
- 7.9 Mobile Phase Preparation for LC
 - 7.9.1 Preparation of Mobile Phase A: 0.1 % Formic acid in reagent water.

- 7.9.1.1 Add 2 mL of concentrated formic acid to 2 L of reagent water. Cap and invert 3 times. pH will be approximately 2.6 to 2.7 typically.
- 7.9.1.2 Place on channel A of the LC.
- 7.9.2 Preparation of Mobile Phase B: 0.1 % Formic acid in 50/50 Methanol/Acetonitrile.
 - 7.9.2.1 Add 2 mL of concentrated formic acid to 1 L of LC/MS/MS grade or better methanol and 1 L of LC/MS/MS grade or better acetonitrile. Cap and invert 3 times.
 - 7.9.2.2 Place on channel B of the LC.
- 7.9.3 Preparation of Mobile Phase C: Reagent Water.
 - 7.9.3.1 Add 2 L of reagent water into a 2 L mobile phase bottle.
 - 7.9.3.2 Place on channel C of the LC.
- 7.9.4 Preparation of Mobile Phase D: 50/50 Methanol/Acetonitrile.
 - 7.9.4.1 Add 1 L of LC/MS/MS grade or better methanol to 1 L of LC/MS/MS grade or better acetonitrile in a 2 L mobile phase bottle.
 - 7.9.4.2 Place on channel D of the LC.
- 7.10 Make sure all frits, guard cartridge, and analytical column are in place for LCTX. Analytical column is a Waters Corp. Atlantis T3 analytical column. A Waters Corp. Atlantis dC18 analytical column can also be substituted resulting in slight changes in analyte retention time. The guard cartridge is a Waters Atlantis dC18 cartridge.
- 7.11 Prime the LC pumps by opening the purge valves, setting flow rate at 2 to 5 mL/min proportion at 25% for each of the 4 mobile phases. Let prime for at least 5 minutes. Change flow to 95% A and 5% B to reflect starting conditions of separation for 5 minutes. When priming is finished, reduce flowrate back to initial flowrate conditions of LCTX method (usually around 0.7 mL/min), and close purge valve LC pump.
- 7.12 This is a performance based method and is suitable for any bioinert LC/MS/MS system as long as quality control criteria are met. SOP is written currently for an Agilent 1260 bioinert LC/6460 triple quadrupole mass spectrometer with a jet stream source attached. Multimode sources are suitable as well when used in electrospray mode only. The LCTX method is adapted from Loftin et al., 2008 and Graham et al., 2010.
 - 7.12.1 Defragment partitioned hard drive of instrument computer weekly.
 - 7.12.2 Open Agilent MassHunter Acquisition software.
 - 7.12.3 Open the current LCTX Project
 - 7.12.4 Open an old LCTX worklist from a previous run and resave with the current analytical run number and date.
 - 7.12.5 Enter the correct sample names and save the batch (see appendix B for example layout). Check that the correct acquisition method is being used.
 - 7.12.6 Recheck worklist for typographical errors. Resave if any changes.

7.12.7 Place vials in appropriate position in autosampler tray (as shown in appendix B unless project scientists requests a change). Blanks go in vial 1 and vial 2 slots, internal standard solution in vial 3, and standard addition solution is $100~\mu g/L$ calibration standard. Place QC, calibration standards, and samples in order in well plate trays starting with P1-A1 according to worklist.

7.13 Equilibration of LC/MS/MS

- 7.13.1 Open the LCTX method.
- 7.13.2 Start the worklist in multiple vial mode.
- 7.13.3 Run the first 3 injections of the worklist as 1 μ g/L control standards. If using a new column, then may need to run up to 6 injections to equilibrate column.
- 7.13.4 Evaluate retention time stability, peak shape and abundance. Values should be within 60 seconds, consistent peak shape based on historical data, and within 30% of historical abundance, respectively.
- 7.13.5 If data is not consistent, then begin troubleshooting which may include:
 - 7.13.5.1 Check that LC backpressure is within typical ranges.
 - 7.13.5.2 Make sure purge valve is closed.
 - 7.13.5.3 Check for leaks.
 - 7.13.5.4 Check that spray from electrospray needle is positioned correctly and has a concentric spray.
 - 7.13.5.5 Infuse a standard in the MS/MS to check MS/MS performance.
 - 7.13.5.6 Notification of supervisor as needed and remedial action to correct instrument performance.

7.14 Submission of Worklist.

- 7.14.1 If control standards data looks comparable between injections, then proceed with worklist. Control standards should be within +/- 20% of expected concentration or abundance.
- 7.14.2 Verify periodically that internal standard, blanks, controls, and standard addition samples look appropriate. Confirm that peak shapes and retention times are consistent compared to historical analysis runs (e.g. retention times within 1 minute of historical value unless method needs to be modified with approval from supervisor. If not, remedy the problem following the troubleshooting steps in Section 7.13.5.

7.15 Post Run Instrument Clean-Up.

- 7.15.1 The last line of the worklist should include a blank injection using the LCTX clean method. This will use mobile phases C and D to clean any residual traces due to sample matrix out of the column under the clean conditions which are at a LC higher temperature. No acid modifier is added to mobile phases C and D for proper column storage.
- 7.16 Data Reduction with Agilent MassHunter Quantitation software

- 7.16.1 Once data has been acquired, open the Agilent MassHunter Quantitation software.
- 7.16.2 Create a new Batch and load newly acquired data from worklist into the batch.
- 7.16.3 Load the appropriate LCTX quant method.
- 7.16.4 Edit the LCTX quant method to update retention times and MRM ratios as necessary using a mid to upper range calibration standard. Check integration of all compounds.
- 7.16.5 Save method with batch folder and process calibration data. Use linear or quadratic curve fits. 1/x weighting is permissible. R² values should be 0.98 or greater. Save when done.
- 7.16.6 Quantitate all samples
- 7.16.7 Evaluate calibration data, make sure blanks are blank below the minimum reporting level (MRL) of the method, duplicates and control standards are within +/- 20% (28.3% RSD) of expected concentration or abundance.
- 7.16.8 For Standard Addition Calculations, use the standard addition LCTX quant method or export the results table into a spreadsheet program such as Microsoft Excel.
- 7.16.9 When quantitation is complete, have a supervisory chemist provide quality control of the data set as described in Section 10.
- 7.16.10 Reanalysis of samples is necessary when quality control or instrument performance renders the data outside of acceptable QC metrics as established in Section 10 of the SOP, Table 5.11.1 of the NCCA 2015 QAPP and best professional scientific judgement by a supervisory chemist. When using standard addition for quantitation, check if concentrations prior to correction for dilution are greater than 2.5 µg/L. If so, dilute the original sample and reanalyze by standard addition as described in this SOP.
- 7.16.11 If any samples exhibit data quality issues confer with a supervisory chemist for evaluation of problem.
- 7.16.12 When data quality is deemed acceptable then store an electronic data analysis report for record keeping.
- 7.17 Refer to the 2010 OGRL SOP on backing up data for data archival.

8.0 REFERENCES

- 8.1 2010 Backing up Data
- 8.2 Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Chorus, I.; Bartram, J.; Eds., Spon Press: London, 1999.
- 8.3 Graham, J.L., Loftin, K.L., Meyer, M.T., Ziegler, A.C. 2010. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States, *Environ. Sci. Technol.*, 44, 7361-7368.
- 8.4 Loftin, K.A., Meyer, M.T., Rubio, F., Kamp, L., Humphries, E., Whereat, E. 2008. Comparison of two cell lysis procedures for recovery of microcystins in water samples from

Silver Lake in Dover, Delaware, with microcystin producing cyanobacterial accumulations. USGS OFR 2008-1341, 9 p.

9.0 RECORDS AND ARCHIVAL

The person performing this SOP is responsible for submitting the following records to be archived to the Project Documents Archival manager or stored in the appropriate location in the laboratory (usually next to instrument computer).

- 9.1 Instrument Maintenance Log
- 9.2 Worklist Log
- 9.3 Tune files Log
- 9.4 Computer data files for each sample and control are stored, copied, backed up, and archived according to OGRL-SOP-2010.

10.0 QUALITY CONTROL

- 10.1 Supervisory chemist visually reviews QC data for each run or uses software to identify excursions from permissible results described in Sections 7.16.5 and 7.16.7, and MRLs listed in Table 5.11.1 of the NCCA 2015 QAPP.
 - 10.1.1 Analytical control is maintained by the use of carryover blanks (COB), laboratory duplicates (DUP), and Control Standards (CCV).
 - 10.1.2 Standard addition (spiked sample duplicate) results provide checks for and qualify matrix dependent shifts in retention times and Multiple Reaction Monitoring (MRM) ratios, and provide a basis for sample matrix-corrected results when responses deviate from expected (e.g. +/- 20% or 28.3% RSD).
 - 10.1.3 Target analytes will be quantitated by internal standard curve unless matrix effects are greater than +/- 20%. Larger deviations will trigger reanalysis and quantitation by standard addition.

11.0 ATTACHMENTS

- 11.1 Appendix A: Analyte List
- 11.2 Appendix B: Instrument Worklist Example
- 11.3 Appendix C: LCTX LC/MS/MS method
- 11.4 Appendix D: LCTX Clean LC/MS/MS method

12.0 REVISIONS TO THIS SOP

- Rev. 1 9/29/2008 Initial version
- Rev. 2 8/31/2015
- Appendix A: Analyte List

CEDURE
G PROC
TING
A
OPEF
4RD
ND/
STA

Toxin	Туре	CAS#	Stock Concentration (µg/mL)	Diluent (solvent)
anatoxin-a	Cyanotoxin	64285-06-9	100	Water
cylindrospermopsin	Cyanotoxin	143545-90-8	100	Methanol
domoic Acid	Algal toxin	14277-97-5	100	Methanol
microcystin-HiLR	Cyanotoxin	NA	100	Methanol
microcystin-HtYR	Cyanotoxin	NA	100	Methanol
microcystin-LA	Cyanotoxin	96180-79-9	100	Methanol
microcystin-LF	Cyanotoxin	154037-70-4	100	Methanol
microcystin-LR	Cyanotoxin	101043-37-2	100	Methanol
microcystin-LW	Cyanotoxin	111755-37-4	100	Methanol
microcystin-RR	Cyanotoxin	111755-37-4	100	Methanol
microcystin-WR	Cyanotoxin	NA	100	Methanol
microcystin-YR	Cyanotoxin	101043-37-2	100	Methanol
nodularin-R	Cyanotoxin	118399-22-7	100	Methanol
okadaic acid	Algal toxin	78111-17-8	100	Methanol
L-phenylalanine	Amino acid	63-91-2	100	Water

STANDARD OPERATING PROCEDURE

Appendix B: Example Instrument Run Sheet Layout

Worklist Number	Sample ID	Sample Type	Injection Volume (µL)	Standard
1	1 μg/L LCTX Standard Mix a	Column Equilibration Sample	1	100 μg/L LCTX Standard Mix
2	1 μg/L LCTX Standard Mix b	Column Equilibration Sample	1	100 μg/L LCTX Standard Mix
3	1 μg/L LCTX Standard Mix c	Column Equilibration Sample	1	100 μg/L LCTX Standard Mix
4	Blank 1	Instrument Blank	0	Blank
5	0.001 µg/L LCTX Standard Mix	Internal Standard Curve Calibration	100	0.10 μg/L LCTX Standard Mix
6	0.010 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	1	1 μg/L LCTX Standard Mix
7	0.030 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	3	1 μg/L LCTX Standard Mix
8	0.050 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	5	1 μg/L LCTX Standard Mix
9	0.080 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	8	1 μg/L LCTX Standard Mix
10	0.10 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	10	1 μg/L LCTX Standard Mix
11	0.25 µg/L LCTX Standard Mix	Internal Standard Curve Calibration	25	1 μg/L LCTX Standard Mix
12	0.50 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	50	1 μg/L LCTX Standard Mix
13	0.75 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	75	1 μg/L LCTX Standard Mix
Worklist Number	Sample ID	Sample Type	Injection Volume (μL)	Standard

14	1 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	1	100 μg/L LCTX Standard Mix
15	5 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	5	100 μg/L LCTX Standard Mix
16	8 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	8	100 μg/L LCTX Standard Mix
17	10 µg/L LCTX Standard Mix	Internal Standard Curve Calibration	10	100 μg/L LCTX Standard Mix
18	25 µg/L LCTX Standard Mix	Internal Standard Curve Calibration	25	100 μg/L LCTX Standard Mix
19	50 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	50	100 μg/L LCTX Standard Mix
20	75 μg/L LCTX Standard Mix	Internal Standard Curve Calibration	75	100 μg/L LCTX Standard Mix
21	99 µg/L LCTX Standard Mix	Internal Standard Curve Calibration	99*	100 μg/L LCTX Standard Mix
22	Blank 2	Instrument Blank	0	Blank
23	NCC-439871 A	Sample	99	
24	NCC-439872 A	Sample	99	
25	NCC-439873 A	Sample	99	
26	NCC-439874 A	Sample	99	
27	NCC-439875 A	Sample	99	
28	NCC-439876 A	Sample	99	
29	NCC-439877 A	Sample	99	
30	NCC-439878 A	Sample	99	
Worklist Number	Sample ID	Sample Type	Injection Volume (μL)	Standard
31	NCC-439880 A	Sample	99	
32	NCC-439881 A	Sample	99	

33	NCC-439871 L	Instrument Duplicate	99	
34	NCC-439881 SA	Spiked Sample Duplicate	99 - sample 1 - 100 μg/L LCTX Standard Mix	
35	Blank 3	Instrument Blank	0	Blank
36	1 μg/L LCTX Standard Mix CC1	Calibration Check	1	100 μg/L LCTX Standard Mix
37	Blank 4	Instrument Blank	0	Blank
38	NCC-439882 A	Sample	99	
39	NCC-439883 A	Sample	99	
40	NCC-439884 A	Sample	99	
41	NCC-439885 A	Sample	99	
42	NCC-439886 A	Sample	99	
43	NCC-439887 A	Sample	99	
44	NCC-439888 A	Sample	99	
45	NCC-439889 A	Sample	99	
46	NCC-439890 A	Sample	99	
47	NCC-439891 A	Sample	99	
48	NCC-439882 L	Instrument Duplicate	99	
49	NCC-439891 SA	Spiked Sample Duplicate	99 - sample 1 - 100 μg/L LCTX Standard Mix	
50	Blank 5	Instrument Blank	0	Blank
Worklist Number	Sample ID	Sample Type	Injection Volume (μL)	Standard
51	1 μg/L LCTX Standard Mix CC2	Calibration Check	1	100 μg/L LCTX Standard Mix
52	Blank 6	Instrument Blank	0	Blank

STANDARD OPERATING PROCEDURE

- 1 Only 99 μ L is injected to accommodate a 1 μ L stacked injection of internal standard (simetone) for 100 μ L injection loops. 100 μ L of standard mix can be injected on larger injection loops.
- 2 L = instrument sample duplicate
- 3 SA = Spiked Sample Duplicate. Final concentration can be modified by changing the injection volume of the standard spiked. This example shows a 1.0 μ g/L equivalent final concentration.

Appendix C.2

Title:	Sequential Freeze/Thaw Cell-Lysis	Identifier: OGRL-SOP-4520	Revision	Effective Date:
	Procedure for Total and Dissolved Algal Toxin Analysis of Water Samples	OGRL-SOP-4320	. 2	1/18/2016

APPROVALS FOR USE		
Author's Name (Print):	Author's Signature:	Date:
Keith A. Loftin		01/18/16
Project Director's Name (Print) Mike T. Meyer	Project Director's Signature	Date: 01/22/16
Organic Geochemistry Research Laboratory (OGRL)		

PROCESSING WATER SAMPLES FOR ALGAL TOXIN ANALYSIS

Table of Contents

1.0	SCOPE AND APPLICATION	162	
2.0	TRAINING 162		
3.0	DEFINITIONS 162		
4.0	PERSONNEL HEALTH AND S	SAFETY 163	
5.0	EQUIPMENT AND SUPPLIES	163	
6.0	PROCEDURE FOR FREEZE/T	THAW CYCLING	5
7.0	PROCEDURE FOR FILTERING/	VIALLING	6
8.0	REFERENCES 167		
9.0	RECORDS AND ARCHIVAL	167	
10.0	QUALITY CONTROL 168		
11.0	ATTACHMENTS 169		
12.0	REVISIONS TO THIS SOP	169	

Processing Water Samples for Microcystin Analysis

NOTE: Laboratory personnel may produce paper copies of this procedure printed from the controlled document file. However, it is their responsibility to ensure that they are trained on and utilizing the current version of this procedure. The procedure author may be contacted if text is unclear.

1.0 SCOPE AND APPLICATION

- 1.1 This Standard Operating Procedure (SOP) describes the sequential freeze/thaw cell-lysis process for preparing water samples for algal toxin analysis at the USGS Organic Geochemistry Research Group (OGRL) Laboratory in Lawrence, KS.
- 1.2 Algal toxins are toxins produced and released by phytoplankton. These algal blooms can be extremely toxic to many different species of birds and mammals (including humans).
- 1.3 This Standard Operating Procedure (SOP) describes the cell-lysis process of freezing and thawing water samples as a means to lyse the algal cells and release of algal toxins for analysis.

2.0 TRAINING

The OGRL Director or designee is responsible for ensuring that all who perform the functions described in this SOP for the OGRL are familiar with the objectives of and properly trained in its procedures. In addition, one must document that they have read and understand this procedure in their training folder.

3.0 DEFINITIONS

3.1 <u>Total Algal Toxins</u>—For purposes of this SOP, this term refers cell-lysis of all phytolankton in a given water sample followed by filtration to remove particulates.

- Cell-lysis results in intracellular algal toxins transferred to the dissolved phase of the water sample.
- 3.2 <u>Dissolved Algal Toxins</u>—For purposes of this SOP, this term refers to filtration to remove particulates of a given water sample. Given that this sample is filtered in the absence of artificial (laboratory induced) cell-lysis, the algal toxins measured in the water sample do not represent intracellular algal toxins, but dissolved-phase algal toxins from naturally lysed algae.
- 3.3 <u>Frozen Water Sample</u>—A water sample that has been placed overnight in a freezer and is frozen completely through.
- 3.4 <u>Thawing Water Sample</u>—A water sample that has been removed from a freezer to thaw protected from light by aluminum foil.
- 3.5 <u>Thawed Water Sample</u>—A water sample that contains no ice and is composed only of liquid.
- 3.6 *Filtering*—The process of forcing a sample through a filter to remove particulates.
- 3.7 <u>Sample ID</u>—Each sample in a defined project will have a unique ID that is generally five digits long with a letter.
- 3.8 <u>Project Code</u>—This is the three digit code noted on all sample labels. It is unique and informs the lab employees which project the sample is a part of.
- 3.9 <u>Project Title</u>—This is the title of the project. It will generally include information such as the purpose of the study and who is concerned with the results. An example would be 'EPA Lake Assessment.'
- 3.10 <u>Reslab</u>—This is the name of the shared network used by all members of the Organic Geochemistry Research Laboratory.

4.0 PERSONNEL HEALTH AND SAFETY

- 4.1 **Note:** This SOP is to be used in conjunction with an approved Chemical Hygiene Plan. Also, consult the Chemical Hygiene Plan for information on and use of all personal protective equipment (PPE).
- 4.2 **Toxins:** The nature of this work can expose an individual to algae and algal toxins if appropriate standard safety protocols are not followed. Notify supervisor when initiating work with environmental samples that may contain toxins and as always report any safety incidences at the earliest opportunity to the laboratory safety officer.
- 4.3 Always where gloves, at minimum safety glasses, work in the hood when possible and to the extent necessary. Do not ingest, inhale, get in eyes, or contact with skin. If contact with skin made then wash with copious amounts of soap and water. If eye contact made immediately use the eyewash station to rinse eyes then seek medical attention as necessary. For ingestion or inhalation, seek appropriate medical attention. The toxins are not known to be volatile, but can be aerosolized.

5.0 EQUIPMENT AND SUPPLIES

Descriptions of commonly used pieces of equipment, their advantages, and their limitations are listed below.

Processing Water Samples for Algal Toxin Analysis

- 5.1 <u>Nitrile Gloves</u>- Required for handling all environmental samples potentially containing toxins.
- 5.2 <u>Freezer Space</u>- Space should be set aside for the water samples in a freezer with a temperature range less than or equal to -20°C (+/-5°C).
- 5.3 <u>Refrigerator Space</u>- Space should be set aside for the water samples in a refrigerator or the walk-in with a temperature range between 2°C and 10°C.
- 5.4 <u>Aluminum Foil</u>- Foil is used for covering the sinks full of thawing samples. **Algal** toxins have been reported as light sensitive, it is necessary to cover all of the samples at all times!
- 5.5 <u>Vacuum Filtration</u>-The process by which particulates are removed from samples by vacuum.
- 5.6 <u>Syringe Filtration</u>-The process by which particulate are removed from samples by use of syringe and filter.
- 5.7 <u>Clear LC/MS Screw Top Vials</u>- These are 2mL clear glass vials. One vial is needed for each sample. A fine tip permanent marker is used to print pertinent information onto the labeling sticker, which is attached to the vial.
- 5.8 Screw Top Cap- This blue cap is used to seal the clear screw top vial.
- 5.9 <u>1000 mL Beaker</u>- This beaker is used to collect unwanted water sample.
- 5.10 *Permanent Marker* Used for labeling the 1000mL dump beaker.
- 5.11 Labeling Tape- Colored tape that is used to label the 1000mL beaker.
- 5.12 *Labeling Stickers* Used for labeling the screw top vials during the filtration process.
- 5.13 <u>Fine Tip Permanent Marker</u>- Used for writing on labeling stickers during the filtration process.
- 5.14 <u>10mL pipette and pipette tips</u>- Used for transferring 10mL of the unfiltered sample to the syringe filter.
- 5.15 <u>Empty Chromacol Cardboard Box</u>- This box is used to store the chromacol vials in a freezer after processing is complete. A spreadsheet that includes a list of the vials being stored is placed inside the box. A label is also necessary on the outside of the box.
- 5.16 <u>Empty Vial File or Tray</u>- An item used to store all clear screw top vials belonging to a designated IMN run. It is labeled and stored in a freezer for future analysis and archival/storage.
- 5.17 *Clear tape* This is used to affix printed labels to the chromacol vials.
- 5.18 <u>1 oz. amber glass bottle</u> a sample storage container used for frozen storage/archival of sample filtrate.

6.0 PROCEDURE FOR FREEZE/THAW CYCLING

Note: Deviations from SOPs must be recorded in an appropriate instrument or work log. HDPE or Teflon sample bottles may be used in place of amber glass for selected projects at the initiation of a study. Additionally, different filter procedures may be used prior to the initiation of a study. These deviations from this SOP are not

- acceptable after a study is initiated. Deviations to this procedure are subject to approval by the principle investigator.
- 6.1 If sample is to be processed for Dissolved Algal toxin analysis only skip to section 7.0. If sample is to be processed for both Total and Dissolved Algal toxin, then the sample will need to be homogenized by inversion of the sample at least 3 times. Split the homogenized sample in half and label each sample appropriately. Designate 1 bottle as Total and the other Dissolved. Take the sample split for Total Algal toxin analysis through the remaining Freeze/Thaw procedure starting with step 6.2. Skip to Section 7.0 of this SOP to begin processing for Dissolved Algal toxin analysis. Any glass container that will be frozen should be no more than half full of sample.
- 6.2 It is important to have as much communication between all personnel involved in the project as possible.
 - 6.2.1 At the beginning of every shift, read through the "Log Note" left from the students who last worked on the project (see section 10.3.1.3).
 - 6.2.2 Speak with the student login assistant and find out if any new samples have been received for the afternoon.
- 6.3 If there are new samples that have been logged in, ask the login assistant for the physical location of the samples. Also, find out if the samples have undergone the first freeze or freeze/thaw cycle (sometimes samples are stored frozen before shipment to OGRL and may or may not thaw during shipment).
- 6.4 Create a "Processing Spreadsheet" for the new samples (see section 9.1).
- 6.5 Each morning all samples from the freezer and refrigerator are thawed in an empty sink for the day.
 - 6.5.1 Cover all samples with aluminum foil while in sink and do not have samples touching each other to allow air to circulate between the bottles.
- 6.6 Print out the "Sample Checklist" (see section 10.1) and note where all the samples are located in the cycling process.
 - 6.6.1 To make the checklist easy to read, choose a different colored pen/highlighter to mark: the thawing samples, the samples that have been sent to the freezer for the next freeze cycle and the samples ready for filtration.
 - 6.6.1.1 If the sample has just completed its first, then add 1 line by permanent marker to the lid. Repeat with a second line for the completion of the second freeze/thaw cycle, and a third line when the third freeze/thaw cycle is complete. Record dates of each freeze/thaw step in the spreadsheet for each sample.
 - 6.6.1.2 If the sample has just completed its third thaw, it is ready for filtration and then vialing (see section 7.0). These samples will be kept in the refrigerator before filtration begins. If samples will not be filtered within 24 hours then do not do the third thaw until ready for filtration.

Processing Water Samples for Algal Toxin Analysis

- 6.7 Make sure that all samples are accounted for and all spreadsheets are updated on the computer spreadsheet (see section 9.0).
- 6.8 All samples that are still thawing will be kept overnight in a refrigerator (Thawing time is very dependent on sample volume).
- 6.9 Samples that are completely thawed out will follow the sample procedure outlined in sections 6.5.
- 6.10 All spreadsheets must be updated and printed out for storage in the project binder located in the Project Management office (see section 9.0)

7.0 PROCEDURE FOR FILTERING/VIALING

7.1 One of two filtration techniques (vacuum filtration or syringe filtration) will be used on a set of project samples as indicated by the principle investigator or the project management office. Filter type and mesh size can be modified by the principle investigator to meet project needs, but changes should be recorded in sample spreadsheet.

7.2 Vacuum filtration

- 7.2.1 Get a clean 47 mm diameter 100 mL two-piece glass funnel and funnel clamp for each sample.
- 7.2.2 Assemble the filter assembly with a 0.7 micron, 47 mm diameter glass fiber filter in between the two filter pieces and clamp together.
- 7.2.3 Attach filter assembly to a clean 250 to 1000 mL side arm vacuum flask.
- 7.2.4 Connect vacuum flask with vacuum tubing to house vacuum.
- 7.2.5 Invert the capped sample bottle vigorously at least 3 times to homogenize sample.
- 7.2.6 Add approximately 30 mL of sample to funnel and apply vacuum until filter is dry.
- 7.2.7 All filtrate should be stored in clean glass vials for freezing. Glass vials should not be more than half full.
- 7.2.8 Make sure all vials have appropriate identifying information (e.g. sample ID, data, personnel, and "TF" for total and filtered or "DF" for dissolved and filtered.
- 7.2.9 Transfer 1 mL of filtered sample to a labeled 2 mL screw capped vial.
- 7.2.10 Store the remaining filtrate in
- 7.2.11 When finished filtering update all spreadsheets (see section 9.0).

7.3 **Syringe Filtration**

- 7.3.1Attach an unused 25 mm, 0.7 micron glass fiber membrane syringe filter to an unused 10 mL HDPE syringe with luer lock fitting after removing syringe plunger.
- 7.3.2 Lay syringe plunger on a clean chemwipe.

- 7.3.3 Add 10 mL of sample to syringe barrel with syringe filter in place.
- 7.3.4 Replace removed syringe plunger back into syringe barrel and filter 1 mL of sample directly into labeled, glass 2 mL LC/MS vial. Cap vial.
- 7.3.5 Filter remaining sample, to larger 1 oz. amber glass bottle.

8.0 **REFERENCES**

- Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring, and management. Eds. I. Chorus, J. Bartram, Spon Press: London, 1999.
- Graham, J.L., Loftin, K.A., Meyer, M.T., Ziegler, A.C., 2010, Cyanotoxins mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern United States, Environmental Science and Technology, 44, 7361-7368.

9.0 RECORDS AND ARCHIVAL

The person performing this SOP is responsible for submitting the following records to be archived to the Project Office Manager.

- 9.1 PROCESSING SPREADSHEETS (All spreadsheets are maintained in "ResLab" on the network.)
 - 9.1.1 The processing sheets are important because they allow OGRL staff to keep track of the freeze/thaw cycling for each sample. They also indicate when each sample was filtered/vialed and the current location.

9.1.2 The template for this spreadsheet should include: the project code, sample ID, date received, number of bottles processed with this sample ID, a section to fill-in the date for each freeze and thaw (repeated three times), date the sample was filtered/vialed, storage location, initials of student and a notes section.

9.2 Liquid Chromatography Tandem Mass Spectrometry and Enzyme-Linked Immunosorbent Assay Run Sheets

9.2.1 The Project Management office and the Principle Investigator should be notified as samples are ready for analyses so run sheets may be populated and samples analyzed as appropriate.

10.0 **QUALITY CONTROL**

10.1 **SAMPLES CHECKLIST**

- 10.1.1 The samples checklist is created in the morning and about an hour before the personnel will leave for the day. After completing the checklist, personnel will update the Processing Spreadsheets with the new information.
- 10.1.1 To create the checklist, search through each Processing Spreadsheet to find which samples have not yet been filtered/vialed. Copy and paste the entire row of the sample's processing information onto the checklist and keep adding samples.
- 10.1.2 **Samples not completely thawed.** When a sample is still somewhat or totally frozen, mark the sample ID on the Samples Checklist with a colored highlighting marker. *Place the sample back in the sink to thaw or in the refrigerator for overnight storage as is appropriate.*
- 10.1.3 **Samples that are thawed and ready to freeze.** When a sample is completely thawed and ready to enter the next freeze cycle, mark the sample ID on the Samples Checklist with a colored highlighting marker (a different color than the marker used in section 8.2.3.3.1.1). *Mark a new line on the top of the sample bottle and place it into the freezer.*
- 10.1.4 Samples that are thawed and ready for filtration. When a sample is completely thawed and ready for filtration and vialling, mark the sample ID on the Samples Checklist with a colored highlighting marker (a different color than the markers used in sections 8.2.3.3.1.1 and 8.2.3.3.2.1). Set the bottle aside under a cover and filter/vial.

10.2 CHECKLIST FOR FILTRATION

10.2.1 The Checklist for Filtration helps the personnel accurately complete all filtration steps. While filtering a sample, check off each step in the process.

Processing Water Samples for Algal Toxin Analysis

10.2.2 The checklist should include: the project code, sample ID, each step of filtration/vialing and the initials of the student.

10.3 **NOTES**

10.3.1.1 After cleanup at the end of the work shift it is necessary for personnel to communicate their progress on the project to the Project Management Office and Principle Investigator.

11.0 **ATTACHMENTS**

No attachments

12.0 **REVISIONS TO THIS SOP**

No revisions

1/18/2016 reviewed.

Appendix C.3

Title:		Identifier:	Revision:	Effective Date:
	Data and Information Backup for all OGRL Instruments	OGRL-2010	5	1/12/16

15.1.1.1 APPROVALS FOR USE		
Author's Name (Print):	Author's Signature:	Date:
Keith A. Loftin		1/12/16
Project Director's Name (Print) Michael T. Meyer	Project Director's Signature	Date: 1/12/16
15.1.2 Organic Geochemistry Research Group (OGRG)		

DATA AND INFORMATION BACKUP FOR HP GCMS, LCMS, AND HPLC INSTRUMENTS

Table of Contents

1.0	SCOPE AND APPLICATION 172
2.0	TRAINING 172
3.0	DEFINITIONS 172
4.0	PERSONNEL HEALTH AND SAFETY 172
5.0	EQUIPMENT AND SUPPLIES 172
6.0	PROCEDURE 172
7.0	REFERENCES 153
8.0	RECORDS AND ARCHIVAL 155
9.0	QUALITY CONTROL 155
10.0	ATTACHMENTS 155
11 A D	FUISIONS TO THIS SOD

Data and Information Backup for all OGRL instruments

NOTE: Laboratory personnel may produce paper copies of this procedure printed from the controlled document file. However, it is their responsibility to ensure that they are trained on and utilizing the current version of this procedure. The procedure author may be contacted if text is unclear.

1.0 SCOPE AND APPLICATION

1.1 This Standard Operating Procedure (SOP) describes the process Data and Information Backup for instruments for the USGS Organic Geochemistry Research Laboratory (OGRL) in Lawrence, KS.

2.0 TRAINING

The Project Director is responsible for ensuring that all who perform the function(s) described in this SOP for the OGRL are familiar with the objectives of and properly trained in its procedures. In addition, one must document that they have read and understand this procedure in their training folder.

3.0 DEFINITIONS

- 3.1 Computer—PC that is used to operate and control OGRL instruments.
- 3.2 External Backup Drive—external data storage drive used for transferring information from instrument computer's hard drive to an external flash drive.

4.0 PERSONNEL HEALTH AND SAFETY

Note: This SOP is to be used in conjunction with an approved Chemical Hygiene Plan. Also, consult the Chemical Hygiene Plan for information on and use of all PPE.

4.1 Obey and follow all Safety Regulations when entering the Laboratory.

5.0 EQUIPMENT AND SUPPLIES

Descriptions of commonly used pieces of equipment, there advantages and their limitations are listed below.

5.1 External Backup Drive — Each instrument is currently equipped with this device.

6.0 PROCEDURE

Note: Deviations from SOPs must be recorded in an appropriate instrument or work log.

- 6.1 Each instrument is equipped with an external backup drive to archive instrument methods, worklists, and data folders (hereafter referred to as data).
- 6.2 Data is manually archived weekly during scheduled instrument downtime.

- 6.3 Data archive is then backed up onto the USGS KS WSC network drive and also maintained on the external backup drive. The USGS KS WSC network drive has a redundant mirror site in case of network failure.
- 6.4 Over time given the operation of the instruments large quantities of data stored in files on the instrument computer hard drive will have to be permanently removed from the instrument computer (e.g. when 75% of computer's memory is consumed). Each instrument is backed up using the same general procedure. If possible perform backups when the instrument computer is not in operation.
- 6.5 Printed copies of instrument sequences and analytical methods are also maintained at each instrument.

7.0 REFERENCES

No references are cited in this SOP.

8.0 RECORDS AND ARCHIVAL

The person performing this SOP is responsible for submitting the following external drives to be archived to the Project Documents Archival manager.

9.0 QUALITY CONTROL

No quality control measures have been defined for this procedure.

10.0 ATTACHMENTS

There are no attachments to this SOP.

11.0 REVISIONS TO THIS SOP

6/6/00- Initial Version

2/15/02- Revisions 2, Added Section 11.0

6/4/03-Reviewed, no changes

1/12/04 – Reviewed, no changes

1/12/16 – Reviewed, changed archive procedures from tape drive back up to external flash drive storage.

APPENDIX D: EXAMPLE SOPS FOR MERCURY IN FISH TISSUE PLUG ANALYSES

eurofins Frontier Global Sciences	Document Title: Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E)	Eurofins Document Reference: EFGS-SOP-137-R02
-----------------------------------	---	--

Eurofins Document Reference	EFGS-SOP-137-R02	Revision	2
Effective Date	6/17/2013	Status	Final
Historical/Local Document Number	FGS-SOP-137.02		
Local Document Level	Level 3		
Local Document Type	SOP		
Local Document Category	NA		

Prepared by	Ryan Nelson
Reviewed and Approved by	Dave Wunderlich and Patrick Garcia-Strickland

Document Title:

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

Table of Contents

1	Revision Log:	4
2	Reference:	4
3	Cross Reference:	
4	Purpose:	
5	Scope:	
6	Basic Principles:	
7	Reference Modifications:	
8	Definitions:	
9	Interferences:	
10	Safety Precautions, Pollution Prevention and Waste Handling:	9
11	Personnel Training and Qualifications:	
12	Sample Collection, Preservation, and Handling:	10
13	Apparatus and Equipment:	11
14	Reagents and Standards:	
15	Calibration:	
16	Procedure:	
17	Calculations:	
18	Statistical Information/Method Performance:	- · 22
19	Quality Assurance/Quality Control:	22
20	Corrective Action	
21	List of Attachments	
Tab	le 1: QC Requirements for Total Mercury	26
Арр	endix A: Example - Standard Operating Procedure Training Record	-0 27

🔅 eurofi	Frontier	Global	S.
	 F 5 9.7 3 1.5005	La Diagram	

Eurofins Document Reference: EFGS-SOP-137-R02

Approvals:

Prepared	bv:

By NVL

Date: <u>C/17/13</u>

Approved by:

Dans a Sunduly

Date: <u>6/17/2013</u>

Approved by:

rta

Date: 6/18/13

1 Revision Log:

Revision: 06	Effective Date: This version		
Section	Justification Changes		
Cover	Required change	Changed company name from Frontier Global Sciences to Eurofins Frontier Global Sciences.	
All	Formatting requirement per LOM SOP-LAB-201	Reformatted document to new corporate specifications.	
13.1, 13.2	Required	Added hardware and software components	
14.8	Required	Updated mercury standard prep	
14.9	Required	Updated standard and reagent documentation procedures	
15.2 - 15.4	Required	Updated calibration information	
16.7	Required	Added instrument maintenance and troubleshooting	

2 Reference:

- 2.1 EPA Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, 2002.
- 2.2 Method 1669, "Method for Sampling Ambient Water for Determination of Metals at EPA Ambient Criteria Levels," U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Engineering and Analysis Division (4303), 401 M Street SW, Washington, DC 20460, April 1995 with January 1996 revisions.
- 2.3 Bloom, N.S.; and Tsalkitzis, E. Standard Operating Procedure FGS-012 Determination of Total Mercury in Aqueous Media (Modified EPA Method1631). Frontier GeoSciences Inc., Quality Assurance Manual 1995.
- 2.4 Bloom, N.S.; Ultra-Clean Sample Handling, Environmental Lab 1995, March/April, 20.
- 2.5 Bloom, N.S.; Horvat M., and Watras C.J. Results of the International Mercury Speciation Intercomparison Exercise. Wat. Air Soil Pollut. 1995, 80, 1257.
- 2.6 Bloom, N.S.; Crecelius, E.A. Determination of Mercury in Seawater at Sub-nanogram per Liter Levels.Mar.Chem.1983, 14, 49.
- 2.7 Bloom, N.S.; Crecelius, E.A. Distribution of Silver, Lead, Mercury, Copper, and Cadmium in Central Puget Sound Sediments Mar. Chem 1987, 21, 377-390.
- 2.8 Bloom, N.S.; Fitzgerald, W.F. Determination of Volatile Mercury Species at the Picogram Level by Low-Temperature Gas Chromatography with Cold-Vapor Atomic Fluorescence Detection. Anal. Chem. Acta. 1988, 208, 151.
- 2.9 Cossa, D.; Couran, P. An International Intercomparison Exercise for Total Mercury in Seawater. App.Organomet. Chem.1990, 4, 49.
- 2.10 Fitzgerald, W.F.; Gill, G.A. Sub-Nanogram Determination of Mercury by Two-Stage Gold Amalgamation and Gas Phase Detection Applied to Atmospheric Analysis. Anal. Chem. 1979, 15, 1714.
- 2.11 Gill, G.A.; Fitzgerald, W.F. Mercury Sampling of Open Ocean Waters at the Picogram Level Deep Sea Res.1985, 32, 287.
- 2.12 EPA Method 30.B, Determination of total vapor phase mercury emissions from coal-fired combustion sources using carbon sorbent traps.

Revision: 2	Effective Date: 6/17/2013	Page 4 of 27

eurofins Frontier Globa	Document Title: Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E)	Eurofins Document Reference: EFGS-SOP-137-R02
-------------------------	---	--

- 2.13 Chemical Hygiene Plan, Eurofins Frontier Global Sciences, current version.
- 2.14 National Environmental Laboratory Accreditation Conference, NELAC Standard September 8, 2009.
- 2.15 Department of Defense Quality Systems Manual for Environmental Laboratories, prepared by DoD Environmental Quality Workgroup, Final Version 4.2, October 2010.

3 Cross Reference:

Document	Document Title	
SOP FGS-003	Pipette Verification, Calibration and Maintenance	
SOP FGS-007	Cleaning of Sampling Equipment and Bottles	
SOP FGS-008	Ultra Clean Aqueous Sample Collection	
SOP FGS-012	Oxidation of Aqueous Samples for Total Mercury Analysis	
SOP FGS-061	Gold Trap Construction	
SOP FGS-094, App F	Standard Operating Procedure Training Record	
SOP FGS-099	Waste Disposal Procedure for Client Sample Waste	
SOP FGS-121	Determination of Total Mercury by Flow Injection AFS (Mod 1631E)	
SOP FGS-155	Calibration of Volumetric Dispensers	

4 Purpose:

4.1 This SOP is designed to ensure that all reproducible traceable procedures in EPA 1631 are followed in the standardization of the total mercury analyzers and in the analysis of samples for total mercury, as well as to establish the limits wherein data will be considered acceptable.

5 Scope:

- 5.1 This Standard Operating Procedure (SOP) describes a method for the determination of total mercury (Hg) in filtered and unfiltered water by oxidation, purge and trap, desorption, and cold vapor atomic fluorescence spectrometry (CVAFS).
- 5.2 This method is designed for the determination of mercury in the range of 0.5-40 ng/L (ppt). Application may be extended to higher levels by selection of a smaller sample size, as long as the instrument value (intensity) remains within the calibration curve.
- 5.3 The Control Limits are established from EPA 1631E.

6 Basic Principles:

- 6.1 For analysis of aqueous samples, an aliquot of oxidized sample is neutralized with hydroxylamine-hydrochloride (NH₂OH-HCl) to destroy free halogens, and added to a bubbler.
- 6.2 Stannous chloride (SnCl₂) is added to the bubbler to reduce the Hg(II) to volatile Hg(0), and the bubblers are sealed with Keck clips. Blanked gold traps are placed at the end of soda-lime pre-traps. The bubbler is purged with nitrogen (N₂) for 20 minutes. All gas that flows into the bubbler should only leave the system through the soda-lime pre-trap and then the gold trap.
- 6.3 The gaseous mercury amalgamates to the gold traps, which are removed and individually placed in the analytical train. The gold trap is heated, thus releasing the mercury into the argon gas stream flowing into the instrument.

Revision: 2	Effective Date: 6/17/2013	Page 5 of 27

Reference Modifications:

7.1 There were no significant modifications to this method.

8 Definitions:

- 8.1 Analytical Duplicate (AD): A representative sample (that yielded a result within the calibration curve) is analyzed a second time during the analytical run. The second analysis should be at the same aliquot as the original.
- 8.2 Analytical Run - The continuous analysis of one or more batches during the same 12 hour-shift. Each analytical day requires a minimum five-point calibration curve, ICV, at least 3 IBLs, and CCV/CCB every ten runs. An analytical day must conclude with a CCV/CCB.
- Analytical Spike and Analytical Spike Duplicate (AS/ASD): A representative sample is 8.3 selected and spiked, with a dilution of the primary source, during the analytical run, at a target concentration of 1-5X the ambient concentration of the sample. These QC samples are used to indicate sample matrix effects on the analyte of interest. Nondetectable samples are spiked at $1 - 5 \times 6$ the MRL/PQL.
- Batch: 20 client samples or less grouped for preparation. See Quality Assurance 8.4 Section for batch requirements.
- Calibration Standards (CAL) a series of standards that will be used to calibrate the 8.5 instrument, made from a primary source stock standard. A calibration blank plus at least five different concentrations are required, beginning with one at PQL concentration.
- 8.6 Certified Reference Material (CRM) - a standard of known composition that is certified by a recognized authority and representing a sample matrix. It is used to verify the accuracy of a method.
- Continuing Calibration Blank (CCB): An instrument blank that is used to monitor the 8.7 ambient blank concentration after the Continuing Calibration Verification (CCV).
- Continuing Calibration Verification (CCV): An aliquot of standard from the same source 8.8 as the calibration standard, at a value of 20ng/L (2.0ng in ~100mL bubbler water). This standard is analyzed after every 10 analytical runs, and determines whether the instrument is maintaining calibration.
- 8.9 Continuing Demonstration of Capability (CDOC)
- 8.10 Control Limit (CL) - the limit of the range of acceptability for the quality control samples
- Equipment Blank (EB): Reagent water processed through the sampling devices and 8.11 placed in a sample container prior to using the equipment to collect samples and used to demonstrate that the sampling equipment is free from contamination.
- Field Blanks (FB): A sample of reagent water placed in a sample container in the field 8.12 and used to demonstrate that samples have not been contaminated by sample collection or transport activities. EPA-1631E recommends the analysis of at least one field blank per 10 samples collected at the same site at the same time. Analyze the blank immediately before analyzing the samples in the batch.

Eurofins Document Reference: EFGS-SOP-137-R02

8.13 Initial Calibration Verification (ICV): A standard that is prepared from a secondary source stock standard with a value of 15ng/L (1.5ng in ~100mL bubbler). This standard is run immediately following the calibration curve and verifies instrument calibration. It is always followed by the IBLs.

- 8.14 Initial Blank Level (IBL): An instrument blank that is used to demonstrate the ambient blank concentration of the instrument. One per bubbler is needed at the beginning of the analytical run.
- 8.15 Initial Demonstration of Capability (IDOC).
- 8.16 Laboratory Control Sample (LCS and LCSD) or Quality Control Sample (QCS): A sample (and duplicate) containing a known concentration of mercury that is used to monitor complete method performance. The preferred LCS is a matrix matched Certified Reference Material (CRM), but a blank spike meets the requirement also. In LIMS, the LCS is always referred to as a Blank Spike (BS), whether it is matrix matched or not.
- 8.17 Limit of Detection (LOD) equal to MDL and verified on a quarterly/annual basis, depending on the preparation, by spiking within three times the established LOD and showing a positive result on the instrument.
- 8.18 Limit of Quantitation (LOQ) equal to PQL and verified on a quarterly/annual basis, depending on the preparation, by spiking within 2 times the LOQ and showing a recovery between 70 130%.
- 8.19 LIMS: Laboratory Information Management System. Computer software used for managing samples, standards, and other laboratory functions.
- 8.20 May: This action, activity, or procedural step is optional.
- 8.21 May Not: This action, activity, or procedural step is prohibited .
- 8.22 Matrix Spike (MS) and Matrix Spike Duplicate (MSD): A representative sample is selected and spiked with a dilution of the primary source at a known concentration. The MS and MSD are run through the entire analytical process just as the samples are. These QC samples will indicate sample matrix effects on the analyte of interest.
- 8.23 Method Blank (MBLK) or Preparation Blank (PB): For waters, reagent water that is prepared and analyzed in a manner identical to that of samples. For digested solids, preparations blanks consist of the same reagents used to digest the samples, in the same volume or proportion and are carried through the complete sample preparation and analytical procedure. Boiling chips are used as a blank matrix for solids. Preparation blanks are referred to as BLK in LIMS.
- 8.24 Method Detection Limit (MDL): A limit derived from 40 CFR, Part 136, Appendix B. This method produces a defined value that is the minimum concentration that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero from a given matrix.
- 8.25 Method Duplicates/Method Triplicates (MD/MT): A second or third separate sample dilution, taken from the same source sample, prepared and analyzed in the laboratory separately. An MSD may be used as a duplicate.

Curofins Frontier Global Sciences Frontier Global Sciences Frontier Global Sciences And CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

- 8.26 Reagent water: 18 M Ω minimum, reagent water starting from a pre-purified (distilled, Reverse Osmosis, etc.) source.
- 8.27 Must: This action, activity, or procedural step is required.
- 8.28 Ongoing Precision and Recovery (OPR): A dilution of a secondary source resulting in an instrumental concentration of 5.0 ng/L mercury.
- 8.29 PM: Project Manager.
- 8.30 Practical Quantitation Limit (PQL), Method Reporting Limit (MRL): The minimum concentration that can be reported quantitatively. The PQL is often described as 1-10 times higher than MDL. Eurofins Frontier defines the PQL as the lowest concentration that can achieve 70-130% recovery for 10 replicate sample preparations. In LIMS, the PQL is referred to as the MRL.
- 8.31 Primary Source: The stock standard used to make the calibration standard. Procedural Method: A method where standards and samples are run through the analytical procedure exactly the same. By NELAC definition, this SOP is a procedural method.
- 8.32 Secondary Source: The stock standard used to make the OPR standard.
- 8.33 Shall: This action, activity, or procedure is required.
- 8.34 Should: This action, activity, or procedure is suggested, but not required.
- 8.35 Stock Standard Solution (SSS) a standard of analyte that is purchased from a certified source for the preparation of working standards.
- 8.36 Total mercury: As defined by this method, all bromine monochloride-oxidizable mercury forms and species found in aqueous solutions. This includes, but is not limited to, Hg(II), Hg(0), strongly organo-complexed Hg(II) compounds, adsorbed particulate Hg(P), and several tested covalently bound organomercurials (i.e. CH₃HgCl, (CH₃)₂Hg, and C₆H₅HgOOCCH₃). The recovery of mercury bound within microbial cells may require additional preparation steps (i.e. UV oxidation, or oven digestion).
- 8.37 Travel or Trip Blank (TB): A sample of reagent water placed in a sample container in the laboratory and used to demonstrate that samples have not been contaminated by transport activities.

9 Interferences:

- 9.1 Gold and iodide are known interferences. At a mercury concentration of 2.5 ng/L and at increasing iodide concentrations from 30 to 100 mg/L, test data have shown that mercury recovery will be reduced from 100 to 0 percent. At iodide concentrations greater than 3 mg/L, the sample should be pre-reduced with SnCl₂ (to remove brown color immediately prior to analysis) and additional or more concentrated SnCl₂ should be added to the bubbler containing sample. If samples containing iodide concentrations greater than 30 mg/L are analyzed, it may be necessary to clean the analytical system with 4N HCl after the analysis.
- 9.2 Water vapor has the potential to create recovery interferences. To prevent interference from water, ensure that soda-lime pre-traps and gold traps remain dry.

🖏 eurofins

9.3 The presence of high concentrations of silver and/or gold can cause SnCl₂ to precipitate out of solution and adhere to the bubbler walls. High concentrations of these metals can sometimes be found in the matrix spike samples from the digestion sets that are shared with the trace metals group. When analyzing digestates where the matrix spike samples have been spiked with silver or gold, the matrix-spiked samples must not be used for mercury analysis. Instead, an alternate matrix spike and matrix spike duplicate (MS/MSD) should be prepared and analyzed. If this is not possible, an Analytical Spike/Analytical Spike Duplicate (AS/ASD) must be analyzed on the ambient sample.

10 Safety Precautions, Pollution Prevention and Waste Handling:

- 10.1 Personnel will don appropriate laboratory attire according to the Chemical Hygiene Plan. This includes, but is not limited to, laboratory coat, safety goggles and nitrile gloves under clean gloves.
- 10.2 The toxicity or carcinogenicity of reagents used in this method has not been fully established. Each chemical should be regarded as a potential health hazard and exposure to these compounds should be as low as reasonably achievable. Chemists should refer to the MSDS (Material Safety Data Sheets) for each chemical they are working with.
 - 10.2.1 Note: Use particular caution when preparing and using BrCl, as it releases extremely irritating, corrosive fumes similar in effect to free chlorine. Always handle this reagent in an approved fume hood
- 10.3 All personnel handling environmental samples known to contain or to have been in contact with human waste should be immunized against known disease-causative agents. Eurofins Frontier will reimburse the expense of Hepatitis A and B immunizations for any laboratory staff member who desires this protection.
- 10.4 Hydrochloric acid: Very hazardous in case of skin contact (corrosive, irritant, permeator), of eye contact (irritant, corrosive), of ingestion. Slightly hazardous in case of inhalation (lung sensitizer). Non-corrosive for lungs. Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Severe over-exposure can result in death. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering. For more information see MSDS.
- 10.5 See Eurofins Frontier Global Sciences Chemical Hygiene Plan (CHP) for general information regarding employee safety, waste management, and pollution prevention.
- 10.6 Pollution prevention information can be found in the current Eurofins Frontier Global Sciences Chemical Hygiene Plan (CHP), which details and tracks various waste streams and disposal procedures.
- 10.7 All laboratory waste is accumulated, managed, and disposed of in accordance with all federal, state, and local laws and regulations. Any waste generated by this procedure should be disposed of according to SOP FGS-099 "Waste Disposal Procedure for

Eurofins Document Reference: EFGS-SOP-137-R02

Client Sample Waste," which provides instruction on dealing with laboratory and client waste.

11 Personnel Training and Qualifications:

🕸 eurofins

- 11.1 An analyst must perform an initial demonstration of capability (IDOC) that includes four replicates of a secondary source before being qualified to analyze samples without supervision. Continuing DOC will be maintained and monitored via performance on CRMs and other QC samples, as well as obtaining acceptable results on proficiency testing exercises.
- 11.2 The analyst/laboratory technician must have read this SOP and other relevant SOPs and have the training documented on the applicable form(s). The analysis may be questioned on SOP by supervisor(s) and/or trainers.
- 11.3 Training is documented by the employee and supervisor, and is kept on file in the QA Office. The employee must read, understand, and by signing the training document, agree to perform the procedures as stated in all Standard Operating Procedures (SOPs) related to this method.
- 11.4 Reading of the SOP must be documented on the correct form such as "Standard Operating Procedure Training Record," Appendix F in FGS-094, the last page of this SOP, Appendix A "Standard Operating Procedure Training Record" or a similar document."
- 11.5 All employees must also, on a yearly basis, read the Quality Manual (QM), and complete the yearly Ethics training.
- 11.6 All training documents including IDOCs, CDOCs, SOP reading, Initial QA orientation, and Ethics training are stored by the Quality Assurance Manager in the employees training file for ten years after the employee is no longer working for Eurofins Frontier Global Sciences.
- 11.7 Chemical Safety Training, Compressed Gas Training, Chemical Hygiene Plan documentation, and Shipping of Hazardous goods, are stored by the Health and Safety Officer for ten years after the employee is no longer working for Eurofins Frontier Global Sciences.

12 Sample Collection, Preservation, and Handling:

- 12.1 Aqueous samples are collected in rigorously cleaned fluoropolymer (e.g. Teflon) or PETG bottles and caps (as described in FGS-007 "Cleaning of Sampling Equipment and Bottles for Mercury Analysis"). Certified clean glass bottles with fluoropolymer lids may be used if mercury is the only analyte of interest.
 - 12.1.1 Aqueous samples are preserved upon receipt with 0.2N BrCl that has tested low in mercury. Samples are typically preserved to 1% BrCl v/v, but may require further oxidation due to high levels of organic matter or mercury. Refer to FGS-012 "Oxidation of Aqueous Samples for Total Mercury Analysis" for oxidation of aqueous samples. Samples requiring greater than 10% BrCl must have a method blank prepared at the time of preservation. Preservation levels should be limited to 1%, 2%, 3%, 5%, 10%, and 100%.

Eurofins Document Reference: EFGS-SOP-137-R02

- 12.1.2 Preservation levels other than 1% are written on the LIMS label of the sample bottle. Preservation levels are also documented in the LIMS bench sheet by adjusting the initial and final volumes. For example, a sample preserved at 2 % BrCl must say "2" on the LIMS label, and have an initial volume of 100mL and a final volume of 102mL in the bench sheet.
- 12.2 All samples should be collected utilizing clean techniques, so as not to cross-contaminate samples with mercury. See FGS-008 "Ultra Clean Aqueous Sample Collection" and EPA Method 1669 for aqueous sample techniques.

13 Apparatus and Equipment:

- 13.1 LIMS Element, version 5.85 or higher; Computer Windows XP, 7 or 8
- 13.2 Tekran 2500 Atomic Fluorescence Spectrophotometer (AFS) or equilivalent: A high sensitivity AFS Detector (IDL<1pg) with a required wavelength of 253.7 nm and associated software.
- 13.3 Flow meter/needle valve: A unit capable of controlling and measuring gas flow to the cold vapor generator at 200-500 mL/min.
- 13.4 Teflon Fittings: Connections between components and columns are made using Teflon FEP tubing and Teflon friction fit tubing connectors.
- 13.5 Soda-Lime pre-trap: A 10cm x 0.9cm diameter Teflon tube containing 2-3 g of reagent grade, non-indicating 8-14 mesh soda-lime (Ca(OH)₂+NaOH) aggregates, packed between portions of silanized glass wool. This trap is purged of mercury by placing it on the output of a clean cold vapor generator and purging it with ~3-5% HCl and ~600 μL of SnCl₂ for approximately 20 minutes with N₂ at 40 mL/min.
- 13.6 Cold-vapor generator (bubbler): A 150 mL, tall, flat-bottom borosilicate flask with standard taper 24/40 neck, fitted with a sparger having a coarse glass frit which extends to within 0.2 cm of the flask bottom.
- 13.7 Gold Traps: Made from 12 cm lengths of 6 mm OD quartz tubing, with a 4-way crimp 3.0 cm from one end. The tube is filled with approximately 2.5 cm of 20/40 mesh gold-coated quartz sand, the end of which is then plugged with quartz wool. Gold-coated sand traps are heated to 450-500°C (the coil should have a barely visible red glow when the room is darkened) with a coil consisting of 75 cm of 24-gauge nichrome wire at a potential of 10 VAC. Potential is applied and finely adjusted with an auto-transformer. Refer to SOP FGS-061 regarding the construction of gold traps used for total mercury analysis.
- 13.8 Agilent Integrator Recorder or equivalent: Any multi-range chart recorder or integrator with 0.1-5.0 mV input and variable speeds is acceptable. Data capture software may also be used.
- 13.9 Pipettes: Calibrated variable pipettes with a range of 5 µL 10 mL. Used to make solutions and sample dilutions. Pipettes are to be calibrated weekly according to SOP FGS-003 and FGS-155.

14 Reagents and Standards:

All reagents, except those made daily, must be entered into LIMS

Eurofins Document Reference: EFGS-SOP-137-R02

14.1 Reagent Water: 18-MΩ ultra pure deionized water starting from a pre-purified (distilled, R.O., etc.) source is used. To remove any remaining trace metals and organics, an activated carbon cartridge is placed between the final ion exchange bed and the 0.2-μm filter. Reagent water used in the mercury lab is checked weekly for total mercury concentrations, and must test below 0.25ng/L.

- 14.2 <u>Hydrochloric Acid (HCI):</u> Concentrated (36-38% weight basis). Must be trace-metal purified and reagent grade. HCl is typically monitored through performance of the BrCl. Sometimes it will be necessary to test the HCl directly. To do so, add 1 mL, using a calibrated pipette, of HCl to approximately 100mL of purged bubbler water. Enter 1mL as aliquot in the Excel spreadsheet. Do not prep blank correct. Analyze one replicate per bottle. This reagent should test below 5.0 ng/L. This solution is considered stable until the expiration date on the bottle, set by the manufacturer.
- 14.3 0.2N Bromine Monochloride (BrCI):
 - 14.3.1 37.5 g of KBr is added to a 2.5-L bottle of concentrated HCl (pre-analyzed and found to be below 0.25 ng/L Hg). The bottle is then inverted in a fume hood to mix the acid and KBr. The solution then sits overnight allowing for the KBr to be dissolved.
 - 14.3.2 27.5 g of KBrO₃, certified to be low in Hg, is slowly added to the acid. When all of the KBrO₃ has been added, the solution should have gone from yellow to red to orange.
 - 14.3.3 Loosely cap the bottle, and allow to sit for 30 minutes in a fume hood before tightening the lid. Once capped invert bottle to make sure all of the solids goes into solution. CAUTION: This process generates copious quantities of free halogens (Cl₂, Br₂, BrCl) which are released from the bottle. Add the KBrO₃ SLOWLY and in a well operating fume hood.
 - 14.3.3.1 To test the BrCl, add 1 mL, using a calibrated pipette, of the BrCl to a prep blank vial containing approximately 4 mL reagent water. Add 200 µL Hydroxylamine-HCl to the vial; pour the entire contents into a bubbler containing approximately 100 mL of purged water. Assume a 100 mL aliquot in the Excel spreadsheet. This reagent must test below 0.20ng/L. Do not prep blank correct. Analyze one replicate per bottle.
 - 14.3.3.2 The expiration time for this reagent is set by default to six months in LIMS. There is no suggested holding time in EPA method 1631E, therefore the holding time can be extended, as long as the primary reagent has not expired. The mercury concentration of the BrCl is monitored through the preparation of water preparation blanks.
- 14.4 <u>Hydroxylamine hydrochloride</u>: dissolve 300g of NH₂OH-HCl in reagent water and bring the volume up to 1L. This solution may be purified by the addition of 1mL SnCl₂ solution and purging overnight at 500mL/min with mercury-free N₂. The working reagent is a 25% solution that is made by adding one part reagent water to one part 50% hydroxylamine hydrochloride. This reagent must test below 0.25ng/L.
 - 14.4.1 To test the Hydroxylamine-HCl (NH₂OH-HCl), add 1 mL of the 50% reagent, using a calibrated pipette, to approximately 100 mL of purged bubbler water.

and CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

Assume a 100 mL aliquot in the Excel spreadsheet. This reagent must test below 0.20 ng/L. Do not prep blank correct. Analyze one replicate per bottle.

- 14.4.2 The expiration time for this reagent is set by default to six months in LIMS. There is no suggested holding time in EPA method 1631E; therefore the holding time can be extended, as long as the primary reagent has not expired.
- 14.5 Stannous Chloride (SnCl₂): Weigh out 500 g SnCl₂ using a calibrated balance that also has been verified for the day. Dissolve with three 100 mL aliquots of concentrated HCl and transfer to a 1L I-CHEM glass bottle, which contains approximately 300 mL of reagent water. Bring this solution up to approximately 1 L of volume and purge overnight with mercury-free N₂ at 500 mL/min to remove all traces of mercury. Store tightly capped. The working reagent is a 25 % solution that is made by adding one part reagent water to one part 50 % stannous chloride.
 - 14.5.1 To test the Stannous Chloride (SnCl₂), add 1 mL of the 50% reagent, using a calibrated pipette, to approximately 100 mL of purged bubbler water. Assume a 100 mL aliquot in the spreadsheet. This reagent must test below 0.20 ng/L. Do not prep blank correct. Analyze one replicate per bottle.
 - 14.5.2 The expiration time for this reagent by default is set to six months in LIMS. There is no suggested holding time in EPA method 1631E; therefore the holding time can be extended, as long as the primary reagent has not expired.
- 14.6 Argon Grade 4.7 or better (ultra high-purity grade): Argon that has been further purified by the removal of mercury using a gold trap that is located in line between the gas output and the analyzer gas input.
- 14.7 Nitrogen Grade 4.5 (standard laboratory grade): Nitrogen that can be further purified of mercury using a gold trap that is located in line between the gas output and bubbler
- 14.8 Preparation of Total Mercury Standard Solutions:
 - 14.8.1 Mercury standard solutions are prepared in ultra clean volumetric glassware and gravimetrically calibrated pipettes. Resulting solutions must be stored in glass or Teflon bottles and preserved to at least 2 % BrCl. All working standards must be tested prior to use.
 - 14.8.1.1 New working standards and standard dilutions are tested prior to use. Three reps of the new standard are analyzed in the same run as three reps of the current NIST 1641D standard. Analyze 200 µl of the NIST 1641D and assume 100 ml in the bubbler. The mean percent recovery of the three standards should be ±5 % (95-105 %) of the true value and also within 5 % of the average NIST 1641D recovery (e.g. If the average of NIST 1641D recovery is 97 %, the range for the standard is 95-102 %). If the standard does not test within this control limit, it is retested. If it still does not meet the control limit, it is discarded and remade, unless otherwise approved by the Quality Assurance Officer. NOTE: When making serial dilutions to create various standard levels; the lowest concentration may be used to test any of the higher concentration steps (for example: if a 10ng/mL calibration standard is created from a 1000ng/mL spiking standard, only the 10ng/mL standard requires testing.

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E) Eurofins Document Reference: EFGS-SOP-137-R02

If the 10ng/mL standard passes, then both standards are considered to be passing within the control limits.)

- 14.8.2 Total Mercury Stock Standard Solution (Stock): Certified mercury standard purchased from High Purity Standards (1000 μg/mL (1 000 000 ng/mL) primary source) or Absolute Standards (100 μg/mL (100 000 ng/mL) secondary source), or any equivalent standard.
- 14.8.3 Total Mercury Spiking Standard Solutions (Spiking Standard): Spiking standards are made from either the primary or secondary sources.
 - 14.8.3.1 To make standards, use an ultra clean volumetric flask and a calibrated pipette. Add reagent water until flask is about half full. Add 2 % 0.2N BrCl and the specific spike volume noted below (these volumes may be changed as long as ratio and resulting concentration remains the same). Bring up to the mark with reagent water and mix well prior to testing. When spiking samples, no more than 200 μL of any spiking standard is added to the sample to minimize effects on volume. It is also recommended that staff pipette no less than 25 μL. If possible, minimize headspace during standard storage. Expiration date is currently set at 6 months or when the stock standard expires, whichever is shorter.
 - 14.8.3.2 100,000 ng/mL Spiking Standard: Made from the Primary Stock Standard (High Purity, or equivalent vendor). Dilute 10 mL of the stock standard to 100 mL of reagent water containing 2 % BrCl. (Can also be made by preserving Secondary Stock Standard to 2% BrCl).
 - 14.8.3.3 10,000 ng/mL Spiking Standard: If made from the Primary Stock Standard (High Purity, or equivalent vendor). Dilute 1.0 mL of the stock standard to 100 mL of reagent water containing 2 % BrCl. If made from Secondary Stock Standard, dilute 10mL of stock standard to 100mL with reagent water containing 2% BrCl.
 - 14.8.3.4 1,000 ng/mL Spiking Standard: If made from the Primary Stock Standard (High Purity, or equivalent vendor). Dilute 0.250 mL of the stock standard to 250 mL RO water containing 2 % BrCl. If made from Secondary Stock Standard dilute 2.5mL of stock standard to 250mL with RO water containing 2% BrCl.
 - 14.8.3.5 100 ng/mL Spiking Standard: Made from a stock standard or dilution of a stock standard with a concentration of 100,000 ng/mL. Dilute 0.100 mL of the 100,000 ng/mL dilution to 100 mL of reagent water containing 2 % BrCl. Expiration date is currently set at 3 months or when the stock standard expires, whichever is shorter.
- 14.8.4 Calibration Standard (10 ng/mL): Must be made from a dilution of the Primary Stock Standard (High Purity, or equivalent vendor). Typically made by diluting 0.5mL of a 10,000 ng/mL Primary Spiking Standard to 500 mL of reagent water containing 2 % BrCl. Transfer to glass or Teflon bottle. The calibration standard is considered stable for three months or until the stock standard expires.

Frontier Global Sciences

- 14.8.5 Calibration Standard (1 ng/mL): Must be made from a dilution of a Primary Stock Standard. Typically made by diluting 1.0mL of a 100 ng/mL Primary Spiking Standard to 100mL with Reagent water containing 2% BrCl.
- 14.8.6 Initial Calibration Verification (ICV): A 10 ng/mL ICV solution is prepared using the Secondary Stock Standard (Absolute Standards, or equivalent vendor). Use 0.100 mL (100 μL) of the Secondary Stock Standard to 1000 mL Milli-Q containing 2 % BrCl. Transfer to one 1000 mL glass or Teflon bottle. The ICV standard is considered stable for three months or until the stock standard expires. It is recommended to alternate expiration date with the CAL standard.
- 14.8.7 Continuing Calibration Verification (CCV): For CCV analysis, use 200 µL of the 10 ng/mL CAL standard (documented in LIMS as SEQ-CAL3). The True Value is 20 ng/L.
- 14.8.8 Certified Reference Material (CRM) for Total Mercury in Water: A 1.5679 mg/L solution (1.557 mg/kg at a density of 1.007 g/mL) is prepared by adding a 5.0 mL of CRM NIST 1641d (from ampoule) into a 1000 mL flask containing of reagent water. This solution is diluted to 1000 mL, and an additional 10 mL of 0.2N BrCl is added, resulting in a final volume of 1010 mL. Preparing the solution in this manner makes a 1:200 dilution of the stock CRM. This solution is considered stable for one year, or until the stock standard expires. Results are corrected for the additional 1 % BrCl in the analysis Excel spreadsheet and in LIMS.
- 14.8.9 Ongoing Precision and Recovery (OPR) for "Strict" 1631E: A 5.0 ng/L solution is prepared by adding 100 μL of the 100 ng/mL secondary spiking standard into 2000 mL reagent water. An additional 1 % BrCl (20 mL) of BrCl is added, so that the final volume is 2020 mL. This standard is analyzed at 100 mL at the instrument, and preparation blank corrected exactly in the same manner as samples
- 14.9 Documentation of Standards and Reagents:
 - 14.9.1 Standards and Reagents are documented in LIMS upon receipt or creation. A LIMS generated label is affixed to each standard and reagent that has the name of the solution, the person who prepared or received it, the date it was prepared or received, and the expiration date.
 - 14.9.2 Each bottle of standard must be labeled with the following: the date of receipt or creation, the initials (or name) of who entered the standard into LIMS, the concentration and analyte, the expiration date and the LIMS ID. This information must also appear on the certificate of analysis of stock standards.
 - 14.9.3 Stock standards and CRMs are logged into LIMS upon receipt by Shipping and Receiving (S&R) or the Quality Assurance department (QA). These do not require testing, provided there is a Certificate of Analysis on file in QA. When receiving a solid CRM, QA shall generate a work order in LIMS for total solids analysis.
 - 14.9.4 For all standards, LIMS documentation must include the following: a description of the standard, department, expiration date of the standard (not to exceed the expiration of the parent standard), the name of the person who made (or

Document Title:

Eurofins Document Reference: Mercury in Water by Oxidation, Purge & Trap EFGS-SOP-137-R02 and CV-AFS (EPA Method 1631, Rev E)

received) the standard or reagent, the date it was prepared (or received), final volume, a reference date (date entered into LIMS), concentration units (µg/mL), the vendor and vendor lot. The solvent lot is used to document the Lot Number or LIMS ID of the BrCl that was used. In the comments section, the analyst must enter the sequence and applicable results for documentation of standard testing. Other notes may be entered in here as well. The correct parent standard must be noted, as well as the amount used. Analytes are entered individually from the list. LIMS will calculate the true value of the standard based on the amount of the parent used and the final volume. Click the appropriate radio button under Standard type. A Spike Mix is a standard that is used in a bench sheet, and a Calibration standard is a standard used only in sequences. A Reference Standard is a Certified Reference Material (CRM). The standard must not be used until it has passed control limits and is approved by the mercury supervisor, mercury laboratory manager, or QA for use.

- 14.9.4.1 If the new standard is a calibration standard, a separate standard ID must be created for each calibration point based on the final concentration in the sequence (example: THg CAL1 0.10 ng or THg CAL2 0.50 ng). These are given the same expiration as the standard they are made from, and will need to be generated every three months as each new working calibration standard is made and tested.
- 14.9.4.2 To generate new "CAL" standards in LIMS, go to the Laboratory drop down menu and select Standards. Open the current CAL1 standard and click "Copy". Update the appropriate information, including the Prepared Date, Expiration Date, Prepared By, and the Reference Date. For these standards, which are to be used in the sequence, the final volume is equal to the assumed aliquot in the bubbler (100 mL). Check that the vendor lot is correct. Remove the old (expired) parent standard. Choose the new parent standard, and enter the amount of standard added to the bubbler for that calibration point. All depleted or expired standards are moved into the Expired Standards Department once they are no longer being used.
- 14.9.4.3 Each bottle of standard must be labeled with the following: the date of receipt or creation, the initials (or name) of who entered the standard into LIMS, the concentration and analyte, the expiration date and the LIMS ID. This information must also appear on the certificate of analysis of stock standards.
- Neat reagents are logged into LIMS with a unique identifier upon receipt by 14.9.5 Shipping and Receiving Department and given a default expiration of 3 years. unless otherwise noted by the manufacturer.
- Working reagents are prepared by the analyst, logged into LIMS and assigned 14.9.6 a unique identifier. Reagents entered into LIMS must have the information listed in section 14.9.2. In addition the parent neat reagents are added by their unique identifier and the amount of each reagent is entered. It is not necessary to enter analytes from the list for reagents. The Solvent Lot is not applicable to working reagents. The radio button must be clicked to Reagent. If the reagent

Revision: 2 Effective Date: 6/17/2013 Page 16 of 27

Document Title: Mercury in Water by Oxidation, Purge & Tran

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E) Eurofins Document Reference: EFGS-SOP-137-R02

🔆 curofins | Frontier Global Sciences

requires testing, it must test clean prior to using. All reagents used during analysis and prep should be added to bench sheet.

14.9.7 Depleted or expired standards and reagents are segregated and removed from use.

15 Calibration:

- The analyst should label the strip chart/integrator printout with the corresponding dataset ID as well as print and sign their name. For strip chart printouts, the analyst should label the baseline ratios accordingly (usually X=1 and X=20) and label with the analysis day start time and strip chart drum speed (usually 1 mm/min). The analyst should note the end time as well. If using an integrator, the date and time should be checked and corrected if necessary.
- The calibration sequence determines the range of sample concentrations that are reportable. The calibration sequence starts with a 5-point curve using the total mercury calibration standard solution. The five points are: 0.05ng (0.50 ng/L), 0.10 ng (1.00 ng/L), 0.50 ng (5.00 ng/L), 2.00 ng (20.00 ng/L), and 4.00 ng (40.0 ng/L). An ICV/OPR and IBLs (one for every bubbler used are analyzed immediately following the standard curve.
 - 15.2.1 Using the 10 ng/mŁ calibration standard, add 5 μL, 10 μŁ, 50 μL, and 200 μL to the bubblers sequentially from the left to right. Add 300 μL SnCl₂ to the bubblers and seal bubbler tops using Keck Clips.
 - 15.2.2 Place blanked gold traps securely at the end of soda-lime traps (pinched section of gold trap closest to the soda-lime trap). Purge bubblers with N₂ for a minimum of 20 minutes.
 - 15.2.3 Attach individual gold traps to the analytical train and burn in sequential order. Peaks produced should be labelled, as well as recorded in the Excel spreadsheet in real time.
- 15.3 For the second round, add 400 μL of the 10 ng/mL mercury calibration standard to the first bubbler. Add 50μL of the 10 ng/mL ICV(OPR) standard to the second bubbler (5.0 ng/L). The third and fourth bubblers are used for the first and second IBLs and nothing should be added to these bubblers. To ensure that nothing is added, keep it sealed with a Keck Clip. Add 300 μL SnCl₂ to all bubblers except the fourth and seal bubbler tops with Keck Clips.
- 15.4 For the third round, use the first and second bubbler to finish the IBLs needed for 1631. The third and fourth bubbler can be used for the first portion of the batch. If the curve does not pass or needs to be investigated any batch portions analyzed in this round will need to be reanalyzed.
- Once the instrument is calibrated and the ICV/IBLs are analyzed and judged to be in control, the instrument is operational. The sample concentrations must fall within the range of the calibration standards or be diluted and reanalyzed.
- 15.6 The purge efficiency of the bubbler system is 100 % and is independent of volume at the volumes used in this method. Calibration of this system is typically performed using units of mass. For purposes of working in concentration, the volume is assumed to be 100 mL.

Document Title: Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

15.7 This completes the instrument calibration for total mercury analysis.

16 Procedure:

- 16.1 When analyzing on the Tekran 2600, follow the procedure in EFGS-121 while still adhering to the QA/QC criteria of this method.
- 16.2 Pre-analysis and Organization:
 - 16.2.1 Prior to analyzing samples it is imperative to reference LIMS for all project specific information, such as QC requirements, suggested dilutions, project manager information, and specifics regarding spike levels.
 - 16.2.2 The analyst should then locate samples and check the work order in LIMS for notes about specific project requirements.
 - 16.2.3 The analyst should compare the sample IDs to the work order and see that the samples are accounted for, and notify the project manager of any discrepancies in analysis required, sample identification, etc.
 - All mercury analyses receive a unique dataset identifier. This is comprised of the instrument type and number, the date and the calibration number for that day. The format is as follows: THg8-091218-1, where "THg "refers to a total mercury analysis; "8" refers to the analyzer number 8; 091218 refers to the date (December 18, 2009 in the YYMMDD format); and "1" refers to the first calibration of the day.

The sequence number is assigned by LIMS when the data gets imported into LIMS. The alpha-numeric code is based on the following format: 3B02001, where the 3 refers to the year (2013), the "B" is the month (A= January, B=February...L=December), "02" is the day of the month (February 2nd) and the final 3 digits is the nth sequence created on that particular year/month/day combination.

- 16.2.5 In general, the analyst should organize their samples in the order listed on the bench sheet. The first samples analyzed should be the preparation blanks, then the LCS if analyzing solid samples, followed by actual samples. If possible, run total and dissolved samples side by side to facilitate verification that total concentration is greater than dissolved concentration. See QA section.
- 16.2.6 All samples specified as being *High QA* should be analyzed prior to any Standard QA projects that are being analyzed on the same instrument on the same day. However, if concentrations are known, analyze samples with low concentrations prior to samples with high concentrations

16.3 Instrument Start Up:

16.3.1 Begin blanking gold traps. To do this, attach one trap at a time to the analytical train and burn to the instrument. Ensure the Argon is flowing at appropriate levels (~25-40 mL/min). The pinched portion of the gold trap should be on the left (closest to the analytical trap). Continue to burn traps in sequential order.

Eurofins Document Reference: EFGS-SOP-137-R02

- Rinse out the bubbler three times with reagent water and fill with about 100 mL of reagent water. Using a pre-purged pipette, add 3-5 mL HCl. Initially add 600 μL of SnCl₂.
- 16.3.3 Prepare one soda-lime trap for each bubbler. To prepare soda-lime traps, hold soda-lime between two glass wool plugs in a Teflon tube. Cap the tubes with Teflon plugs and attach to the bubbler. Once the soda-lime traps have been attached, the bubbler system (soda lime trap and bubbler water/acid/ SnCl₂) must purge for a minimum of 20 minutes before beginning the instrument calibration sequence.

16.4 Analyzing Aqueous Samples:

- 16.4.1 All aqueous samples should be preserved with BrCl according to FGS-012 at least 24 hours prior to analysis. In the event a sample requires further oxidation prior to analysis, additional BrCl is added and the sample should not be analyzed for at least 12 additional hours. In special cases where rush turn-around-time is required and an oxidation period of less than 24 hours may be used, a heated oven digestion procedure can be utilized.
- 16.4.2 While bubbling and burning the standard curve, the analyst should prepare a minimum of three BrCl method blanks (BLK) at 1% BrCl. Add 1 mL BrCl and 200 μL hydroxylamine hydrochloride (NH₂OH-HCl) to each bubbler. The aliquot is assumed to be 100 mL. Any sample requiring an increased amount of reagent must be accompanied by at least one method blank that includes an identical amount of reagent.
- 16.4.3 After the instrument calibration sequence, preparation blanks and the LCS/LCSD are analyzed.
- 16.4.4 All known field, equipment, and trip blanks should be analyzed before any other sample types, usually after the BLKs. Aliquots of 100 mL should be analyzed, provided there is adequate collected sample volume. Sample aliquot sizes of 125 mL can be analyzed upon request by the project manager.
- 16.4.5 For all waters, select the appropriate dilution (refer to LIMS, historical data, etc.).
 - 16.4.5.1 For sample aliquots of 25 μL to 10.0 mL, use calibrated pipettes to dispense the aliquots directly into bubbler. Due to minimal amounts of BrCl in aliquots of 10 mL or less, NH₂OH-HCl is not added. It is highly recommended that the analyst should not pipette less than 25 μL. A dilution of the sample should be made to allow a larger aliquot to be analyzed.
 - 16.4.5.2 For sample aliquots greater that 10 mL, gravimetrically weigh out the selected volume (±0.2 g) into a clean 125 mL Teflon bottle. Once quantity is weighed out, neutralize BrCl with 200 μL NH₂OH-HCl no more than five minutes prior to adding the sample to bubblers. The sample should turn from a yellowish color to a clear/cloudy solution, depending on the matrix.
- 16.4.6 If the material is a seawater or highly dense liquid, it may be necessary to account for the density if the aliquot is gravimetrically determined. Density

Document Title:

Frontier Global Sciences and C

checks can be performed at the time of analysis to determine if further determinations are necessary.

- 16.4.7 The procedure for analysis is similar to that of the calibration. Samples to be analyzed are pipetted or poured into the bubbler (one sample per bubbler) along with 300µL SnCl₂. Bubbler tops are sealed with Keck Clips to ensure nominal sample leakage. Blanked gold traps are securely placed at the end of the soda-lime trap. Purge bubblers with N₂ for a minimum of 20 minutes, remove gold traps, and sequentially place in the analytical train. Burn individual traps to analyzer, labeling resulting peaks with corresponding sample in real time.
 - 16.4.7.1 Sample IDs, aliquot volume, BrCl percentage (group ID), peak height/peak area, and dilution factor (if applicable) associated with each sample should be entered into the THg Waters Template Excel spreadsheet.
 - 16.4.7.2 While purging one set of samples, the analyst should begin preparing the next round of water samples in the same fashion to maximize efficiency.
- 16.5 End of analysis close-down procedure:
 - 16.5.1 Turn off gas flow.
 - 16.5.2 Carryout all end of day cleaning and restocking tasks.
- 16.6 The analytical data is compiled into an Excel file. The data is then copied and pasted into an Excel template that is LIMS compatible.
- 16.7 Maintenance and Troubleshooting
 - 16.7.1 ISSUE: No peaks at all
 - 16.7.1.1 Ensure that the system is powered.
 - 16.7.2 ISSUE: Low sensitivity
 - 16.7.2.1 Make sure that you have freshly changed soda lime in the soda lime trap, and that it is from a good source.
 - 16.7.2.2 Do not use old calibration standards to calibrate the system.
 - 16.7.2.3 Make sure you are running fresh SnCl₂ solution.
 - 16.7.2.4 Make sure that your stock Hg standard has not expired and is from a reliable source and that it is not compromised.
 - 16.7.2.5 Check the lamp voltage
 - 16.7.3 ISSUE: High blanks

16.7.3.2 Check for system contamination

16.7.4 ISSUE: Nonlinearity of the calibration curve

16.7.4.1 Check and investigate high blanks.

16.7.4.2 Contaminated and expired soda lime. Change soda lime.

16.7.4.3 Make sure your calibration standards are fresh and properly prepared.

17 Calculations:

- 17.1 Average all instrument blanks (PH_X) using the peak area values from the TekMDS software. Subtract the average (IB) from the peak area for each standard and sample.
- 17.2 Calculate the calibration factor (CF_x) for mercury in each of the five standards using the mean instrument-blank-subtracted peak area and the following equation:

$$CF_x = PA_x - IB / C_x$$

Where:

- 17.2.1 PAx=peak area (or peak height) for mercury in standard
- 17.2.2 IB= mean peak height (or peak area) for mercury in bubbler blank
- 17.2.3 Cx=mass in standard analyzed (ng/L)
- 17.2.4 CFx=Calibration Factor of each concentration
 - 17.2.4.1 Average the five calibration factors to establish mean value: CF(Avg) (units/ng/L).
- 17.3 Sample results are then corrected for the average peak area values of at least three preparation blanks (PBs), unless otherwise requested. This result is shown as the Initial Result on the Excel spreadsheet and in LIMS.
- 17.4 Total Mercury in Water:

Instrument Value (ng/L) = (Peak Height – BB) / CF(Avg)

Final Result (ng/L) = [(Instrument Value x DF) – (BLK)] x (Vf /Vi)

Where:

- 17.4.1 $CF_{(avg)}$ = average calibration factor for curve (in units/ng/L).
- 17.4.2 BB = average bubbler blank peak area or peak height (in units)
- 17.4.3 V_f = Final volume of sample (in mL) from bench sheet.
- 17.4.4 V_i = initial volume of sample analyzed in mL prior to addition of BrCl.
- 17.4.5 DF = Dilution Factor takes into account any instrumental dilution of the sample

🤌 eurofins		Document Title:
& caronins	·	Mercury in Water by Oxidation, Purge & Tra
	Frontier Global Sciences	and CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

17.4.6 BLK = average of the preparation blanks in ng/L.

17.5 A linear regression can be used as alternate calibration. A linear regression will not change values significantly. If linear regression is used, the correlation coefficient (R) must be ≥0.995.

18 Statistical Information/Method Performance:

- 18.1 The Method Detection Limit (MDL) is determined according to 40 CFR Part 136 Section B. Ten replicates (9 degrees of freedom) spiked 3-10 times the expected MDL are run. The standard deviation (s) is taken from the resulting data and the MDL is calculated as follows: MDL=2.821*s. This value should not be interpreted as the method reporting limit.
- 18.2 The Practical Quantitation Limit (PQL) is the reporting limit for this method and is included as the lowest calibration point (2003 NELAC regulation 5.5.5.2.2.1.h.3). The PQL is determined by running ten samples with a concentration that will produce a recovery of 70-130 %. The PQL is referred to as the Method Reporting Limit (MRL) in LIMS.
- 18.3 Using clean handling techniques and reagents tested low for Hg content, the LOD value for Total Hg in water is typically less than 0.2 ng/L, while the PQL is 0.50 ng/L.
- 18.4 Current LODs, LOQs, MDLs, and PQLs are stored at: Cuprum\General and Admin\Quality Assurance\MDLs & PQLs.

19 Quality Assurance/Quality Control:

- 19.1 A minimum of three preparation blanks and one LCS/LCSD (preferably NIST 1641d), must be analyzed per preparation batch. The upper control limit for each preparation blank is equal to the PQL.
- 19.2 Matrix Spikes: One Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be performed for every 10 samples. The recovery of the MS/MSD must be between 71%-125% recovery, and the Relative Percent Difference (RPD) below 24%. If an MS/MSD is out of control, the analyst should investigate to identify the source of the failure. The MS and MSD may be used as duplicates. Some failures may be qualified using QA Qualification Flow Charts (Appendix A).
 - 19.2.1 For aqueous samples, the MS/MSD is spiked at 1 to 5 times the ambient concentration, with 0.25 ng, in the bubbler, being the minimum spiking level. Sample aliquots for the MS/MSD should be the same as the ambient sample aliquot, if sufficient sample volume exists. Spikes are added to the split aliquots for volumes of 10mL or greater. For less than 10mL aliquots, spikes are added directly to the bubbler. NEVER ADD SPIKE DIRECTLY TO THE ORIGINAL SAMPLE VESSEL UNLESS OTHERWISE STATED.
- 19.3 Matrix Duplicates One Matrix Duplicate (MD) may be analyzed for every batch of 20 samples. Upon request, a Matrix Triplicate (MT) may be performed. The MSD may serve as the MD if necessary. The Relative Percent Difference (RPD) and the Relative Standard Deviation (RSD) of duplicate samples must be less than 24%. Some failures may be qualified using QA Qualification Flow Charts.

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E) Eurofins Document Reference: EFGS-SOP-137-R02

- 19.3.1 For aqueous samples, analyze the parent, duplicate and triplicate at the same dilution.
- 19.4 Laboratory Control Standard (LCS) or Quality Control Sample (QCS): For every batch of samples, at least one LCS is processed and analyzed. The recovery of the LCS must be within 80-120% for the aqueous NIST 1641d. An LCS Duplicate (LCSD) should accompany the LCS.
 - 19.4.1 A Certified Reference Material (CRM) is the preferred LCS, but a Blank Spike may serve as an LCS if an appropriate CRM does not exist. The spiking level is based on client request, historical data, or a default of mid-curve. A duplicate blank spike must also be prepared as an LCSD.
- 19.5 Ongoing Precision and Recovery (OPR): An OPR must be analyzed at the beginning and end of each analytical batch, or at the end of each 12-hour shift. The recovery of the OPR must be within 77-123% to be considered in control.
- 19.6 All calibration standards must be traceable to the original standard source. The calibration curve must be established at the beginning of the analytical run. It must include at least five different concentrations, with the lowest concentration equal to the PQL. The average response factor of each calibration standard is used to calculate the sample values. The RSD of the response factors must be less than 15% of the mean or the calibration fails.
- 19.7 ICV and CCV control limit is 77-123%. The CCV is analyzed every 10 analyses, and at the end of an analytical run. CCBs are always analyzed after the CCVs.
- 19.8 Field Blanks: To be compliant with EPA 1631, clients must submit a field blank for each set of samples (samples collected from the same site at the same time, to a maximum of 10 samples).
 - 19.8.1 If no field blanks are submitted by the client, their data will be flagged with "FB-1631." "Required equipment/field/filter blank not submitted by the client. The sample has been analyzed according to 1631E, but does not meet 1631E criteria."
- 19.9 Method or Preparation Blanks (BLK): Method blanks are used to demonstrate that the analytical system is free from contamination that could otherwise compromise sample results. Method blanks are prepared and analyzed using sample containers, labware, reagents, and analytical procedures identical to those used to prepare and analyze the samples.
 - 19.9.1 A minimum of three 1 % BrCl method blanks per analytical batch are required. Any sample requiring an increased amount of reagent must be accompanied by at least one method blank that includes an identical amount of reagent.
 - 19.9.2 If the result for any 1 % BrCl method blank is found to contain ≥0.50 ng/L Hg (0.25 ng/L for DOD), the system is out of control. Mercury in the analytical system must be reduced until a method blank is free of contamination at the 0.50 ng/L level.
 - 19.9.3 For method blanks containing more than 1% BrCl, the control limit is equal to 0.50 ng/L multiplied by the final preservation percentage of BrCl. For example, for a method blank preserved to 2 % BrCl, the control limit for the blank is 0.50

Document Title: Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E)

Eurofins Document Reference: EFGS-SOP-137-R02

ng/L * (102/101), or 0.50 ng/L. For 3% BrCl the control limit is (103/101)*0.50ng/L, or 0.51ng/L.

- 19.10 Instrument Blanks (IBL): A minimum of three instrument blanks must be analyzed with each analytical batch. To analyze an instrument blank, attach a clean gold trap to the bubbler. Purge and analyze as previously described and determine the amount of Hg remaining in the system.
 - 19.10.1 An instrument blank must be performed on all bubblers used during the analytical run (normally four, but three at a minimum).
 - 19.10.2 If the instrument blank is found to contain more than 0.50ng/L, the system is out of control. The problem must be investigated and remedied and the samples run on that bubbler must be reanalyzed. If the blanks from other bubblers contain less than 0.50 ng/L, the data associated with those bubblers remain valid, provided that all other QC criteria are met.
 - 19.10.2.1.1 The mean result for all instrument blanks must be <0.25ng/L with a standard deviation of 0.10 ng/L.
- 19.11 The analytical day must close with a CCV/OPR/CCB.
- 19.12 Because the method is done in real-time, it is EFGS' position that a single non-compliant QC sample result does not automatically invalidate a data set. All data points that can be explained and rerun with a passing result can be qualified. If the source of error cannot be corrected for a QC standard that day, none of the data can be validated. In the event that the system becomes out of control during the analysis day, all results bracketed between valid QC data points shall still be considered valid (CCV, OPR, CCB, etc).
- 19.13 The Control Limits are established from EPA 1631E.

20 Corrective Action

- 20.1 The data is reviewed as in the QC section (or matrix specific QC section) for all parameters that pass specific requirements. If the data does not meet QC requirements it is qualified or submitted for reruns. Data may be qualified (based on scientific peer review) by the Group Supervisor, Project Manager, Lab Manager, or QA Officer.
- 20.2 Control Chart data is generated through LIMS to monitor the performance of the CCV, LCS, MS, and MSD. This is done by the QA department.
- 20.3 Due to the real-time nature of the CVAFS method, failures must be investigated as they happen. If the source of the problem can be identified, and corrected, the samples may be rerun. If source of problem cannot be isolated, see the Senior Analyst, Group Supervisor, or Laboratory Manager for instructions.
- 20.4 The Senior Analyst, Group Supervisor, Laboratory Manager, or QA Officer must be informed if QC fails. It is also advisable to always alert the Project Managers.

eurofins | Frontier Global Sciences

Document Title:

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E) Eurofins Document Reference: EFGS-SOP-137-R02

21 List of Attachments

Table 1: QC Requirements for Total Mercury

Appendix A: Example - Standard Operating Procedure Training Record

Table 1: QC Requirements for Total Mercury

QC Parameter	Acceptance Criteria
Initial Calibration Verification (ICV)	77-123% Recovery
Continuing Calibration Verification (CCV)	77-123% Recovery
Ongoing Precision and Recovery (OPR)	77-123% Recovery
Initial Calibration Blank (ICB)/ Continuing Calibration Blank (CCB)	Individually, IBL and CCB ≤0.50ng/L, but the mean of all the IBLs shall be <0.25ng/L with a standard deviation of 0.10ng/L.
Laboratory Control Standard (LCS) or Quality Control Standard (QCS)	80-120% Recovery for NIST1641d and 75-125% for all other CRMs. RSD<24%
Calibration Curve RSD (Referred to as "Corr. RSD CF" in Excel spreadsheet).	RSD of Calibration Response Factor ≤15%
Lowest Calibration Point	75-125%
1% BrCl Method Blank (BLK)	Less than 0.50ng/L (0.25ng/L for DOD projects) (individually)
Matrix Duplicate (MD) and Analytical Duplicate (AD)	< 24% RPD
Matrix Spike and Matrix Spike Duplicate (MS/MSD); Analytical Spike (AS) and Analytical Spike Duplicate (ASD)	71-125% Recovery < 24% RPD

Document Title:

By signing this document, I the employee, certifies to have read, understood and agreed to follow

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E) Eurofins Document Reference: EFGS-SOP-137-R02

Appendix A: Example - Standard Operating Procedure Training Record

the test method and quality procedure as described in this procedure.

Reading of SOP FGS-137.02:

Mercury in Water by Oxidation, Purge & Trap and CV-AFS (EPA Method 1631, Rev E.

SOP name and Revision number

Employee name (print)

Date:

Initial SOP Training (leave blank if not applicable)

Initial reading of method and training	Initials	Date	Supervisor
1. Read method			
2. Observe the method			
3. Detailed review of method and associated literature			
4. Supervised practice of method with trainer			
5. Unsupervised practice of the method with trainer			
6. Review of work with trainer and/or peer-review		1	
7. IDOC to determine precision and accuracy			
8. Determination of blanks			

	Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)	
--	--	--

Eurofins Document Reference	EFGS-SOP-011-R05	Revision	5
Effective Date	5/20/2013	Status	Final
Historical/Local Document Number	FGS-SOP-011.05	•	1
Local Document Level	Level 3		
Local Document Type	SOP		
Local Document Category	NA		

Prepared by	Ryan Nelson
Reviewed and	Dave Wunderlich and Patrick Garcia-Strickland
Approved by	

Document Title:

Digestion of Tissues for Total Mercury Frontier Global Sciences Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

Table of Contents

1	Revision Log:	
2	Reference:	
3	Cross Reference:	
4	Purpose:	
5	Scope:	
6	Basic Principles:	
7	Reference Modifications:	
8	Definitions:	
9	Interferences:	
10	Safety Precautions, Pollution Prevention and Waste Handling:	
11	Personnel Training and Qualifications:	
12	Sample Collection, Preservation, and Handling:	8
13	Apparatus and Equipment:	
14	Reagents and Standards:	
15	Procedure:	
16	Calculations:	10
17	Statistical Information/Method Performance:	11
18	Quality Assurance/Quality Control:	
19	Corrective Action:	11
20	List of Attachments	12
App	pendix A: Example - Standard Operating Procedure Training Record	13

eurofins 🤯	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eurofins
------------	---	----------

Document Title: Digestion of Tissues for Total Mercury

Frontier Global Sciences Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

Approvals:

Pre	pared	þν.

Date: <u>5/20/13</u>

Approved by:

Date: <u>5/16/13</u>

Date: $\frac{5/20/(3)}{}$

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30) Document Title: Eurofins Document Reference: EFGS-SOP-011-R05

1 Revision Log:

Revision: 05	Effective Date: This version		
Section	Justification	Changes	
Cover	Required change	Changed company name from Frontier Global Sciences to Eurofins Frontier Global Sciences.	
All	Formatting requirement per LOM SOP-LAB-201	Reformatted document to new corporate specifications.	
8.9	Required	Updated spiking levels for the matrix spike	
14.3, 14.4	Required	Updated max contamination levels of reagent acids	
17.3	Required	Replaced MDL with LOD	
18.2 – 18.5	Required	Updated QC limits	
18.3	Required	Incorporated QA MOC 2011-007	

2 Reference:

- 2.1 Chemical Hygiene Plan, Eurofins Frontier Global Sciences, current version.
- 2.2 EPA Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, 2002.
- 2.3 National Environmental Laboratory Accreditation Conference, NELAC Standard September 8, 2009.
- 2.4 Department of Defense Quality Systems Manual for Environmental Laboratories, prepared by DoD Environmental Quality Workgroup, Final Version 4.2, October 2010

3 Cross Reference:

Document	Document Title
SOP FGS-003	Pipette Verification, Calibration and Maintenance
SOP FGS-008	Ultra Clean Aqueous Sample Collection
SOP FGS-038	Data Review and Validation
SOP FGS-094, App F	Standard Operating Procedure Training Record
SOP FGS-099	Waste Disposal Procedure for Client Sample Waste
SOP FGS-121	Determination of Total Mercury in Various Matrices by Flow Injection Atomic Fluorescence Spectrometry (EPA Method 1631E)
SOP FGS-155	Calibration of Volumetric Dispensers

4 Purpose:

4.1 The purpose of this Standard Operating Procedure (SOP) is to describe the method for digesting biological tissue samples prior to analysis by CV-AFS for total mercury.

5 Scope:

- This method is for the preparation of biological tissue samples for the determination of total mercury at concentrations less than 1 ng/g. Through the analysis of smaller digestate aliquots, contaminated tissues of up to 10,000 ng/g can be directly measured. Using clean handling techniques and low-level reagents, the typical detection limit for samples prepared by this method is less than 1 ng/g.
- 5.2 Total mercury, as defined by this method, is all HNO3/H2SO4/BrCl-oxidizable mercury forms and species found in tissue matrices. This includes, but is not limited to, Hg(II), Hg(O), HgS, strongly organo-complexed Hg(II) compounds, adsorbed particulate Hg,

- [
1	Revision: 5	Effective Date: 5/20/2013	D 4-640		
1			Page 4 of 13		
7					
- 1					
-1					

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

and several covalently bound organo-mercurials (i.e., CH_3HgCI , $(CH_3)_2Hg$, and $C_6H_5HgOOCCH_3$).

6 Basic Principles:

- 6.1 Samples are collected using clean sample handling protocols into commercially available clean glass containers with Teflon-lined caps (i.e., I-Chem glass jars) or 125 mL or 250 mL HDPE jars. Freezing (< -15°C) preserves tissue samples until sample preparation is performed.
- 6.2 A subsample of homogenized sample is digested with 10 mL of 70:30 HNO₃/H₂SO₄.
- 6.3 The digested sample is diluted up to 40 mL with 10% (v/v) BrCl.

7 Reference Modifications:

7.1 No significant modifications were made to this method.

8 Definitions:

- 8.1 Batch no more than 20 client samples grouped for preparation. 3 Preparation Blanks, 1 CRM or 1 LCS/LCSD (or BS/BSD) set and 1 MD are prepared per every 20 samples; 1 MS/MSD set is prepared for every 10 samples.
- 8.2 Celsius (C), conversion of Celsius to Fahrenheit: (C * 1.8) + 32.
- 8.3 Fahrenheit (F), conversion of Fahrenheit to Celsius: (F 32) * 5/9.
- 8.4 Method Detection Limit (MDL) the limit derived from an exercise as described in 40 CFR, Part 136, Appendix B. The exercise produces a defined value that is the minimum concentration that can be measured and reported with 99% confidence that the analyte concentration is greater than zero from a given matrix.
- 8.5 Certified Reference Material (CRM) a standard of known composition that is certified by a recognized authority and representing a sample matrix. It is used to verify the accuracy of a method.
- 8.6 Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD), is a sample containing known concentrations of the analytes of interest that is taken through the entire preparation and analysis process in the same manner as the samples to monitor complete method performance. A Certified Reference Material (CRM) is preferred as the LCS, but a blank spiked sample also meets the requirement.
- 8.7 Preparation Blank (BLK) Method blanks consist of the same reagents used to digest the samples, in the same volume or proportion, and are carried through the complete sample preparation and analytical procedure. Teflon boiling chips are added to the preparation blanks.
- 8.8 Matrix Duplicate (MD) a representative sample is selected and digested in the same manner. This QC sample will indicate sample homogeneity on the analytes of interest
- 8.9 Matrix Spike (MS) and Matrix Spike Duplicate (MSD) a representative sample is selected and spiked with a secondary source at *two* to five times the ambient

💸 eurofins

Document Title: Digestion of Tissues for Total Mercury Frontier Global Sciences | Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

concentration or at two to five times the MRL, whichever is greater. These QC samples will indicate sample matrix effects on the analytes of interest.

- 8.10 May: This action, activity or procedure is optional.
- 8.11 May Not: This action, activity or procedure is prohibited.
- 8.12 Shall: This action, activity or procedure is required.
- Should: This action, activity or procedure is suggested, but is not required. 8,13

Interferences:

- 9.1 Due to the high levels of halogens (i.e., iodine) typically found in tissue digestates, it is recommended that aliquots of no more than 5.0 mL of the digestate be analyzed. Otherwise, soda-lime traps may be overloaded and the gold traps may lose the ability to amalgamate and retain mercury.
- 9.2 The high acidity and halogen levels that are found in tissue digestates necessitate the changing of the bubbler water after every 10 mL of digestate analyzed. Failure to do so can lead to low recoveries that would be reflected in the analysis of QC samples.

10 Safety Precautions, Pollution Prevention and Waste Handling:

- Personnel will don appropriate laboratory attire according to the Chemical Hygiene 10.1 Plan. This includes, but is not limited to, laboratory coat, safety goggles, and nitrile gloves under clean gloves.
- The toxicity or carcinogenicity of reagents used in this method has not been fully 10.2 established. Each chemical should be regarded as a potential health hazard and exposure to these compounds should be as low as reasonably achievable. Chemists should refer to the MSDS (Material Safety Data Sheets) for each chemical they are working with.
 - Note: Use particular caution when preparing and using BrCl, as it releases 10.2.1 extremely irritating, corrosive fumes similar in effect to free chlorine. Always handle this reagent in an approved fume hood.
 - Note: Use particular caution when preparing and using the Nitric/Sulfuric Mixture. 10.2.2 Always handle this reagent in an approved fume hood.
- All personnel handling environmental samples known to contain or to have been in 10.3 contact with human waste should be immunized against known disease-causative agents. Eurofins Frontier will reimburse the expense of Hepatitis A and B immunizations for any laboratory staff member who desires this protection.
- 10.4 Nitric acid (HNO₃): Corrosive. Strong oxidizer. Contact with other material may cause a fire. Causes eye and skin burns. May cause severe respiratory tract irritation with possible burns. May cause severe digestive tract irritation with possible burns. For more information see MSDS.
- Sulfuric acid (H₂SO₄): Corrosive. Causes eye and skin burns. May cause severe eye 10.5 irritation with possible burns. May cause severe respiratory tract irritation with possible burns. May cause severe digestive tract irritation with possible burns. Cancer hazard.

eurofins | Frontier Global Sciences

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

Animal studies suggest this acid may cause fetal effects. May cause kidney damage. May cause lung damage. May be fatal if inhaled. Hygroscopic. Strong oxidizer. Contact with other material may cause a fire. For more information see MSDS.

- 10.5.1 Eyes: Get medical aid immediately. Do NOT allow victim to rub or keep eyes closed. Extensive irrigation with water is required (at least 30 minutes).
- 10.5.2 Skin: Get medical aid immediately. Flush skin with soap and water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Destroy contaminated shoes.
- 10.6 See Eurofins Frontier Global Sciences Chemical Hygiene Plan (CHP) for general information regarding employee safety, waste management, and pollution prevention.
- 10.7 Pollution prevention information can be found in the current Eurofins Frontier Global Sciences Chemical Hygiene Plan (CHP), which details and tracks various waste streams and disposal procedures.
- All laboratory waste is accumulated, managed, and disposed of in accordance with all federal, state, and local laws and regulations. Any waste generated by this procedure should be disposed of according to SOP FGS-099 "Waste Disposal Procedure for Client Sample Waste," which provides instruction on dealing with laboratory and client waste.

11 Personnel Training and Qualifications:

- 11.1 An analyst must perform an initial demonstration of capability (IDOC) that includes four replicates of a secondary source before being qualified to analyze samples without supervision. Continuing DOC will be maintained and monitored via performance on CRMs and other QC samples, as well as obtaining acceptable results on proficiency testing exercises.
- 11.2 The analyst/laboratory technician must have read this SOP and other relevant SOPs and have the training documented on the applicable form(s). The analyst may be questioned on SOP by supervisor(s) and/or trainers.
- 11.3 Training is documented by the employee and supervisor, and is kept on file in the QA Office. The employee must read, understand, and by signing the training document, agree to perform the procedures as stated in all Standard Operating Procedures (SOPs) related to this method.
- 11.4 Reading of the SOP must be documented on the correct form such as "Standard Operating Procedure Training Record," Appendix F in FGS-094, the last page of this SOP, Appendix A "Standard Operating Procedure Training Record" or a similar document."
- 11.5 All employees must also, on a yearly basis, read the Quality Manual (QM), and complete the yearly Ethics training.
- 11.6 All training documents including IDOCs, CDOCs, SOP reading, Initial QA orientation, and Ethics training are stored by the Quality Assurance Manager in the employees training file for ten years after the employee is no longer working for Eurofins Frontier Global Sciences.

	্বিক্ত eurofins Frontier Global Sciences	Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)	
ı		Acids (70:30)	

11.7 Chemical Safety Training, Compressed Gas Training, Chemical Hygiene Plan documentation, and Shipping of Hazardous goods, are stored by the Health and Safety Officer for ten years after the employee is no longer working for Eurofins Frontier Global Sciences.

12 Sample Collection, Preservation, and Handling:

- 12.1 Samples must be collected in accordance with established ultraclean sampling techniques (see FGS-008 "Ultra Clean Aqueous Sample Collection"). Samples may be in commercially available clean glass containers with Teflon-lined caps (i.e., I-Chem glass jars), or 125 mL or 250 mL HDPE jars.
- 12.2 Tissue sample preservation The tissue sample must be frozen in the sampling container at less than -15°C or freeze-dried and stored at room temperature. The holding time for tissue samples is 1 year.
- 12.3 Just prior to digestion, samples are thawed and if necessary homogenized. The sample is well mixed to ensure the most representative sample possible.

13 Apparatus and Equipment:

- 13.1 LIMS Element, version 5.85 or higher; Computer Windows XP, 7 or 8
- 13.2 40 mL or 20 mL I-Chem Vials: Borosilicate glass, series 300 vials with Teflon-lined septa in lids. The size used depends on the amount of sample available. The vials are volumetrically accurate to \pm 0.5 mL when filled such that the meniscus is just to the bottom of the vial neck. The person performing the preparation should verify this.
- 13.3 Hot plate: A hot plate with the ability to achieve and maintain a temperature of 75 °C.
- 13.4 Pipettors: All-plastic, pneumatic, fixed volume and variable pipettes in the range of 5 μL to 10 mL. Pipettes are to be calibrated weekly according to SOP FGS-003 and FGS-155.
- 13.5 Clean hood.
- 13.6 Analytical Balance: A laboratory analytical balance capable of weighing to ± 1 mg, with documented calibration.
- 13.7 Calibrated thermometer: Submerged in water in a 20 mL I-Chem vial. This vial is placed on the hotplate during the digestion process. The analysts must record the actual digestion temperature and the serial number of the thermometer used in the digestion logbook.
- 13.8 Sample Digestion Log.
- 13.9 Stainless steel tools for homogenization
- 13.10 Tissue Homogenization Log.
- 13.11 Disposable spatula.
- 13.12 Teflon boiling chips.
- 13.13 Teflon reflux cap to fit the 40 mL and 20 mL I-Chem vials.

Revision: 5	Effective Date: 5/20/2013	Page 8 of 13
		Name of the Control o

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30) Document Title: Eurofins Document Title: Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

14 Reagents and Standards:

- 14.1 Reagent Water: 18 $M\Omega$ ultra-pure deionized water starting from a pre-purified (distilled, R.O., etc.) source. As a final mercury and organic removal step, the activated carbon cartridge on the 18- $M\Omega$ system is placed between the final ion exchange bed and the 0.2 μ m filter.
- 14.2 <u>Nitric Acid (HNO₃):</u> Trace metal purified reagent-grade HNO₃ is pre-analyzed and lot sequestered. Several brands (Baker, Fisher, Omnitrace) have been found to have lots with acceptably low levels of trace metals. This reagent should be from a lot number that has been previously tested to be low for the analytes of interest. This reagent shall be entered into LIMS and the expiration date is set to the same as the manufacturer's expiration date.
- Sulfuric acid (H_2SO_4) Trace metal purified reagent-grade H_2SO_4 is pre-analyzed to < 50 ng/L Hg and lot sequestered before purchase. This reagent shall be entered into the LIMS and is considered stable until the expiration date on the bottle (set by the manufacturer.
- 14.4 Nitric/Sulfuric Acid Mixture: Carefully add 300 mL of pre-analyzed, low mercury (< 50 ng/L) concentrated sulfuric acid to 700 mL of pre-analyzed, low mercury concentrated nitric acid to a pre-marked Teflon bottle. Stir constantly. This reagent shall be entered into the LIMS with an expiration date of six months. CAUTION: THIS MIXTURE BECOMES VERY HOT AND EMITS CAUSTIC FUMES.
- 14.5 Potassium Bromide (KBr), neat: this reagent is pre-certified by the vendor to be low in mercury and is entered into the LIMS with a five year expiration date.
- 14.6 Potassium Bromate (KBrO₃), neat: this reagent is pre-certified by the vendor to be low in mercury and is entered into the LIMS with a five year expiration date.
- 14.7 0.2N Bromine Monochloride (BrCI):
 - 14.7.1 37.5 g of KBr is added to a 2.5 L bottle of concentrated HCl (pre-analyzed and below 5 ng/L Hg). The bottle is inverted in a fume hood to mix the acid and KBr. The solution sits overnight, allowing the KBr to dissolve.
 - 14.7.2 27.5 g of KBrO3 (certified to be low in Hg) is slowly added to the acid. As the KBrO3 is added, the solution should go from yellow to red to orange.
 - CAUTION: This process generates copious quantities of free halogens (CI₂, Br₂, BrCI) which are released from the bottle. Add the KBrO₃ SLOWLY in a well operating fume hood.
 - 14.7.3 Loosely cap the bottle and allow to sit for 30 minutes (in a fume hood) before tightening. Once tightly capped, invert bottle to make sure all of the solids go into solution.
 - 14.7.4 This reagent shall be entered into the LIMS with a six month expiration date.
- 14.8 10% (v/v) of 0.2N BrCl: 200 mL of 0.2N BrCl is diluted up to 2.0 L with reagent water in a clean, empty HCl bottle. This bottle is fitted with a 10 mL repipettor. The expiration time for this reagent is set by default to six months in the LIMS.

Revision: 5	Effective Date: 5/20/2013	Page 9 of 13

eurofins | Frontier Global Sciences

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

15 Procedure:

- 15.1 If needed, the sample is dissected and homogenized with acid-washed stainless steel tools.
 - 15.1.1 The process used for homogenization, number of samples, work order number, client name, and initials of the technician are entered into the Tissue Homogenization Log.
- 15.2 Weigh at least a 0.5 g aliquot (but not more than 0.65 g) for common and unknown samples, and up to 1.0 g \pm 0.025 g for low-level or large-grain samples. This aliquot is placed into a 40 mL I-Chem glass vial.
 - 15.2.1 If limited sample is available, use 20 mL glass vials and drop the initial mass of the samples to $0.25g \pm 0.025g$.
 - 15.2.2 It is imperative that all biological tissue samples are thoroughly homogenized. The importance of representativeness cannot be understated.
 - 15.2.3 Batch requirements for this digestion limit the number of samples to 20. In each batch, there must be three method blanks (BLKs), a Blank Spike and Blank Spike Duplicate (BS/BSD) that is preferably a Certified Reference Material (CRM) or a Laboratory Control Spike (LCS, prepared at 8 ng/g), a Matrix Duplicate (MD), and a Matrix Spike and Matrix Spike Duplicate (MS/MSD).
- 15.3 10.0 mL of 70:30 (v/v) HNO₃/H₂SO₄ solution is pipetted in and the sample is swirled. Note: 5.0 mL of 70:30 (v/v) HNO₃/H₂SO₄ solution is used for limited samples prepared in 20 mL vials (15.2.1).
- 15.4 The vial is placed on a hot plate operating at 75±5°C with a Teflon reflux can in place instead of the vial's lid. An aluminum rack id often used to keep the vials from tipping over while on the hot plate.
 - 15.4.1 A calibrated thermometer submerged in water is placed in a 20 mL I-Chem vial. This I-Chem vial with a calibrated thermometer is placed on the hot plate during the digestion process. The analysts must record the actual digestion temperature and the serial number of the thermometer used in the digestion logbook.
- 15.5 After the samples start to reflux, the samples are heated at 75±5°C for an additional 2 hours or until all organic matter is dissolved.
- 15.6 The samples are allowed to cool and are diluted to 40 mL (or to 20 mLs for limited sample digestions as described in 15.2.1) with a 10% (v/v) solution of 0.2N BrCl, capped with their respective lids, and are thoroughly shaken. Sample digestates should be allowed to settle prior to an aliquot being taken for analysis.
- 15.7 Analysis for total mercury is according to Eurofins Frontier SOP FGS-121.

16 Calculations:

16.1 This preparation procedure does not involve calculations.

Revision: 5	Effective Date: 5/20/2013	Page 10 of 13
		, <u> </u>

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

17 Statistical Information/Method Performance:

- 17.1 Method Detection Limit (MDL) and Practical Quantitation Limit (PQL) studies are based on 40 CFR 136, Appendix B. The MDL and PQL must be performed for each analyte/matrix/preparation combination.
- 17.2 The Practical Quantitation Limit (PQL) is the reporting limit for this method and is included as the lowest calibration point (2003 NELAC regulation 5.5.5.2.2.1.h.3). The PQL is determined by running ten replicate samples with a concentration that will produce a recovery of 70-130% for most analytes, but the recovery requirements are analyte dependent. The PQL is referred to as the Method Reporting Limit (MRL) in LIMS.
- 17.3 The current LOD value for Total Hg in tissue prepared by the Nitric and Sulfuric Acids (70:30) Digestion is 0.16 ng/g, while the PQL is 0.8 ng/g.
- 17.4 Current LODs and PQLs are stored at: \General and Admin\Quality Assurance\MDLs & PQLs.

18 Quality Assurance/Quality Control:

- 18.1 Maximum Sample Batch Size: 20 samples.
- 18.2 Preparation Blanks: Minimum of three per batch. Each preparation blank must be less than one-half the PQL for the method.
 - 18.2.1 The preparation blanks are prepared with a similar mass of Teflon boiling chips as the samples, with the same reagents, and put through the same preparation process as the samples.
- 18.3 Certified Reference Material (CRM, representing the sample matrix when commercially available); a Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (LCSD) prepared at 8 ng/g is used when a suitable CRM is not available: One per batch in duplicate. The control limits are 77-123% recovery.
- 18.4 Matrix Duplicate (MD) Sample: One per batch. The control limit for the RPD is ≤ 24%.
- 18.5 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples: One set per 10 samples. The control limits are 71-125% recoveries and an RPD of ≤ 24%.
- 18.6 Follow the flow charts in SOP FGS-038 "Data Review and Validation" to determine if any QC falling outside the established control limits can be qualified.
- 18.7 All of the quality control limits for the analysis method are included on the "Data Review Checklist.
 - 18.7.1 The data review checklists are located at: \\cuprum\\General and Admin\\Quality Assurance\\Data Review\\Current Data Review Checklists,

19 Corrective Action:

19.1 Limiting the source of contamination/error in the preparatory stage can decrease QC problems during analysis. Limiting such contamination/error sources may include: cleaning all digestion tools in a 10% HCl solution, ensuring all samples are thoroughly homogenized, changing gloves whenever appropriate, flushing repipettors at least

eurofins | Frontier Global Sciences

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

three times before dispensing into vials and, in general, following ultra-clean procedures.

- 19.2 A failing QC point does not necessary fail the entire dataset. If upon analysis a QC sample is out of control, some investigation must be performed to assess if the difficulties are related to matrix effects. The cause and method of determining the set's failure must be documented on the checklist and in the MMO notes, and the Group Supervisor shall be informed. See SOP FGS-038 "Data Review and Validation" for flow charts regarding analytical issues.
- 19.3 Additional corrective actions are listed in the SOP for total mercury analysis (Eurofins Frontier SOP FGS-121).

20 List of Attachments

Appendix A: Example - Standard Operating Procedure Training Record

🛟 eurofins

Frontier Global Sciences

Document Title: Digestion of Tissues for Total Mercury Analysis Using Nitric Acid and Sulfuric Acids (70:30)

Eurofins Document Reference: EFGS-SOP-011-R05

Date:

Appendix A: Example - Standard Operating Procedure Training Record

By signing this document, I the employee, certifies to have read, understood and agreed to follow the test method and quality procedure as described in this procedure. Reading of SOP EFGS-011.05: Digestion of Tissues for Total Mercury Analysis Using Nitric and Sulfuric Acids (70:30). SOP name and Revision number Employee name (print) Employee name (sign) Date: Supervisor name (sign)

Initial SOP Training (leave blank if not applicable)

Initial reading of method and training	Initials	Date	Supervisor
1. Read method			
2. Observe the method			
3. Detailed review of method and associated literature			
Supervised practice of method with trainer			
5. Unsupervised practice of the method with trainer			
6. Review of work with trainer and/or peer-review			
7. IDOC to determine precision and accuracy			
8. Determination of blanks			

APPENDIX B

Quality Assurance Project Plan for Sample Preparation for the 2013-2014 National Rivers and Streams Assessment Fish Fillet Indicator

Quality Assurance Project Plan for

Sample Preparation for the 2013-2014 National Rivers and Streams Assessment Fish Fillet Indicator

December 12, 2013

Prepared jointly by:

United States Environmental Protection Agency
Office of Water
Office of Science and Technology
Standards and Health Protection Division

Tetra Tech, Inc. under: Office of Science and Technology Contract No. EP-C-09-019

and

CSC under:

Technical, Analytical, and Regulatory Mission Support for the Water Security Division Contract No. EP-C-10-060

Quality Assurance Project Plan for Sample Preparation for the 2013-2014 National Rivers and Streams Assessment Fish Fillet Indicator

A. PROJECT MANAGEMENT

This Quality Assurance Project Plan (QAPP) has been prepared by the EPA Office of Science and Technology (OST). It presents performance requirements, acceptance criteria, and objectives for the preparation of tissue samples from whole fish composite samples collected by field crews during the 2013 and 2014 sampling seasons of the National Rivers and Streams Assessment (NRSA). It does not address the fish sample collection because that process is already covered by a separate QAPP (USEPA 2013a) prepared by the Office of Wetlands, Oceans, and Watersheds (OWOW). OST will revise this QAPP at a later date to include the details of the analyses of the fillet tissue samples prepared under this QAPP for various environmental contaminants.

This QAPP was prepared in accordance with the most recent version of EPA QA/R-5, *EPA Requirements for Quality Assurance Project Plans* (USEPA 2001), which was reissued in 2006. In accordance with EPA QA/R-5, this QAPP is a dynamic document that is subject to change as project activities progress. Changes to procedures in this QAPP must be reviewed by the OST Project Manager and the EPA Standards and Health Protection Division (SHPD) Quality Assurance Coordinator for the NRSA to determine whether the changes will impact the technical and quality objectives of the project. If so, the QAPP will be revised accordingly, circulated for approval, and forwarded to all project participants listed in the QAPP distribution list (Section A3). Key project personnel and their roles and responsibilities are discussed in the QAPP section to follow (Section A4), and project background perspective and description is provided in Sections A5 and A6, respectively.

A1. Approvals

Leanne Stahl	12/16/13
Leanne Stahl, OST Project Manager, EPA	Date
Denise F. Hawkin	Alec. 16, 2013
Denise Hawkins, Chief, FSBOB, EPA	Date
We I blegge	12/16/13
Robert Shippen, SHPD QA Coordinator, EPA	Date
Marrow Kelly	12/17/13
Marion Kelly, OST QA Officer, EPA	Date /
Burkelen	12/16/13
Blaine Snyder, Tetra Tech Project Leader	Date
Susan Lanberg, Tetra Tech QA Officer	12/13/2013 Date
Susan Lanberg, Tetra Tech QA Officer	Date
Harry McCarty, CSC Project Leader	12/12/2013
Harry McCarty, CSC Project Leader	'Date '
magnerisk Efres	12/12/2013
Marguerite Jones, CSC QA Officer	Date
Im Afra John	12/18/13 Date
Laura Flynn Jenkins, EPA Project Officer Contract No. EP-C-10-060	Date

A2. Table of Contents

A.	PRO	JECT MANAGEMENT	. 1
	A1.	Approvals	. 2
	A2.	Table of Contents	. 3
	A3.	Distribution List	. 6
	A4.	Project/Task Organization	. 7
	A5.	Problem Definition/Background	12
	A6.	Project/Task Description	12
	A7.	Quality Objectives and Criteria	13
	A8.	Special Training/Certification	13
		Documents and Records	
B.	DAT	TA GENERATION AND ACQUISITION	14
	B1.	Sampling Process Design (Experimental Design)	
	B2.	Sampling Methods	17
	B3.	Sample Handling and Custody	18
	B4.	Fish Sample Preparation Methods	19
	B5.	Fish Sample Preparation Quality Control	19
	B6.	Instrument/Equipment Testing, Inspection, and Maintenance	21
	B7.	Instrument/Equipment Calibration and Frequency	21
	B8.	Inspection/Acceptance of Supplies and Consumables	21
	B9.	Non-direct Measurements	22
	B10.	Data Management	22
C.	ASS	ESSMENT AND OVERSIGHT	22
	C1.	Assessments and Response Actions.	22
		C1.1 Surveillance	23
		C1.2 Product Review	23
		C1.3 Quality Systems Audit	23
		C1.4 Readiness Review	24
		C1.5 Technical Systems Audit	24
	C2.	Reports to Management	
D.		TA VALIDATION AND USABILITY	
	D1.	Data Review, Verification, and Validation	25
		D1.1 Data Review	25
		D1.2 Data Verification	25
		D1.3 Data Validation	
	D2.	Verification and Validation Methods	26
		D2.1 Verification Methods	26
		D2.2 Validation Methods	
	D3.	Reconciliation with User Requirements	26
Refe	rence	e .	27

TABLES

Table 1.	Site Selection Summary for the 2013-2014 NRSA Survey Design	16
Table 2.	Methods for Determination of Lipids and Analyses of Rinsate Samples	20
Table 3.	Acceptance Limits for Rinsate Samples	21
FIGURES	S	
Figure 1.	NRSA fillet tissue study project team organization	8
Figure 2.	NRSA fillet tissue study sampling locations	13
APPEND	ICES	
Appendix	A List of 2013-2014 National Rivers and Streams Fish Tissue Study Samplin Locations	g
Appendix	B 2013-2014 National Rivers and Streams Assessment Tissue Preparation, Homogenization, and Distribution Procedures	

Revision 0 Date: December 12, 2013 Page 5 of 27

LIST OF ACRONYMS AND ABBREVIATIONS

EPA Environmental Protection Agency

FSBOB Fish, Shellfish, Beach, and Outreach Branch

ID Identification

NRSA National Rivers and Streams Assessment

ORD-WED Office of Research and Development - Western Ecology Division

OST Office of Science and Technology

OW Office of Water

OWOW Office of Wetlands, Oceans, and Watersheds

PBDE Polybrominated diphenyl ether

PCB Polychlorinated biphenyl
PFC Perfluorinated compound

QA Quality assurance

QAPP Quality Assurance Project Plan

QC Quality control

QSA Quality system audit

SHPD Standards and Health Protection Division

SOP Standard operating procedure

SOW Statement of work
TBD To be determined

Revision 0 Date: December 12, 2013 Page 6 of 27

A3. Distribution List

Denise Hawkins	Robert Shippen
USEPA/OST (4305T)	USEPA/OST (4305T)
1200 Pennsylvania Ave., N.W.	1200 Pennsylvania Ave., N.W.
Washington, DC 20460	Washington, DC 20460
202/566-1384 (phone)	202/566-0391 (phone)
hawkins.denise@epa.gov	shippen.robert@epa.gov
Marguerite Jones	Blaine Snyder
CSC	Tetra Tech, Inc.
	400 Red Brook Blvd., Suite 200
6361 Walker Lane, Suite 300	· ·
Alexandria, VA 22310	Owings Mills, MD 21117
703/461-2247 (phone)	410/902-3158 (phone)
mjones214@csc.com	blaine.snyder@tetratech.com
Marion Kelly	Leanne Stahl
USEPA/OST (4303T)	USEPA/OST (4305T)
1200 Pennsylvania Avenue, N.W.	1200 Pennsylvania Ave., N.W.
Washington, DC 20460	Washington, DC 20460
202/566-1045 (phone)	202/566-0404 (phone)
kelly.marion@epa.gov	stahl.leanne@epa.gov
Susan Lanberg	Ellen Tarquino
Tetra Tech, Inc.	USEPA/OWOW (4503T)
10306 Easton Place, Suite 340	1200 Pennsylvania Avenue, N.W.
Fairfax, VA 22030	Washington, DC 20460
703/385-6000 (phone)	202/566-2267 (phone)
susan.lanberg@tetratech.com	tarquino.ellen@epa.gov
Sarah Lehmann	John Wathen
USEPA/OWOW (4503T)	USEPA/OST (4305T)
1200 Pennsylvania Avenue, N.W.	1200 Pennsylvania Ave., N.W.
Washington, DC 20460	Washington, DC 20460
202/566-1379 (phone)	202/566-0367 (phone)
lehmann.sarah@epa.gov	wathen.john@epa.gov
Harry McCarty	Michael Arbaugh and Emily Deya
CSC	Microbac Laboratories
6361 Walker Lane, Suite 300	2101 Van Deman Street
Alexandria, VA 22310	Baltimore, MD 21224
703/461-2392 (phone)	(Contact Harry McCarty at CSC)
hmccarty@csc.com	
Tony Olsen	Laura Flynn Jenkins
USEPA/ORD/NHEERL/WED	USEPA Region 8
200 S.W. 35th Street	1595 Wynkoop Street, 8P-W-DW
Corvallis, OR 97333	Denver, CO 80202
541/754-4790 (phone)	303-312-6256 (phone)
olsen.tony@epa.gov	jenkins.laura@epa.gov

A4. Project/Task Organization

EPA's 2013-2014 National Rivers and Streams Assessment (NRSA) is a probability-based survey designed to assess the condition of the nation's river and stream resources. It includes collection and analysis of physical, chemical, and biological indicator data that will allow a statistically valid characterization of the condition of the nation's rivers and streams. EPA used an unequal probability design to select 1808 streams and rivers (both wadeable and non-wadeable) from across the 48 contiguous United States. To improve the ability to assess changes over time (i.e., trends analysis), the design includes revisits to 811 sites that were sampled during the 2008-2009 NRSA. The Office of Wetlands, Oceans, and Watersheds (OWOW) within the Office of Water (OW) is responsible for the overall planning and implementation of the 2013-2014 NRSA.

EPA's Office of Science and Technology (OST) within OW is collaborating with the Office of Research and Development Western Ecology Division (ORD-WED) in Corvallis, Oregon to plan and implement the fish fillet indicator under the 2013-2014 NRSA. OST is responsible for management of this indicator. ORD-WED developed the study design and selected all the sampling locations, including approximately 450 sites from which whole fish composite samples will be collected for fillet analysis. Statisticians in the Western Ecology Division will also be analyzing the fillet tissue concentration data.

Routine composite samples for the NRSA fish fillet indicator consist of five similarly sized adult fish of a single species commonly consumed by humans. All of the fish samples collected for this indicator are being shipped as whole fish to Microbac Laboratories in Baltimore, Maryland, the designated sample preparation laboratory. Staff at Microbac will prepare the fish samples for analysis (i.e., filleting the fish samples and homogenizing the fillet tissue). OST currently plans to analyze the fillet tissue samples from all sites for mercury and from the urban sites only for perfluorinated compounds (PFCs). The 2013-2014 NRSA may also include future analysis of fillet tissue samples for polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs).

In 2013, OWOW developed the *National Rivers and Streams Assessment 2013-2014 Quality Assurance Project Plan* (USEPA 2013a) and the *National Rivers and Streams Assessment Field Operations Manual* (USEPA 2013b). The procedures and associated quality assurance/quality control (QA/QC) activities for collecting and shipping NRSA whole fish samples for fillet analysis were described in both documents. OST developed whole fish collection and shipping procedures for the 2013-2014 NRSA based on the protocols used for EPA's National Lake Fish Tissue Study and the 2008-2009 NRSA. This additional QAPP covers activities associated with preparing NRSA whole fish samples for fillet tissue analyses.

The fish fillet indicator project team currently consists of managers, scientists, statisticians, and QA personnel in OST and the ORD Western Ecology Division, along with contractors providing scientific and technical support to OST from CSC and Tetra Tech (see Figure 1). Project team members are providing support for developing and reviewing technical and program information related to all aspects of the indicator, including training materials, standard operating procedures, QAPPs, analytical QA reports, briefings and reports on indicator results, and outreach materials. Responsibilities for key members of the project team are described below.

Revision 0 Date: December 12, 2013 Page 8 of 27

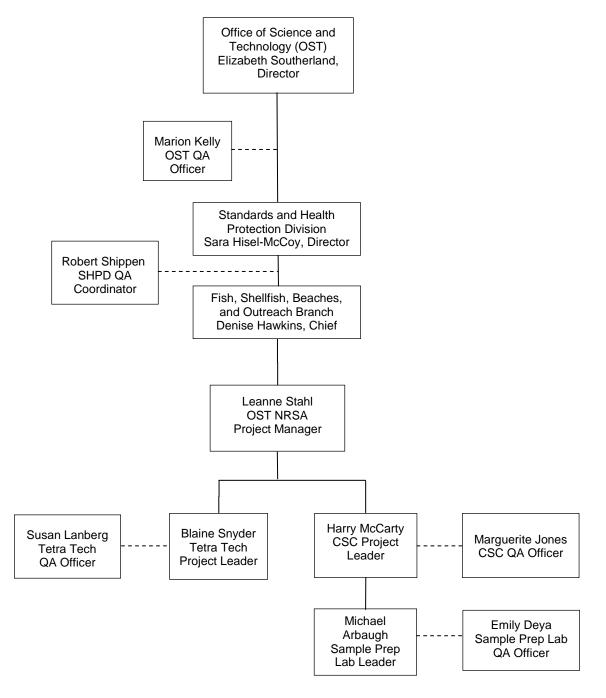


Figure 1. NRSA fish fillet indicator project team organization

Leanne Stahl of OST is the NRSA fish fillet indictor Technical Leader and OST Project Manager who is providing overall direction for planning and implementation of this fillet tissue study being conducted under the NRSA. This role involves the following responsibilities related to the fish fillet indicator:

 developing technical information for whole fish sample collection for fillet analysis that includes preparation of the sampling SOP and coordination with the NRSA Project

Revision 0
Date: December 12, 2013
Page 9 of 27

Leader in OWOW to integrate field sampling technical information for the fish fillet indicator into NRSA documents and training materials

- providing technical support to conduct training on the fish tissue sampling requirements in coordination with the NRSA Project Leader in OWOW
- developing the fish preparation SOP, implementing training for laboratory processing of NRSA fish samples, and providing technical direction for and oversight of fish preparation activities, including technical support for review of fish preparation QA data
- managing analysis of fish samples for target chemicals, including obtaining technical support for chemical analysis of fish tissue, directing development of this QAPP, providing for QA review of the analytical results, developing the data files for statistical analysis of the data, reviewing and approving the final analytical QA report, and providing oversight for development of the database to store NRSA fillet tissue results
- facilitating communication among fish fillet indictor project team members and coordinating with all of these individuals to ensure technical quality and adherence to QA/QC requirements
- developing and managing work assignments under OST or other EPA contracts to
 provide technical support for the NRSA, providing oversight of all OST contractor
 activities, and reviewing and approving study deliverables for each work assignment
- scheduling and leading meetings and conference calls with project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study
- working with QA staff to identify corrective actions necessary to ensure that study quality objectives are met
- managing the development of and/or reviewing and approving all major work products associated with the NRSA fish fillet indicator
- collaborating with the NRSA project team for reporting the indicator results in technical journal articles and federal technical reports

Marion Kelly is the **OST Quality Assurance Officer** who is responsible for reviewing and approving all QAPPs that involve scientific work being conducted by OST. Robert Shippen is the **Standards and Health Protection Division (SHPD) QA Coordinator** who is responsible for reviewing and recommending approval of all QAPPs that include scientific work being conducted by SHPD within OST. The OST QA Officer and SHPD QA Coordinator are also responsible for the following QA/QC activities:

- reviewing and approving this QAPP
- reviewing and evaluating the QA/QC requirements and data for all the NRSA fish fillet indicator activities and procedures
- conducting external performance and system audits of the procedures applied for all NRSA fish fillet indicator activities
- participating in Agency QA reviews of the study

Blaine Snyder is the **Tetra Tech Project Leader** who is responsible for managing all aspects of the technical support being provided by Tetra Tech staff for the NRSA fish fillet indicator. His specific responsibilities include the following:

- providing direct technical support for the following NRSA fish fillet indicator activities or providing leadership and oversight for Tetra Tech staff supporting these activities:
 - developing standard operating procedures for fish sampling, handling, and shipment
 - preparing NRSA fish fillet indicator training materials and project information to incorporate into NRSA documents
 - providing field sampling and fish preparation training
 - planning and implementing NRSA fish fillet indicator logistics
 - conducting fish sampling at NRSA sites designated by the OST Project Manager
 - obtaining and performing QA reviews of NRSA field sampling data related to the fish fillet indicator
 - preparing fish tissue sample preparation instructions for whole fish samples collected from designated NRSA sites
 - evaluating weekly fish processing reports for adherence to the technical and quality requirements in the fish preparation SOP
 - preparing summary project information and graphics for development of project fact sheets, presentations, and other EPA meeting and outreach materials
- monitoring the performance of Tetra Tech staff participating in this study to ensure that they are following all QA procedures described in this QAPP that are related to Tetra Tech tasks being performed to support this study (see list above)
- ensuring completion of high-quality deliverables within established budgets and time schedules
- participating in meetings and conference calls with project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study

Susan Lanberg is the **Tetra Tech QA Officer**, whose primary responsibilities include the following:

- assisting Tetra Tech's Project Leader with the review of this QAPP
- approving this QAPP
- providing oversight for the implementation of QA procedures related to Tetra Tech tasks that are described in this QAPP
- reporting deviations from this QAPP to the Tetra Tech Project Leader and assisting in implementing corrective actions to resolve these deviations

Harry McCarty is the **CSC Project Leader** who is responsible for managing all aspects of the technical support being provided by CSC staff for the NRSA fish fillet indicator. His specific responsibilities include the following:

- providing direct technical support for the following NRSA fish fillet indicator activities or providing leadership and oversight for CSC staff supporting these activities:
 - preparing information related to technical and quality assurance requirements for preparation of fish tissue samples and for analyses of fillet tissue samples for target chemicals designated by OST, validation of analytical data, and database development to support project planning and development of NRSA fish fillet indicator documents (including this QAPP) or characterization of this indicator in NRSA documents
 - obtaining laboratory services for whole fish sample preparation and fillet tissue analyses, and providing technical and QA oversight of laboratory operations
 - conducting reviews of fish preparation QA/QC data associated with each batch of up to 20 fish samples and preparing a report about the results of each batch review for distribution to the OST Project Manager and the fish preparation laboratory
 - obtaining freezer space that meets the requirements for long-term storage of archived fish tissue samples, organizing the archived fish tissue samples by project to facilitate retrieval of the samples, and developing and maintaining an inventory of the archived samples
 - preparing summary project information and graphics for development of project fact sheets, presentations, and other EPA meeting and outreach materials
- monitoring the performance of CSC staff participating in this study to ensure that they are following all QA procedures described in this QAPP that are related to CSC tasks being performed to support this study (see list above)
- ensuring completion of high-quality deliverables within established budgets and time schedules
- participating in meetings and conference calls with project team members for planning study activities, reporting progress on study tasks, and discussing and resolving technical issues related to the study

Marguerite Jones is the **CSC QA Officer**, whose primary responsibilities include the following:

- assisting CSC's Project Leader with the development and review of this QAPP
- approving this QAPP
- providing oversight for the implementation of QA procedures related to CSC tasks that are described in this QAPP
- reporting deviations from this QAPP to the CSC Project Leader and recommending corrective actions to resolve these deviations

Tony Olsen is the **Senior Statistician** at the ORD Western Ecology Division in Corvallis, Oregon who is supporting the NRSA fish fillet indicator by providing technical expertise for

study planning and implementation. He is providing direct technical support for the following activities or providing leadership and oversight for ORD staff supporting these activities:

- developing the study design for the NRSA
- selecting probability-based sites and tracking each site for final statistical classification
- completing statistical analysis of analytical data for NRSA fillet tissue samples
- developing cumulative distribution functions for analytical data sets with sufficient data points
- participating in development of final reports for publication

A5. Problem Definition/Background

Obtaining statistically representative occurrence data on multiple contaminants in fish tissue is a priority area of interest for EPA. Since 1998, OW has collaborated with ORD to conduct a series of national- and regional-scale assessments of contaminants in fish tissue through statistically based studies of U.S. lakes and rivers. These EPA studies are referred to as the National Lake Fish Tissue Study, the 2008-2009 NRSA, and the Great Lakes Human Health Fish Tissue Study conducted under the 2010 National Coastal Condition Assessment. Including the fish fillet indicator in the 2013-2014 NRSA is providing the first opportunity for analysis of probability-based national fish contamination trends in U.S. rivers. Results from the 2013-2014 NRSA fish fillet indicator will be compared to corresponding results from the 2008-2009 fish fillet indicator (which generated a national baseline for fish contamination data in U.S. rivers) to examine temporal trends.

A6. Project/Task Description

OST is collaborating with OWOW and with ORD-WED in Corvallis, Oregon, to plan and implement the fish fillet indicator within the framework of the 2013-2014 NRSA. Fish composite samples will be collected during May through September of 2013 and 2014 at a statistical subset of approximately 450 sites in the NRSA framework (Figure 2).

Following are the key design components for the 2013-2014 NRSA fish fillet indicator:

- Sampling approximately 450 randomly selected sites during 2013 and 2014 (see Appendix A).
- Collecting one fish composite sample for human health applications (i.e., five similarly sized adult fish of the same species that are commonly consumed by humans) from each site.
- Shipping whole fish samples to a commercial laboratory for storage and fish sample preparation, which includes collection of tissue plug samples for mercury analysis, before filleting the fish, removing both fillets from each fish, homogenizing the fillet tissue composites, and preparing fillet tissue aliquots for analysis of mercury, perfluorinated compounds (PFCs), PCBs, PBDEs, and lipids.

 Analyzing the fillet tissue samples for mercury (total) and 13 PFCs, including perfluorooctane sulfonate (PFOS) (details to be addressed in a subsequent revision of this QAPP).

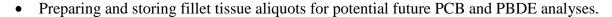


Figure 2. NRSA fish fillet indicator sampling locations

Microbac will store the 2013-2014 NRSA fillet tissue samples and prepare the fish tissue samples for analysis as outlined in the third bullet above. Microbac staff are also preparing multiple aliquots of archived fillet tissue from each fish sample and storing them in a freezer to allow for future analysis of these samples for other contaminants, particularly PCBs and PBDEs.

A7. Quality Objectives and Criteria

The overall quality objective for the preparation of the 2013-2014 NRSA fish fillet indicator samples is to obtain a complete set of samples for each chemical or chemical group of interest to OST. Completeness is defined as the percentage of samples collected in the study for which usable sample aliquots are produced. The goal for completeness is 95%, which recognizes that a few samples sent from the field may not arrive in acceptable condition for inclusion in the study.

A8. Special Training/Certification

All laboratory staff involved in the preparation of fish tissue samples must be proficient in the associated tasks, as required by the National Rivers and Streams Assessment 2013 Tissue Preparation, Homogenization, and Distribution Procedures (Appendix B).

Specialized training is being provided for laboratory technicians who will be collecting fish tissue plug samples (for mercury analysis only) and preparing fillet tissue samples for this project. This training is being conducted jointly by OST, CSC, and Tetra Tech at Microbac for all laboratory staff involved with 2013-2014 NRSA fillet tissue sample preparation to accomplish the following objectives:

- Present NRSA fillet tissue preparation, homogenization and distribution procedures described in Appendix B,
- Demonstrate mercury plug sample collection techniques with fish from invalid NRSA samples,
- Demonstrate filleting and homogenizing techniques with fish from invalid NRSA samples,
- Provide hands-on opportunities for fish preparation laboratory staff to develop
 proficiency with plug sample extraction and with filleting and homogenizing fish
 samples, including equipment cleaning procedures and production of equipment rinsate
 samples.

A9. Documents and Records

The statement of work (SOW) issued by CSC to Microbac for the fillet tissue preparation subcontract provides the specific requirements for the preparation laboratory deliverables. That SOW is the basis for Appendix B to this QAPP. The major deliverables requirements are summarized below:

- The sample preparation laboratory must prepare and submit a weekly progress report to CSC to document the status of fish sample preparation activities and provide information specified in the SOW.
- The laboratory must report the results of the rinsate analyses for mercury, PCBs, and PBDEs, and the triplicate lipid results associated with the sample batch to CSC.
- The laboratory must provide shipping information (airbills, shipping forms, etc.) to CSC for tissue or rinsate samples sent from the laboratory.

The laboratory will maintain records and documentation associated with these efforts for a minimum of five years after completion of the study. Additional copies will be maintained by CSC for at least five years and will be transferred to EPA on request.

B. DATA GENERATION AND ACQUISITION

B1. Sampling Process Design (Experimental Design)

The objective of the 2013-2014 NRSA fish fillet indicator is to investigate the occurrence of mercury, PFCs, and other contaminants in the edible tissue (fillets) of harvestable-sized adult freshwater fish that are typically consumed by humans. This fish contamination study will provide statistically representative data on the concentrations of mercury and PFCs in fish from

the nation's rivers that are applicable to human health. Fish tissue data from this study will also provide EPA with the first opportunity to analyze trends in the levels of river fish contamination by comparing 2013-2014 NRSA fillet tissue results to the fillet tissue data generated during the 2008-2009 NRSA. The 2013-2014 NRSA fish fillet indicator may also include future analysis of tissue samples for PCBs and PBDEs. In this event, the description of the 2013-2014 NRSA fish fillet indicator objective will be expanded to add these chemical groups.

The details of the sampling process design, sampling methods, and sample handling and custody procedures are described in EPA's *National Rivers and Streams Assessment 2014-2014 Quality Assurance Project Plan, May 2013*, prepared by OWOW with input by other study participants (USEPA 2013a). However, to provide some context for the readers of this QAPP, those aspects of the NRSA are summarized below.

The target population for the 2013-14 NRSA consists of all streams and rivers within the 48 contiguous states that have flowing water from April through September, excluding portions of tidal rivers up to the head of salt. This target population applies to all the NRSA core indicators (i.e., in situ measurements, water chemistry, chlorophyll a, periphyton, benthic macroinvertebrate assemblage, fish assemblage, and physical habitat). The 2013-2014 NRSA survey design incorporates two major components: the NRSA14 survey design and the NRSA09 survey design. These design components address both NRSA objectives of estimating current status and estimating change in status for all flowing waters. The NRSA09 survey design is a subsample of 2008-2009 NRSA target river sites (Strahler order 5th and greater) and stream sites (Strahler order 1st through 4th) sampled in 2008 and 2009. The NRSA14 survey design is a new survey design that involved selection of new sites in the following four river and stream categories: major rivers (Strahler order 5th and greater), other rivers (Strahler order 5th and greater), large streams (Strahler order 3rd and 4th), and small streams (Strahler order 1st and 2nd). Both the NRSA09 and NRSA14 designs are explicitly stratified by state. Within each state, the unequal probability of selection was based on river and stream categories and ecological reporting sites. Application of both the NRSA09 survey design and the NRSA14 survey design resulted in selection of 1808 base sampling sites for the 2013-2014 NRSA, which are distributed among the six river and stream categories as follows: 409 previously sampled rivers, 402 previously sampled streams, 227 new major rivers, 236 new other rivers, 256 new large streams, and 278 new small streams.

Note: The terms "NRSA09" and "NRSA14" above were developed by ORD-WED to specifically identify components of the statistical design for the 2013-2014 NRSA.

Table 1. Site Selection Summary for the 2013-2014 NRSA Survey Design

Ecological	NF	RSA09 Desi	gn		NI	RSA14 Des	ign		Dagian
Reporting Region	Rivers	Streams	Totals	Rivers Major	Rivers Other	Large Streams	Small Streams	Total	Design Total
Coastal Plain (CPL)	52	48	100	29	33	34	42	138	238
Northern Appalachians (NAP)	52	41	93	30	34	39	44	147	240
Northern Plains (NPL)	43	39	82	16	17	17	25	75	157
Southern Appalachians (SAP)	52	60	112	29	30	31	38	128	240
Southern Plains (SPL)	41	34	75	20	21	20	20	81	156
Temperate Plains (TPL)	44	49	93	28	27	30	28	113	206
Upper Midwest (UMW)	39	40	79	19	20	20	18	77	156
Western Mountains (WMT)	43	61	104	29	26	32	32	119	223
Xeric Region (XER)	43	30	73	27	28	33	31	119	192
Total	409	402	811	227	236	256	278	997	1808

The target population for the 2013-2014 NRSA fish fillet indicator (a supplemental indicator) consists of all Strahler order 5th and greater streams (which are categorized as rivers) within the 48 contiguous states that have flowing water from April through September, excluding portions of tidal rivers up to the head of salt. A statistically representative subset of 453 river sites distributed throughout the 48 states was designated as the group of sampling sites for the 2013-2014 NRSA fish fillet indicator. To optimize the capability for estimating change in fish contaminant levels, the 2013-2014 NRSA fish fillet indicator sampling sites include the 409 river locations previously sampled during the 2008-2009 NRSA and 44 of the new major river sites from the NRSA14 design (one new major river site in each of the 44 states where new major river sites were selected).

To meet the study objective, one fish composite sample was collected from each site. A routine fish composite sample consists of five adult fish that are selected for each composite based on the following criteria:

- All are of the same species;
- All satisfy legal requirements of harvestable size (or weight) for the sampled site, or at least be of consumable size if new legal harvest requirements are in effect;

- All are of similar size, so that the smallest individual in a composite is no less than 75% of the total length of the largest individual;
- All are collected at the same time, i.e., collected as close to the same time as possible, but no more than one week apart. (Note: Individual fish may have to be frozen until all fish to be included in the composite are available for delivery to the designated laboratory.)

Accurate taxonomic identification is essential in preventing the mixing of closely related target species. Under no circumstances are individuals from different species used in a composite sample.

The sample collection goal at each NRSA fish fillet indicator site is to obtain a composite sample of fish that are adequate in size to provide a minimum of 536 grams of fillet tissue for chemical analysis. Field crews will collect fish between May and September during both field seasons in 2013 and 2014.

B2. Sampling Methods

Sampling method procedures and requirements for collection of human health fish samples are detailed in EPA's *National Rivers and Streams Assessment 2013-2014 Quality Assurance Project Plan, May 2013* (USEPA 2013a) and *National Rivers and Streams Assessment Field Operations Manual* (USEPA 2013b). These sampling procedures and requirements are summarized below.

The field objective is for sampling teams to obtain one representative fish composite sample from each sampling site. Collecting fish composite samples is a cost-effective means of estimating average chemical concentrations in the tissue of target species, and compositing fish ensures adequate sample mass for analysis of multiple chemicals. The sampling procedures specify that each composite should consist of five similarly sized adult fish of the same species. OST developed a recommended fish species list with OWOW concurrence that contained 18 priority target fish species. In June 2013, OST expanded this list to include 16 alternative fish species. Sampling teams will use this list as the basis for selecting appropriate fish species for the NRSA fish fillet indicator samples. The method applied for fish collection is at the discretion of the field team, but electrofishing is preferred.

In preparing fish samples for shipping, field teams record sample number, species name, specimen length, sampling location and sampling data and time on a fish collection form. Each fish is wrapped in solvent-rinsed, oven-baked aluminum foil, with the dull side in using foil sheets provided by EPA. Individual foil-wrapped specimens are placed into a length of food-grade polyethylene tubing, each end of the tubing is sealed with a plastic cable tie, and a fish specimen label is affixed to the outside of the food-grade tubing with clear tape. All of the wrapped fish in the sample from each site are placed in a large plastic bag and sealed with another cable tie, then placed immediately on dry ice for shipment to Microbac in Baltimore, Maryland. Field crews are directed to pack fish samples on dry ice in sufficient quantities to keep samples frozen for up to 48 hours (50 pounds are recommended), and to ship them via priority overnight delivery service (e.g., Federal Express), so that they arrive at Microbac in less than 24 hours from the time of sample collection. Alternatively, field crews may transport whole fish samples on wet or dry ice (depending on the distance) to an interim facility where the fish

samples are frozen and stored for up to two weeks before overnight shipping to Microbac on dry ice as described above.

B3. Sample Handling and Custody

This section describes the sample handling and custody procedures that apply once the whole fish tissue samples are shipped from the field to the sample preparation laboratory. Fish samples for the 2013-2014 NRSA are being collected by various organizations participating with EPA in this study, including state and tribal agencies, other federal agencies, and contractors. Although samples will be shipped frozen on dry ice, they must be inspected promptly on receipt. As samples are received, the sample custodian at the sample preparation laboratory will:

- Check that each shipping container has arrived undamaged and verify that samples are still frozen and in good condition.
- Check the temperature of one of the samples in the cooler using a thermometer that reads to at least -20 degrees Celsius (°C), or an infra-red (IR) temperature "gun" and record the reading on the sample tracking form.
- Verify that all associated paperwork is complete, legible, and accurate.
- Compare the information on the label on each individual fish specimen to the sample tracking form for each composite and verify that each specimen was included in the shipment and is properly wrapped and labeled.
- Notify CSC of the fact that samples were received and of any discrepancies in the paperwork identified above.
- Provide CSC with a copy of the sample tracking form for each sample (via email). (CSC will check that the samples were collected from sites on the list of valid whole fish tissue sampling locations (uniquely designated by the site identification number), and notify EPA immediately if samples have been received from sites not on that list.)
- Transfer the samples to the freezer for long-term storage.

The sample preparation laboratory will notify CSC immediately about any problems encountered upon receipt of samples. Problems involving sample integrity, conformity, or inconsistencies for fish tissue samples should be reported to CSC in writing (e.g., by email) as soon as possible following sample receipt and inspection.

Following sample processing, the sample preparation laboratory must store sample aliquots frozen to less than or equal -20 °C until they are distributed to the laboratories performing analyses under separate CSC purchase orders. (The freezers are maintained by the sample processing laboratory under a separate agreement with CSC and are continuously monitored by an automated temperature monitoring system.)

B4. Fish Sample Preparation Methods

Microbac has been selected as the fish sample preparation laboratory (prep lab) for the NRSA fish fillet indicator. In this role, Microbac is responsible for extracting a fish plug sample from designated fish in the sample before filleting the fish, filleting each valid fish sample, homogenizing the fillet tissue, preparing the required number of fish tissue aliquots for analysis and archive, shipping the fish tissue aliquots for each analysis to the designated analytical laboratory, and storing archived fish tissue samples in a freezer at their facility. The specific procedures for NRSA fillet tissue sample preparation activities are described in Appendix B.

Before beginning sample processing, trained lab technicians complete a relative fish length comparison to confirm that field crews attached the correct label to each fish in the composite sample. Each fish is then weighed to the nearest gram, rinsed with deionized water, placed on a clean glass cutting board, and scaled. Prior to filleting each fish in the sample, the lab technicians extract fish plug samples from designated fish (typically two fish per composite sample). The filleting process involves removing the fillet (with skin on and belly flap [ventral muscle] attached) from both sides of each fish. Fillets are composited using the "batch" method, in which all of the fillets from the individual specimens that make up the sample are homogenized together, regardless of each specimen's proportion to one another (as opposed to the "individual" method, in which equal weights of tissue from each specimen are added together).

An electric meat grinder is used to prepare homogenate samples. Entire fillets (with skin and belly flap) from both sides of each fish are homogenized, and the entire homogenized volume of all fillets from the fish sample is used to prepare the tissue sample. Tissues are mixed thoroughly until they are completely homogenized as evidenced by a fillet homogenate that consists of a fine paste of uniform color and texture. Homogeneity is confirmed by conducting triplicate analyses of the lipid content in one of every twenty samples. The collective weight of the homogenized tissue from each sample is recorded to the nearest gram (wet weight) after processing. Microbac prepares fillet tissue samples and sample aliquots according to the specifications listed in Steps 18 to 28 of the fish sample preparation procedures in Appendix B.

B5. Fish Sample Preparation Quality Control

The project-specific QC procedures include preparation and testing of equipment rinsate samples and homogeneity testing, using lipids as a surrogate. The QC procedures are performed in two distinct phases: (1) as part of an initial demonstration of capabilities after the kickoff meeting and training workshop with EPA, and (2) during normal operations (i.e., NRSA fish sample preparation procedures).

B.5.1 Initial demonstration of capabilities

After the kickoff meeting and training workshop, Microbac staff will prepare three test fish samples provided by Tetra Tech. Each test sample will consist of a single large fish that will be processed separately. Each of these test samples will be carried through the entire sample preparation and aliquoting procedures separately. The resulting sample aliquots will not be distributed to other laboratories. In between processing each individual fish sample, Microbac

staff will clean all of the sample preparation equipment as described in Step 29 of Appendix B. After each cleaning, Microbac staff will prepare the entire series of equipment rinsates and solvent blanks described in Step 32 of Appendix B.

Microbac also will collect three lipid aliquots from each sample prepared during the initial demonstration and use them for triplicate determinations of lipids, as described in Step 36 of Appendix B. Microbac will analyze the rinsate samples for mercury, PBDE congeners, and PCB congeners using the procedures described in Table 2, or have them analyzed by a subcontract laboratory under their control, as shown below.

Table 2. Methods for Determination of Lipids and Analyses of Rinsate Samples

Parameter	Method	Laboratory
Lipids	SW-846 9071B	Microbac
Mercury	EPA 245.1	Microbac
PBDEs	EPA 1614	Vista Analytical (under subcontract to Microbac)
PCBs	EPA 1668A	Cape Fear (under subcontract to Microbac)

The results of the analyses of the rinsates and the homogeneity testing (three sets each) will be submitted to CSC for review. Microbac will not begin 2013-2014 NRSA sample preparation until CSC and EPA determine that the sample preparation laboratory has successfully demonstrated proficiency in meeting QC requirements for equipment cleaning and tissue homogenization.

From the lipid results, Microbac will calculate the mean lipid content (in percent), the standard deviation (SD), and the relative standard deviation (RSD) using the formulae below, or the corresponding functions in Excel.

mean % lipids =
$$\frac{\sum_{i=1}^{3} (\% \text{ lipids})_{i}}{3}$$

$$SD = \sqrt{\frac{\sum\limits_{i=1}^{3} (\% \ lipids_{i} - mean \ lipids)^{2}}{2}}$$

$$RSD = \frac{SD}{mean}$$

If the RSD of the triplicate results is less than or equal to 15%, then CSC and EPA will judge the homogenization effort to be sufficient for all samples in that preparation batch.

If the results for the rinsate samples are below the limits in Table 3 for mercury, PBDEs, and PCBs, then CSC and EPA will judge the equipment cleaning effort to be sufficient for all samples in that preparation batch.

Table 3.	Acceptance	Limits for	Rinsate	Samples
----------	------------	------------	---------	----------------

Parameter	Acceptance Limit	Basis for Limit				
Mercury	1 μg/L for total mercury	Method detection limit for an aqueous sample				
PBDEs	0.5 ng/mL per congener	Instrument detection limit for a 0.5-mL final volume of solvent concentrated from the original 50-mL rinsate sample				
PCBs	0.5 ng/mL per congener	Instrument detection limit for a 0.5-mL final volume of solvent concentrated from the original 50-mL rinsate sample				

B.5.2 Normal Operations

During normal sample preparation efforts, the Microbac will prepare one set of rinsate samples and will conduct one set of triplicate lipid determinations per batch of 20 composite fish samples, as described in Steps 32 to 37 of Appendix B. The batch-specific rinsate and homogeneity results will be reviewed by CSC and EPA against the same QC specifications used for the initial demonstration of capabilities. The sample preparation laboratory may continue to process up to one additional batch of 20 samples (based on sample preparation instructions provided by CSC) during that review process. However, the sample preparation laboratory may not continue beyond that next batch of samples until receiving notification from CSC that review of the prior batch rinsate and homogeneity test results is complete and the results were deemed satisfactory.

B6. Instrument/Equipment Testing, Inspection, and Maintenance

There are no analytical instruments used in the preparation of the fillet tissue samples. However, the balances used to weigh the whole fish and the tissue sample aliquots are inspected and serviced on a regular schedule and the homogenization equipment (meat grinder) will be inspected when it is reassembled after cleaning between samples.

All analytical instrumentation associated with the rinsate analyses will be inspected and maintained as described in the respective analysis methods and laboratory SOPs.

B7. Instrument/Equipment Calibration and Frequency

The balances used to weigh the whole fish and the tissue sample aliquots are calibrated on a regular schedule and calibrations are verified at the beginning of each day on which the balances are used.

All analytical instrumentation associated with the rinsate analyses will be calibrated as described in the respective analysis methods. The methods in Table 3 all require multi-point initial calibrations and periodic calibration verifications, and all the methods contain QC acceptance criteria for calibration.

B8. Inspection/Acceptance of Supplies and Consumables

The inspection and acceptance of any laboratory supplies and consumables associated with the rinsate analyses are addressed in the individual laboratory operating procedures to be used, and/or in the laboratory's existing overall quality system documentation. There are no additional requirements specific to this project, and therefore, none are described here.

B9. Non-direct Measurements

Non-direct measurements are not required for this project. (The analytical results from the 2008-2009 NRSA to which any new data are to be compared are primary data that EPA generated under an approved QAPP for that study.)

B10. Data Management

Data management practices employed in this study will be based on standard data management practices used for EPA's National Lake Fish Tissue Study and other OST fish contamination studies (e.g. Great Lakes Human Health Fish Tissue Study). The data management (i.e., sample tracking, data tracking, data inspection, data quality assessment, database development) procedures have been regularly applied to other technical studies by CSC. These procedures are being employed because they are effective, efficient, and have successfully withstood repeated internal and external audits, including internal review by EPA Quality Staff, public review and comment, judicial challenge, and an audit by the Government Accountability Office. These procedures, as implemented for the NRSA fish fillet indicator, are summarized below.

- Microbac is required to maintain all records and documentation associated with the preparation of study samples and rinsates for a minimum period of five years after completion of the study.
- All required reports and documentation, including raw data, must be sequentially paginated and clearly labeled with the laboratory name, and associated sample numbers. Any electronic media submitted must be similarly labeled.
- Microbac will adhere to a comprehensive data management plan that is consistent with the principles set forth in Good Automated Laboratory Practices, EPA Office of Administration and Resources Management (USEPA 1995). Microbac's data management plan is incorporated in their overall quality system documentation, e.g., their quality management plan, a copy of which will be maintained on file at CSC.

C. ASSESSMENT AND OVERSIGHT

C1. Assessments and Response Actions

The laboratory contract prepared to support this study stipulates that the sample preparation laboratory has a comprehensive QA program in place and operating at all times during the performance of their contract, and that in performing laboratory work for this study, the laboratory shall adhere to the requirements of that QA program (Microbac 2012). A copy of that plan will be maintained on file at CSC.

Sections C1.1 through C1.5 describe other types of assessment activities and corresponding response actions identified to ensure that data gathering activities in the NRSA fish fillet indicator are conducted as prescribed and that the performance criteria defined for the study are met.

C1.1 Surveillance

The CSC Project Leader will schedule and track all work performed by the sample preparation laboratory. The Project Leader will coordinate with staff at Microbac regarding fish tissue sample shipments to other laboratories once analysis contracts are funded and in place.

When CSC is advised that samples are being shipped from the field to the sample preparation laboratory, the Project Leader will contact designated sample preparation laboratory staff by email to notify them of the forthcoming shipment(s) and request that they contact CSC if the shipments do not arrive intact as scheduled. Within 24 hours of scheduled sample receipt, CSC will contact the laboratory to verify that the samples arrived in good condition, and if problems are noted, will work with the laboratory and EPA to resolve the problem as quickly as possible to minimize data integrity problems.

CSC's project leader will obtain fish sample processing instructions for each batch of 20 samples from the OST Project Manager and transmit those instructions to the sample processing laboratory by email. The sample preparation laboratory may not begin processing any samples until this QAPP is approved and CSC provides the sample processing instructions.

CSC will communicate periodically with laboratory staff by telephone or email to monitor the progress of sample preparation and lipid and rinsate analysis. If technical problems are encountered during sample preparation and rinsate analysis, CSC will identify a technical expert within CSC to assist in resolving the problem, and work with EPA to identify and implement a solution to the problem. The sample preparation laboratory will be permitted to work one batch ahead of the production and CSC/EPA review of the lipid and rinsate analyses to ensure that the homogenization and equipment cleaning procedures are adequate.

If the laboratory fails to deliver QC data on time, or if the laboratory notifies CSC of anticipated reporting or sample processing delays, CSC will notify the OST Project Manager of the situation. To the extent possible, CSC will adjust schedules and shift resources within CSC as necessary to minimize the impact of laboratory delays on EPA schedules. CSC also will immediately notify the Project Manager of any laboratory delays that are anticipated to impact EPA schedules.

C1.2 Product Review

Reviews of the sample preparation records and the results of the lipid homogeneity and rinsate testing will be performed by CSC. The results of those reviews will be documented in emails to the OST Project Manager.

C1.3 Quality Systems Audit

A quality system audit (QSA) is used to verify, by examination and evaluations of objective evidence, that applicable elements of the quality system are appropriate and have been developed, documented, and effectively implemented in accordance and in conjunction with specified requirements. The focus of these assessments is on the quality system processes – not on evaluating the quality of specific products or judging the quality of environmental data or the

performance of personnel or programs. The SHPD QA Coordinator may perform a QSA of the fillet tissue preparation portion of the 2013-2014 NRSA.

C1.4 Readiness Review

A readiness review of the sample preparation laboratory's capability to produce homogeneous tissue sample aliquots will begin with the kick-off meeting with the laboratory. This effort will include the initial demonstration of capabilities described in Appendix B. Routine processing of fish tissue samples will not begin until the laboratory has demonstrated acceptable performance in the initial demonstration of capabilities.

The results of the lipid homogeneity testing and rinsate analyses from the initial demonstration of capabilities will be examined by CSC data reviewers to determine if the laboratory met the QC acceptance criteria for the lipid homogeneity testing and the rinsate analyses. If problems are identified during these reviews, CSC will work with the laboratory, to the extent possible, to resolve the problem. If the problem cannot be resolved within the time frame required by EPA or within the scope of the laboratory's existing contract, CSC will notify the OST Project Manager immediately. Records of these reviews and any corrective actions are maintained by CSC. CSC staff will document their findings and recommendations concerning the readiness review as part of a written analytical QA report to EPA.

C1.5 Technical Systems Audit

The laboratory contract requires that the laboratory be prepared for and willing to undergo an on-site, or technical systems, audit of its facilities, equipment, staff, sample processing and rinsate analysis, training, record keeping, data validation, data management, and data reporting procedures. An audit will be conducted only if the results of the readiness reviews, data quality audits, and surveillance suggest serious or chronic laboratory problems that warrant on-site examinations and discussion with laboratory personnel.

If such an audit is determined to be necessary, a standardized audit checklist may be used to facilitate an audit walkthrough and document audit findings. Audit participants may include the OST Project Manager and/or the SHPD QA Coordinator (or a qualified EPA staff member designated by the OST QA Officer) and a CSC staff member experienced in conducting laboratory audits. One audit team member will be responsible for leading the audit and conducting a post-audit debriefing to convey significant findings to laboratory staff at the conclusion of the audit. Another audit team member will be responsible for gathering pre-audit documentation of problems that necessitated the audit, customizing the audit checklist as necessary to ensure that those problems are addressed during the audit, documenting audit findings on the audit checklist during the audit, and drafting a formal report of audit findings for review by EPA.

C2. Reports to Management

The sample preparation laboratory will provide CSC with a weekly status report that describes all of the fish samples processed during the previous week. CSC will review those reports for completeness and then forward them to the OST Project Manager.

D. DATA VALIDATION AND USABILITY

D1. Data Review, Verification, and Validation

The data review, verification, and validation aspects of the fillet tissue sample preparation effort are more limited than those that might be applied to typical chemical analysis efforts. The procedures described below apply primarily to the results of the lipid homogeneity and rinsate analyses.

D1.1 Data Review

All laboratory results and calculations will be reviewed by the Laboratory Manager prior to data submission. Any errors identified during this peer review will be returned to the analyst for correction prior to submission of the data package. Following correction of the errors, the Laboratory Manager will verify that the final package is complete and compliant with the contract, and will sign each data submission to certify that the package was reviewed and determined to be in compliance with the terms and conditions of the contract.

D1.2 Data Verification

The basic goal of data verification is to ensure that project participants know what data were produced, if they are complete, if they are contractually compliant, and the extent to which they meet the objectives of the study.

CSC staff will conduct reviews of the QC sample results for homogenized fish tissue samples prepared by Microbac. This will involve review of data for percent lipid measurements that serve as a surrogate for homogeneity testing and review of the results from rinsates of the sample processing equipment. The CSC Project Leader will verify the summary level results for these QC samples, determine if they meet the project objectives in this QAPP, and report the verification findings to OST.

D1.3 Data Validation

Data validation is the process of evaluating the quality of the results relative to their intended use. Data need not be "perfect" to be usable for a particular project, and the validation process is designed to identify data quality issues uncovered during the verification process that may affect the intended use. One goal of validation is to answer the "So what?" question with regard to any data quality issues.

As noted above, the data validation aspects of the fillet tissue sample preparation effort are more limited and will focus on the clarity and accuracy of the weekly sample processing reports.

D2. Verification and Validation Methods

D2.1 Verification Methods

In the first stage of the data verification process, CSC reviewers will perform a "Completeness Check" in which all elements in each laboratory submission will be evaluated to verify that results for all specified samples are provided, that data are reported in the correct format, and that all relevant information, such as preparation and analysis logs, are included in the data package. Corrective action procedures will be initiated if deficiencies are noted.

The second stage of the verification process will focus on an "Instrument Performance Check" in which the CSC data review chemists will verify that calibrations, calibration verifications, standards, and calibration blanks were analyzed at the appropriate frequency and met method or study performance specifications. If errors are noted at this stage, corrective action procedures will be initiated immediately.

Stage three of the verification process will focus on a "Laboratory Performance Check" in which CSC data review chemists will verify that the laboratory correctly performed the required analytical procedures and was able to demonstrate a high level of precision and accuracy. This stage includes evaluation of QC elements such as the laboratory control samples, method blanks, matrix spike samples and/or reference samples, where applicable. Corrective action procedures will be initiated with the laboratories to resolve any deficiencies identified.

D2.2 Validation Methods

CSC data review chemists will perform a data quality and usability assessment in which the overall quality of data is evaluated against the performance criteria. This assessment will strive to maximize use of data gathered in this study based on performance criteria established for this study. This will be accomplished by evaluating the overall quality of a particular data set rather than focusing on individual QC failures. Results of this assessment will be documented in a report after all of the results have been evaluated and forwarded to the OST Project Manager.

D3. Reconciliation with User Requirements

The QC results for lipids from the homogeneity testing and the rinsate analysis for each batch of fish tissue samples prepared will be assessed against the QC acceptance criteria. Although the sample preparation laboratory will be permitted to work "one batch ahead" of the delivery of the batch-specific QC results, CSC will track laboratory performance, notify the OST Project Manager of any issues, initiate corrective actions, and track progress by the sample preparation laboratory.

References

Microbac. 2012. Microbac Laboratories Baltimore Division Quality Assurance Manual, Issue 01, Revision 020, August 22, 2012.

USEPA. 1983. Method 245.1, Mercury (Manual Cold Vapor Technique). In Methods for Chemical Analysis of Water and Wastes (MCAWW) EPA/600/4-79-020 - Revised March 1983. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 1995. Good Automated Laboratory Practices. EPA Manual 2185. U.S. Environmental Protection Agency, Office of Administration and Resources Management, Washington, DC, August 1995.

USEPA. 1998. Method 9071B, n-Hexane Extractable Material (HEM for Sludge, Sediment, and Solid Samples. In "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods." Third Edition.

USEPA. 1999. Method 1668, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS. EPA No. EPA-821-R-00-002. December 1999. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2001. EPA Requirements for Quality Assurance Project Plans. EPA QA/R-5. U.S. Environmental Protection Agency, Office of Environmental Information, Washington, DC. EPA/240/B-01/003.

USEPA. 2010. Method 1614A Brominated Diphenyl Ethers in Water, Soil, Sediment, and Tissue by HRGC/HRMS. EPA-821-R-10-005. May 2010. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2013a. National Rivers and Streams Assessment: Quality Assurance Project Plan, Version 1.0. May 2013. EPA-841-B-12-007. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

USEPA. 2013b. National Rivers and Streams Assessment Field Operations Manual. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

Appendix A

				- 201 0001112		sue Study Sampling I	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
AL	ALR9-0901	FW08AL012	34.95092	-87.04203	7	Elk River	Non-Urban
AL	ALR9-0902	FW08AL014	32.48594	-85.72031	5	Uphapee Creek	Non-Urban
AL	ALR9-0903	FW08AL015	31.08686	-87.08175	5	Murder Creek	Non-Urban
AL	ALR9-0904	FW08AL020	33.41281	-86.75190	5	Cahaba River	Urban
AL	ALR9-0905	FW08AL021	31.34381	-85.60881	5	Choctawhatchee River	Non-Urban
AL	ALR9-0906	FW08AL022	31.68740	-88.05213	5	Salitpa Creek	Non-Urban
AL	ALRM-1001		32.22869	-87.14828	7	Alabama River	Non-Urban
AR	ARR9-0901	FW08AR010	35.62598	-89.87933	10	Mississippi River	Non-Urban
AR	ARR9-0902	FW08AR012	34.35270	-91.10542	8	White River	Non-Urban
AR	ARR9-0903	FW08AR014	34.69500	-90.64588	7	Saint Francis River	Non-Urban
AR	ARR9-0904	FW08AR016	35.67817	-93.74409	5	Mulberry River	Non-Urban
AR	ARR9-0905	FW08AR017	33.55630	-92.02261	6	Saline River	Non-Urban
AR	ARR9-0906	FW08AR019	34.92888	-93.36068	5	Fourche Lafave River	Non-Urban
AR	ARR9-0907	FW08AR022	34.80142	-90.77003	5	Anguile River	Non-Urban
AR	ARR9-0908	FW08AR024	33.61703	-93.86001	6	Little River	Non-Urban
AR	ARR9-0909	FW08AR026	35.53264	-90.44201	6	Saint Francis River	Non-Urban
AR	ARRM-1001		35.60184	-89.90212	10	Mississippi River	Non-Urban
AZ	AZR9-0901	FW08AZ009	36.08766	-111.87061	8	Colorado River	Non-Urban
AZ	AZR9-0902	FW08AZ013	36.43346	-111.86409	8	Colorado River	Non-Urban
AZ	AZR9-0903	FW08AZ019	32.40882	-111.16063	6	Santa Cruz River	Non-Urban
AZ	AZR9-0904	FW08AZ022	33.29395	-109.49470	5	Eagle Creek	Non-Urban
AZ	AZR9-0913	FW08AZ062	33.47634	-114.60530	9	Colorado River	Non-Urban
AZ	AZRM-1001		33.66840	-114.53128	9	Colorado River	Non-Urban
CA	CAR9-0901	FW08CA020	41.31853	-123.52796	6	Klamath River	Non-Urban
CA	CAR9-0902	FW08CA022	34.35671	-119.01988	6	Santa Clara River	Urban
CA	CAR9-0903	FW08CA031	38.81627	-123.01119	5	Russian River	Urban
CA	CAR9-0904	FW08CA035	38.80836	-121.63521	6	Feather River	Non-Urban
CA	CAR9-0905	FW08CA038	34.42494	-118.55705	5	Santa Clara River	Urban
CA	CAR9-0906	FW08CA040	41.53926	-123.52673	6	Klamath River	Non-Urban
CA	CAR9-0907	FW08CA044	41.48963	-120.60459	6	Pit River	Non-Urban
CA	CAR9-0908	FW08CA056	41.45640	-123.93556	7	Klamath River	Non-Urban
CA	CAR9-0909	FW08CA059	40.00191	-121.26823	6	Feather River	Non-Urban
CA	CAR9-0910	FW08CA061	37.59638	-121.12876	6	Tuolumne River	Non-Urban
CA	CAR9-0911	FW08CA063	40.31844	-123.77101	7	Eel River	Non-Urban
CA	CAR9-0912	FW08CA067	38.57234	-121.35775	6	American River	Urban
CA	CAR9-0913	FW08CA068	41.84331	-122.89973	6	Klamath River	Non-Urban
CA	CARM-1001		33.85326	-117.78304	5	Santa Ana River	Urban
СО	COR9-0901	FW08CO021	39.98812	-108.77796	5	Douglas Creek	Non-Urban
CO	COR9-0902	FW08CO025	38.86531	-108.39814	6	Gunnison River	Non-Urban
СО	COR9-0903	FW08CO028	37.60462	-103.60597	5	Purgatoire River	Non-Urban
СО	COR9-0904	FW08CO032	40.94132	-102.34142	5	South Platte River	Non-Urban
СО	COR9-0905	FW08CO033	37.17608	-105.73105	6	Grande, Rio	Non-Urban
СО	COR9-0906	FW08CO036	40.39451	-103.47733	7	South Platte River	Non-Urban
СО	COR9-0907	FW08CO037	40.47797	-108.90822	7	Yampa River	Non-Urban
СО	COR9-0908	FW08CO046	39.65513	-107.06715	6	Colorado River	Non-Urban
СО	CORM-1001		39.18629	-108.90477	7	Colorado River	Non-Urban
СТ	CTR9-0901	FW08CT005	41.89123	-72.66210	5	Farmington River	Urban
CT	CTR9-0902	FW08CT006	41.78270	-71.89588	5	Quinebaug River	Urban
СТ	CTR9-0903	FW08CT007	41.54059	-72.55126	6	Connecticut River	Urban
CT	CTR9-0906	FW08CT016	41.84448	-72.63200	5	Farmington River	Urban
CT	CTRM-1001		41.48485	-72.50888	6	Connecticut River	Urban
DE	DER9-0901	FW08DE005	39.70013	-75.63339	5	White Clay Creek	Urban
					_	1	

	01 = 010 = 01		tri cro unic	- Streams		sue Study Sampling Lo	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
DE	DER9-0902	FW08DE009	39.83430	-75.57709	5	Brandywine Creek	Urban
DE	DER9-0903	FW08DE010	38.61817	-75.63092	5	Nanticoke River	Urban
FL	FLR9-0901	FW08FL005	30.35243	-84.68592	5	Ochlockonee River	Non-Urban
FL	FLR9-0902	FW08FL006	29.98459	-85.03299	8	Apalachicola River	Non-Urban
FL	FLR9-0903	FW08FL007	27.41502	-81.13117	5	Kissimmee River	Non-Urban
FL	FLRM-1001		30.21423	-85.11154	8	Apalachicola River	Non-Urban
GA	GAR9-0901	FW08GA006	30.70227	-83.03386	6	Alapaha River	Non-Urban
GA	GAR9-0902	FW08GA008	32.30967	-84.05752	5	Buck Creek	Non-Urban
GA	GAR9-0903	FW08GA009	33.05392	-81.82509	5	Brier Creek	Non-Urban
GA	GAR9-0904	FW08GA010	30.81591	-83.01665	6	Alapaha River	Non-Urban
GA	GAR9-0905	FW08GA012	32.14304	-83.38112	6	Ocmulgee River	Non-Urban
GA	GAR9-0906	FW08GA018	32.00825	-83.29546	6	Ocmulgee River	Non-Urban
GA	GAR9-0907	FW08GA020	31.15899	-85.07891	7	Chattahoochee River	Non-Urban
GA	GARM-1001		32.61633	-83.54926	6	Ocmulgee River	Non-Urban
IA	IAR9-0901	FW08IA019	42.79185	-96.60157	7	Big Sioux River	Non-Urban
IA	IAR9-0902	FW08IA021	41.00446	-91.66528	6	Skunk River	Non-Urban
IA	IAR9-0903	FW08IA022	42.20200	-90.33231	8	Mississippi River	Non-Urban
IA	IAR9-0904	FW08IA024	43.45106	-94.86716	6	Des Moines River	Non-Urban
IA	IAR9-0905	FW08IA029	42.24731	-92.32474	5	Wolf Creek	Non-Urban
IA	IAR9-0906	FW08IA034	43.10975	-91.17645	8	Mississippi River	Non-Urban
IA	IAR9-0907	FW08IA035	43.26844	-96.21303	5	Little Rock River	Non-Urban
IA	IAR9-0908	FW08IA037	40.87470	-91.04809	8	Mississippi River	Non-Urban
IA	IAR9-0909	FW08IA038	42.13068	-90.35650	6	Maquoketa River	Non-Urban
IA	IAR9-0914	FW08IA047	41.46760	-95.90931	5	Boyer River	Non-Urban
IA	IARM-1001	1 11 001110 17	42.50707	-90.64463	8	Mississippi River	Urban
ID	IDR9-0901	FW08ID013	42.57566	-113.62921	7	Snake River	Non-Urban
ID	IDR9-0902	FW08ID014	46.13488	-115.95995	6	Middle Fork Clearwater River	Non-Urban
ID	IDR9-0903	FW08ID016	42.52532	-115.49077	5	Clover Creek	Non-Urban
ID	IDR9-0904	FW08ID017	45.36948	-114.28991	7	Salmon River	Non-Urban
ID	IDR9-0905	FW08ID019	47.69645	-116.91528	7	Spokane River	Urban
ID	IDR9-0906	FW08ID020	43.96347	-116.18915	6	Payette River	Non-Urban
ID	IDR9-0907	FW08ID021	44.83915	-114.78516	6	Middle Fork Salmon River	Non-Urban
ID	IDR9-0908	FW08ID023	46.66523	-115.54751	5	North Fork Clearwater River	Non-Urban
ID	IDR9-0909	FW08ID026	45.38528	-115.53329	7	Salmon River	Non-Urban
ID	IDR9-0910	FW08ID029	44.39607	-116.04608	6	North Fork Payette River	Non-Urban
ID	IDR9-0911	FW08ID032	42.66149	-114.66271	7	Snake River	Non-Urban
ID	IDR9-0912	FW08ID033	45.13323	-113.80082	6	Lemhi River	Non-Urban
ID	IDRM-1001		42.93930	-115.70144	7	Snake River	Non-Urban
IL	ILR9-0901	FW08IL009	39.20865	-90.59292	8	Illinois River	Non-Urban
IL	ILR9-0902	FW08IL011	41.48585	-89.84848	5	Green River	Non-Urban
IL	ILR9-0903	FW08IL012	37.00011	-89.26342	10	Mississippi River	Non-Urban
IL	ILR9-0904	FW08IL013	40.47669	-91.36704	8	Mississippi River	Non-Urban
IL	ILR9-0905	FW08IL017	40.78506	-90.13891	6	Fox Creek	Non-Urban
IL	ILR9-0906	FW08IL018	41.15196	-87.91418	6	Kankakee River	Urban
IL	ILR9-0907	FW08IL022	41.90002	-89.48215	7	Rock River	Urban
IL	ILR9-0908	FW08IL024	37.85242	-89.19183	5	Little Muddy River	Non-Urban
IL	ILRM-1001		42.47833	-89.05604	6	Rock River	Urban
IN	INR9-0901	FW08IN006	38.64279	-87.61438	7	Wabash River	Non-Urban
IN	INR9-0902	FW08IN008	38.83491	-86.52326	6	East Fork White River	Urban
IN	INR9-0903	FW08IN009	41.69465	-85.91740	5	Saint Joseph River	Urban
IN	INR9-0904	FW08IN010	38.45178	-87.59800	7	White River	Non-Urban
IN	INRM-1001	1 11 0011 1010	40.75459	-86.28108	5	Wabash River	Urban
11.4	11.11.11.11.11.11.11.11.11.11.11.11.11.	l	TU.13437	-00.20100	5	11 dodon KIVO	Croan

	1		tricis unic	- Streams		sue Study Sampling Lo	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
KS	KSR9-0901	FW08KS007	39.87204	-95.02724	9	Missouri River	Non-Urban
KS	KSR9-0902	FW08KS008	37.82360	-97.46279	7	Arkansas River	Non-Urban
KS	KSR9-0903	FW08KS009	38.12609	-98.07809	7	Arkansas River	Non-Urban
KS	KSR9-0904	FW08KS010	39.42728	-98.53949	5	South Fork Solomon River	Non-Urban
KS	KSR9-0905	FW08KS011	39.72624	-94.91122	9	Missouri River	Urban
KS	KSR9-0906	FW08KS015	37.39754	-95.67977	5	Fall River	Non-Urban
KS	KSR9-0907	FW08KS017	38.76631	-100.27414	6	Smoky Hill River	Non-Urban
KS	KSR9-0908	FW08KS018	39.25252	-96.32660	5	Rock Creek	Non-Urban
KS	KSR9-0909	FW08KS019	38.83876	-100.99193	5	Smoky Hill River	Non-Urban
KS	KSR9-0910	FW08KS022	39.49523	-97.23190	7	Republican River	Non-Urban
KS	KSR9-0911	FW08KS023	39.06027	-94.84195	8	Kansas River	Urban
KS	KSR9-0912	FW08KS024	37.33922	-97.25535	6	Ninnescah River	Non-Urban
KY	KYR9-0901	FW08KY013	37.78140	-88.03819	9	Ohio River	Non-Urban
KY	KYR9-0902	FW08KY014	37.62117	-83.49986	6	North Fork Kentucky River	Non-Urban
KY	KYR9-0903	FW08KY016	37.98150	-86.03399	8	Ohio River	Non-Urban
KY	KYR9-0904	FW08KY017	37.47040	-88.09642	9	Ohio River	Non-Urban
KY	KYR9-0905	FW08KY019	37.29116	-85.59289	5	Green River	Non-Urban
KY	KYR9-0906	FW08KY021	37.97943	-82.67112	6	Levisa Fork	Non-Urban
KY	KYR9-0907	FW08KY023	37.23007	-84.24396	5	Rockcastle River	Non-Urban
KY	KYRM-1001		37.33669	-87.13761	7	Green River	Urban
LA	LAR9-0901	FW08LA011	32.97480	-92.07644	7	Ouachita River	Non-Urban
LA	LAR9-0902	FW08LA013	31.62650	-92.90921	7	Red River	Non-Urban
LA	LAR9-0903	FW08LA014	32.78465	-91.95737	6	Bayou Bartholomew	Non-Urban
LA	LAR9-0904	FW08LA017	31.55119	-91.80545	7	Black River	Non-Urban
LA	LAR9-0905	FW08LA018	32.06618	-93.41412	7	Red River	Non-Urban
LA	LAR9-0906	FW08LA022	32.54806	-93.78100	6	Twelvemile Bayou	Urban
LA	LAR9-0915	FW08LA039	30.32848	-90.84382	6	Amite River	Urban
LA	LARM-1001		32.27010	-90.96074	10	Mississippi River	Non-Urban
MA	MAR9-0901	FW08MA002	41.96179	-70.91978	5	Taunton River	Non-Urban
MA	MAR9-0902	FW08MA003	42.70064	-71.21798	7	Merrimack River	Urban
MA	MAR9-0903	FW08MA005	42.57836	-72.56958	6	Connecticut River	Urban
MA	MARM-1001		42.65448	-72.46514	6	Connecticut River	Non-Urban
MD	MDR9-0901	FW08MD008	39.06637	-77.38957	7	Potomac River	Urban
MD	MDR9-0902	FW08MD009	39.59856	-77.88461	6	Potomac River	Urban
MD	MDR9-0905	FW08MD015	39.62421	-78.42927	6	Potomac River	Non-Urban
MD	MDRM-1003		39.44732	-78.97643	5	North Branch Potomac River	Urban
ME	MER9-0901	FW08ME013	47.13183	-67.89810	6	Saint John River	Non-Urban
ME	MER9-0902	FW08ME016	47.15428	-68.94424	6	Saint John River	Non-Urban
ME	MER9-0903	FW08ME017	45.87867	-68.62034	5	East Branch Penobscot River	Non-Urban
ME	MER9-0904	FW08ME018	44.73738	-67.54984	5	Machias River	Non-Urban
ME	MER9-0905	FW08ME019	43.49885	-70.46423	6	Saco River	Urban
ME	MER9-0906	FW08ME021	45.25733	-68.94966	5	Pleasant River	Non-Urban
ME	MER9-0907	FW08ME022	44.42155	-69.70560	6	Kennebec River	Non-Urban
ME	MER9-0908	FW08ME026	44.50109	-69.67614	6	Kennebec River	Urban
ME	MERM-1001	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45.89867	-68.61411	5	East Branch Penobscot River	Non-Urban
MI	MIR9-0901	FW08MI019	43.05631	-85.59421	6	Grand River	Urban
MI	MIR9-0902	FW08MI020	42.55230	-82.58846	5	Saint Clair River	Non-Urban
MI	MIR9-0903	FW08MI023	42.06127	-86.42370	6	Saint Joseph River	Urban
MI	MIR9-0904	FW08MI024	43.34147	-83.62441	5	Cass River	Non-Urban
MI	MIR9-0905	FW08MI026	43.02234	-86.02397	6	Grand River	Non-Urban
MI	MIR9-0906	FW08MI028	43.31097	-83.96788	6	Flint River	Non-Urban
MI	MIR9-0907	FW08MI030	42.82316	-84.93878	6	Grand River	Non-Urban
1411	1411177-0707	1 11 00111030	72.02310	-07./30/0	L	Grand Rivel	11011-010ail

	01 2010 201	T Tianonai I	arcib and	i Dil Callis		sue Study Sampling 1	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
MI	MIR9-0908	FW08MI033	42.54167	-84.62803	5	Grand River	Non-Urban
MI	MIR9-0909	FW08MI034	44.64747	-84.09452	5	Au Sable River	Non-Urban
MI	MIR9-0910	FW08MI036	43.00436	-82.52504	5	Black River	Urban
MI	MIRM-1001		44.67449	-84.32747	5	Au Sable River	Non-Urban
MN	MNR9-0901	FW08MN013	44.13244	-91.72952	8	Mississippi River	Non-Urban
MN	MNR9-0902	FW08MN016	48.48513	-93.72216	5	Big Fork River	Non-Urban
MN	MNR9-0903	FW08MN017	43.71940	-95.04622	6	Des Moines River	Non-Urban
MN	MNR9-0904	FW08MN018	45.12479	-93.99624	5	North Fork Crow River	Non-Urban
MN	MNR9-0905	FW08MN019	45.29729	-93.57205	6	Mississippi River	Urban
MN	MNR9-0906	FW08MN022	46.98702	-92.81150	5	Saint Louis River	Non-Urban
MN	MNR9-0907	FW08MN024	44.79956	-93.53312	8	Minnesota River	Urban
MN	MNR9-0908	FW08MN031	45.56509	-92.79530	6	Saint Croix River	Non-Urban
MN	MNR9-0909	FW08MN032	48.70306	-94.33570	6	Rainy River	Non-Urban
MN	MNR9-0910	FW08MN033	44.85127	-93.98283	5	South Fork Crow River	Non-Urban
MN	MNR9-0911	FW08MN034	45.19240	-94.28959	5	North Fork Crow River	Non-Urban
MN	MNR9-0912	FW08MN035	45.23426	-93.49636	7	Mississippi River	Urban
MN	MNR9-0913	FW08MN036	44.80659	-93.01163	8	Mississippi River	Urban
MN	MNR9-0914	FW08MN037	43.90668	-94.06030	5	Maple River	Non-Urban
MN	MNR9-0915	FW08MN039	47.27310	-93.78416	5	Mississippi River	Non-Urban
MN	MNR9-0916	FW08MN042	46.94815	-92.43222	5	Cloquet River	Non-Urban
MN	MNR9-0917	FW08MN043	47.25508	-96.20332	5	Wild Rice River	Non-Urban
MN	MNR9-0918	FW08MN045	44.94299	-95.77757	7	Minnesota River	Non-Urban
MN	MNRM-1001		46.76493	-96.77698	6	Red River of the North	Non-Urban
MO	MOR9-0901	FW08KY097	36.53474	-89.46723	10	Mississippi River	Non-Urban
MO	MOR9-0902	FW08KY209	36.60870	-89.30583	10	Mississippi River	Non-Urban
MO	MOR9-0903	FW08MO009	38.96337	-90.41565	9	Mississippi River	Non-Urban
MO	MOR9-0904	FW08MO011	37.02754	-90.64282	6	Black River	Non-Urban
MO	MOR9-0905	FW08MO013	38.24012	-91.80405	6	Gasconade River	Non-Urban
MO	MOR9-0906	FW08MO014	39.17605	-90.71722	8	Mississippi River	Non-Urban
MO	MOR9-0907	FW08MO015	36.78477	-93.71443	5	Flat Creek	Non-Urban
MO	MOR9-0908	FW08MO017	37.53898	-92.36536	5	Gasconade River	Non-Urban
MO	MOR9-0909	FW08MO018	37.88325	-90.54442	5	Big River	Non-Urban
MO	MOR9-0910	FW08MO019	38.68744	-92.94992	5	Lamine River	Non-Urban
MO	MOR9-0911	FW08MO021	38.30297	-90.62706	6	Big River	Non-Urban
MO	MOR9-0912	FW08MO025	38.82912	-90.41661	9	Missouri River	Urban
MO	MORM-1001		36.45933	-89.46806	10	Mississippi River	Non-Urban
MS	MSR9-0901	FW08MS008	34.00166	-88.51833	6	Tombigbee River	Non-Urban
MS	MSR9-0902	FW08MS016	33.91374	-88.53107	7	Tombigbee River	Non-Urban
MS	MSR9-0903	FW08MS025	30.88339	-88.77355	7	Pascagoula River	Non-Urban
MS	MSR9-0904	FW08MS042	32.08681	-90.94759	6	Big Black River	Non-Urban
MS	MSR9-0905	FW08MS050	32.58246	-89.84870	7	Pearl River	Non-Urban
MS	MSR9-0906	FW08MS052	31.09621	-89.27796	5	Black Creek	Non-Urban
MS	MSR9-0907	FW08MS053	30.40424	-88.58716	7	Pascagoula River	Urban
MS	MSRM-1001		32.84498	-89.99038	6	Big Black River	Non-Urban
MT	MTR9-0901	FW08MT022	47.06636	-114.76985	7	Clark Fork	Non-Urban
MT	MTR9-0902	FW08MT024	48.07747	-114.01872	5	Swan River	Non-Urban
MT	MTR9-0903	FW08MT025	48.07661	-104.39125	8	Missouri River	Non-Urban
MT	MTR9-0904	FW08MT029	46.56604	-107.96573	6	Musselshell River	Non-Urban
MT	MTR9-0905	FW08MT031	47.41435	-111.49864	7	Missouri River	Non-Urban
MT	MTR9-0906	FW08MT032	46.35963	-105.81405	6	Tongue River	Non-Urban
MT	MTR9-0907	FW08MT033	48.34598	-107.58381	5	Beaver Creek	Non-Urban
MT	MTR9-0908	FW08MT035	44.97626	-112.99659	5	Medicine Lodge Creek	Non-Urban
141.1	111117-0700	1 11 001111033	77.27020	112.77037	,	1.12dicine Louge Citck	1 1011-010all

	01 2020 201		tivelb une	- Streams		sue Study Sampling Lo	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
MT	MTR9-0909	FW08MT039	46.45775	-110.37131	5	South Fork Musselshell River	Non-Urban
MT	MTR9-0910	FW08MT041	46.86783	-104.99520	8	Yellowstone River	Non-Urban
MT	MTR9-0911	FW08MT042	47.90948	-113.87070	5	Swan River	Non-Urban
MT	MTR9-0912	FW08MT043	47.45161	-111.30128	7	Missouri River	Urban
MT	MTR9-0913	FW08MT045	47.01519	-108.16501	5	Box Elder Creek	Non-Urban
MT	MTR9-0914	FW08MT047	48.45767	-109.92638	5	Big Sandy Creek	Non-Urban
MT	MTR9-0915	FW08MT048	46.11059	-106.45039	5	Rosebud Creek	Non-Urban
MT	MTR9-0916	FW08MT049	48.00521	-105.90923	8	Missouri River	Non-Urban
MT	MTR9-0917	FW08MT050	45.59732	-109.31160	6	Stillwater River	Non-Urban
MT	MTR9-0918	FW08MT058	47.61666	-112.68106	5	Sun River	Non-Urban
MT	MTR9-0919	FW08MT061	48.14733	-107.54900	5	Beaver Creek	Non-Urban
MT	MTR9-0920	FW08MT062	45.90936	-111.56689	7	Jefferson River	Non-Urban
MT	MTR9-0921	FW08MT063	47.79247	-109.27680	7	Missouri River	Non-Urban
MT	MTRM-1001		48.36584	-108.15370	6	Milk River	Non-Urban
NC	NCR9-0901	FW08NC017	36.48171	-77.65994	7	Roanoke River	Non-Urban
NC	NCR9-0903	FW08NC024	36.21492	-80.96029	6	Yadkin River	Non-Urban
NC	NCR9-0905	FW08NC029	35.45800	-77.67500	5	Contentnea Creek	Non-Urban
NC	NCR9-0906	FW08NC032	35.99756	-80.41813	6	Yadkin River	Urban
NC	NCR9-0907	FW08NC034	36.15021	-76.73789	7	Chowan River	Non-Urban
NC	NCR9-0908	FW08NC035	34.92337	-78.79820	7	Cape Fear River	Non-Urban
NC	NCR9-0915	FW08NC050	36.47170	-76.94345	6	Chowan River	Non-Urban
NC	NCRM-1001		36.42778	-77.58416	7	Roanoke River	Urban
ND	NDR9-0901	FW08ND020	46.11629	-97.38506	5	Wild Rice River	Non-Urban
ND	NDR9-0902	FW08ND021	47.12958	-102.23419	5	Knife River	Non-Urban
ND	NDR9-0903	FW08ND022	47.16034	-102.04208	6	Knife River	Non-Urban
ND	NDR9-0904	FW08ND023	48.17576	-97.69986	5	Forest River	Non-Urban
ND	NDR9-0905	FW08ND024	46.22149	-101.50255	5	Cannonball River	Non-Urban
ND	NDR9-0906	FW08ND027	47.50223	-97.33886	6	Goose River	Non-Urban
ND	NDR9-0907	FW08ND028	46.79972	-101.10684	5	Sweetbriar Creek	Non-Urban
ND	NDR9-0908	FW08ND029	47.97871	-103.82529	9	Missouri River	Non-Urban
ND	NDR9-0909	FW08ND031	46.76208	-97.19334	5	Maple River	Non-Urban
ND	NDR9-0910	FW08ND034	45.95829	-103.12024	6	North Fork Grand River	Non-Urban
ND	NDR9-0918	FW08ND043	45.97889	-98.16758	5	James River	Non-Urban
ND	NDR9-0921	FW08ND049	47.28029	-101.17793	9	Missouri River	Non-Urban
ND	NDRM-1001	1 11 001 120 47	46.45899	-102.65684	5	Cannonball River	Non-Urban
NE	NER9-0901	FW08NE010	41.14421	-101.21225	5	South Platte River	Non-Urban
NE	NER9-0902	FW08NE013	42.44907	-102.99896	5	Niobrara River	Non-Urban
NE	NER9-0903	FW08NE014	40.24541	-99.70083	6	Republican River	Non-Urban
NE NE	NER9-0904	FW08NE015	40.79966	-98.43775	7	South Channel Platte River	Non-Urban
NE	NER9-0905	FW08NE016	41.15205	-96.54845	5	Wahoo Creek	Non-Urban
NE	NER9-0906	FW08NE017	41.25373	-103.61138	5	Lodgepole Creek	Non-Urban
NE NE	NER9-0907	FW08NE017	42.71175	-98.15501	6	Niobrara River	Non-Urban
NE NE	NER9-0907 NER9-0908	FW08NE019 FW08NE022	40.35743	-98.13044	5	Little Blue River	Non-Urban Non-Urban
NE NE	NER9-0908 NER9-0909	FW08NE022 FW08NE024	42.94804	-98.13044 -99.44767	5	Keya Paha River	Non-Urban Non-Urban
NE NE	NER9-0909 NER9-0910	FW08NE024 FW08NE026	42.43359	-103.69931	5	Niobrara River	Non-Urban Non-Urban
NE NE	NER9-0910 NER9-0914	FW08NE026	41.93933	-96.14472	9	Missouri River	Non-Urban
NE NE	NERM-1001	1. M OOINEOO			9	Missouri River	Non-Urban Non-Urban
		EWIONITIONS	40.01724	-95.33155			
NH	NHR9-0901	FW08NH005	44.24308	-72.04818	5	Connecticut River	Non-Urban
NH	NHR9-0902	FW08NH007	43.06807	-72.44870	6	Connecticut River	Urban
NH	NHR9-0903	FW08NH009	43.86581	-72.17822	5	Connecticut River	Non-Urban
NH	NHR9-0904	FW08NH010	43.19317	-71.52351	7	Merrimack River	Urban
NH	NHR9-0905	FW08NH011	43.35118	-72.39344	6	Connecticut River	Urban

LIB			arvers and	bu cuilib.		sue Study Sampling	1
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
NH	NHRM-1001		44.86397	-71.54817	5	Connecticut River	Non-Urban
NJ	NJR9-0901	FW08NJ004	41.27242	-74.84022	6	Delaware River	Non-Urban
NJ	NJR9-0902	FW08NJ005	40.50890	-74.46615	6	Raritan River	Urban
NJ	NJRM-1001		40.84438	-73.95545	7	Hudson River	Urban
NM	NMR9-0901	FW08NM005	35.79088	-104.61169	5	Mora River	Non-Urban
NM	NMR9-0902	FW08NM008	34.75015	-106.74249	7	Grande, Rio	Urban
NM	NMR9-0903	FW08NM010	32.92507	-105.33746	5	Pe±asco, Rio	Non-Urban
NM	NMR9-0904	FW08NM019	33.30077	-108.12551	6	East Fork Gila River	Non-Urban
NM	NMR9-0905	FW08NM022	36.70793	-108.21145	6	San Juan River	Urban
NM	NMR9-0906	FW08NM023	34.00485	-104.31475	5	Pecos River	Non-Urban
NM	NMRM-1001		34.35425	-106.85316	8	Grande, Rio	Non-Urban
NV	NVR9-0901	FW08NV019	40.70241	-116.52352	7	Humboldt River	Non-Urban
NV	NVR9-0902	FW08NV020	35.07424	-114.60429	9	Colorado River	Urban
NV	NVR9-0903	FW08NV022	41.77180	-117.80605	6	Quinn River	Non-Urban
NV	NVR9-0904	FW08NV026	41.39736	-117.46467	6	Little Humboldt River	Non-Urban
NV	NVR9-0920	FW08NV069	41.88666	-114.68661	6	Salmon Falls Creek	Non-Urban
NV	NVRM-1001		36.73991	-114.20599	7	Virgin River	Non-Urban
NY	NYR9-0901	FW08NY017	42.42297	-75.63217	5	Chenango River	Non-Urban
NY	NYR9-0902	FW08NY019	42.14603	-77.05409	5	Chemung River	Urban
NY	NYR9-0903	FW08NY021	42.82852	-73.98933	6	Mohawk River	Urban
NY	NYR9-0904	FW08NY023	42.16144	-75.85678	6	Chenango River	Urban
NY	NYR9-0905	FW08NY025	43.24866	-73.74077	6	Hudson River	Non-Urban
NY	NYR9-0906	FW08NY027	44.25928	-75.76743	5	Indian River	Non-Urban
NY	NYR9-0907	FW08NY028	42.47413	-73.78702	7	Hudson River	Urban
NY	NYR9-0908	FW08NY030	42.08065	-78.42363	5	Olean Creek	Urban
NY	NYR9-0909	FW08NY032	42.06591	-78.46922	6	Allegheny River	Urban
NY	NYR9-0910	FW08NY034	43.13767	-76.29551	7	Seneca River	Urban
NY	NYR9-0911	FW08NY035	42.02896	-76.39831	6	Susquehanna River	Non-Urban
NY	NYR9-0912	FW08NY037	42.93558	-74.19445	6	Mohawk River	Urban
NY	NYR9-0913	FW08NY039	42.34775	-75.69644	5	Chenango River	Non-Urban
NY	NYR9-0914	FW08NY040	43.25553	-73.58640	6	Hudson River	Urban
NY	NYR9-0915	FW08NY042	42.85984	-77.84331	6	Genesee River	Non-Urban
NY	NYR9-0916	FW08NY044	42.05576	-73.93195	7	Hudson River	Urban
NY	NYRM-1001	1 W 001 1 044	42.03376	-75.77946	5	Susquehanna River	Urban
OH	OHR9-0901	FW08OH012	39.30982	-82.96430		Paint Creek	Urban
ОН	OHR9-0901 OHR9-0902	FW08OH012 FW08OH017	40.26612	-82.90430	5 7	Muskingum River	Urban
OH	OHR9-0902 OHR9-0903	FW08OH017 FW08OH018	40.28612	-81.39514	6	Tuscarawas River	Non-Urban
OH	OHR9-0903	FW08OH018	39.13619	-84.34206	6	Little Miami River	Urban
ОН	OHR9-0904 OHR9-0905	FW08OH019			7	Muskingum River	Urban
ОН	OHR9-0905 OHR9-0906	FW08OH021	39.46603	-81.48059 -83.01769	6	•	
			38.82668			Scioto River	Non-Urban
OH	OHR9-0907	FW08OH024	41.02829	-83.21295	5	Sandusky River	Non-Urban
OH	OHR9-0908 OHRM-1001	FW08OH027	41.20854	-80.81059	5	Mahoning River	Urban
OH		EW000K017	41.23380	-84.59052	6	Maumee River	Non-Urban
OK	OKR9-0901	FW08OK017	35.92582	-99.51525	7	Chilerakia River	Non-Urban
OK	OKR9-0902	FW08OK018	36.95800	-97.42192	6	Chikaskia River	Non-Urban
OK	OKR9-0903	FW08OK019	33.86362	-97.00595	7	Red River	Non-Urban
OK	OKR9-0904	FW08OK022	35.39936	-95.79265	6	North Canadian River	Non-Urban
OK	OKR9-0905	FW08OK024	35.53000	-99.13021	6	Washita River	Non-Urban
OK	OKR9-0906	FW08OK025	36.05503	-98.12901	6	Cimarron River	Non-Urban
OK	OKR9-0907	FW08OK026	34.63573	-95.12159	5	Kiamichi River	Non-Urban
OK	OKR9-0908	FW08OK027	35.92491	-97.86391	6	Cimarron River	Non-Urban
OK	OKR9-0909	FW08OK028	34.59159	-99.02375	5	Otter Creek	Non-Urban

	1			- 10 12 1111111		Tamping D	
State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
OK	OKR9-0910	FW08OK031	36.69695	-101.67678	5	Beaver River	Non-Urban
OK	OKR9-0911	FW08OK032	34.22208	-96.70688	6	Washita River	Non-Urban
OK	OKR9-0912	FW08OK034	33.91222	-95.54936	7	Red River	Non-Urban
OK	OKRM-1001		33.63195	-94.57131	7	Red River	Non-Urban
OR	ORR9-0901	FW08OR011	43.99127	-123.66433	5	Siuslaw River	Non-Urban
OR	ORR9-0902	FW08OR012	45.39535	-122.14937	5	Sandy River	Non-Urban
OR	ORR9-0903	FW08OR014	44.16795	-122.24967	5	McKenzie River	Non-Urban
OR	ORR9-0904	FW08OR015	42.41324	-123.15797	5	Rogue River	Urban
OR	ORR9-0905	FW08OR016	44.49071	-122.81372	5	South Santiam River	Non-Urban
OR	ORR9-0906	FW08OR019	44.37292	-123.83635	5	Alsea River	Non-Urban
OR	ORR9-0907	FW08OR021	45.16978	-120.48228	6	John Day River	Non-Urban
OR	ORR9-0908	FW08OR022	43.31057	-123.21152	5	North Umpqua River	Non-Urban
OR	ORR9-0909	FW08OR025	45.57558	-116.48749	8	Snake River	Non-Urban
OR	ORR9-0910	FW08OR026	44.24753	-120.85947	6	Crooked River	Non-Urban
OR	ORR9-0911	FW08OR027	44.06547	-123.10635	6	Willamette River	Urban
OR	ORR9-0912	FW08OR028	45.48478	-122.95994	5	Tualatin River	Urban
OR	ORR9-0913	FW08OR030	42.46206	-121.46883	6	Sprague River	Non-Urban
OR	ORR9-0914	FW08OR033	43.77084	-118.04897	6	Malheur River	Non-Urban
OR	ORRM-1001	11100011000	45.76530	-117.75988	6	Grande Ronde River	Non-Urban
PA	PAR9-0901	FW08PA015	41.41992	-78.74775	5	Clarion River	Urban
PA	PAR9-0902	FW08PA016	41.47516	-79.51793	6	Allegheny River	Non-Urban
PA	PAR9-0903	FW08PA017	41.92258	-77.12923	5	Tioga River	Non-Urban
PA	PAR9-0904	FW08PA019	40.49180	-76.94813	7	Susquehanna River	Urban
PA	PAR9-0905	FW08PA020	40.93107	-80.37396	6	Beaver River	Urban
PA	PAR9-0906	FW08PA021	41.96990	-76.51192	6	Susquehanna River	Urban
PA	PAR9-0907	FW08PA023	41.28871	-77.34123	5	Pine Creek	Non-Urban
PA	PAR9-0908	FW08PA024	41.02419	-80.16323	5	Slippery Rock Creek	Non-Urban
PA	PAR9-0909	FW08PA030	40.14318	-75.51026	6	Schuylkill River	Urban
171	1711()-0)0)	1 1100171030	40.14310	-73.31020	0	West Branch Susquehanna	Croan
PA	PAR9-0910	FW08PA035	40.88572	-76.80151	6	River	Urban
PA	PAR9-0911	FW08PA036	41.24333	-80.50937	6	Shenango River	Urban
PA	PARM-1001		40.76001	-79.54689	6	Allegheny River	Urban
RI	RIR9-0901	FW08RI003	41.88014	-71.38130	5	Seekonk River	Urban
RI	RIR9-0902	FW08RI004	41.39354	-71.84080	5	Pawcatuck River	Urban
SC	SCR9-0901	FW08SC002	33.88391	-78.78474	6	Waccamaw River	Non-Urban
SC	SCR9-0902	FW08SC003	33.90909	-79.44030	7	Great Pee Dee River	Non-Urban
SC	SCR9-0903	FW08SC004	34.12622	-80.65031	6	Wateree River	Non-Urban
SC	SCR9-0904	FW08SC005	34.57048	-81.77745	5	Enoree River	Non-Urban
SC	SCRM-1001		34.93019	-80.86840	6	Catawba River	Urban
SD	SDR9-0901	FW08SD023	45.65636	-100.85083	6	Grand River	Non-Urban
SD	SDR9-0902	FW08SD026	42.99859	-97.00442	5	Vermillion River	Non-Urban
SD	SDR9-0903	FW08SD027	45.72850	-101.98438	6	Grand River	Non-Urban
SD	SDR9-0904	FW08SD029	45.00144	-98.63766	5	South Fork Snake Creek	Non-Urban
SD	SDR9-0905	FW08SD031	44.04386	-101.45112	6	South Fork Bad River	Non-Urban
SD	SDR9-0906	FW08SD032	44.80320	-102.54405	6	Sulphur Creek	Non-Urban
SD	SDR9-0907	FW08SD034	43.42244	-103.99180	7	Cheyenne River	Non-Urban
SD	SDR9-0908	FW08SD035	44.59103	-101.44896	5	Plum Creek	Non-Urban
SD	SDR9-0909	FW08SD036	44.81715	-103.69388	5	Indian Creek	Non-Urban
SD	SDR9-0910	FW08SD038	43.81009	-100.89714	6	White River	Non-Urban
SD	SDR9-0911	FW08SD039	45.76411	-100.68313	5	Oak Creek	Non-Urban
SD	SDR9-0912	FW08SD040	45.25933	-100.91089	6	Moreau River	Non-Urban
SD	SDR9-0913	FW08SD042	42.85420	-97.28016	9	Missouri River	Non-Urban
שנ	3DIV-0/13	11100000044	72.03720	71.20010	,	111050uii itivoi	1 TOII-OTUALI

State	Site ID 2013- 2014	Site ID 2008-2009 ²	Lat	Long	Stream Order	River Name	Urban/ Non-urban
SD	SDR9-0926	FW08SD063	44.52040	-101.99408	7	Cheyenne River	Non-Urban
SD	SDRM-1001	1 W 003D003	45.15509	-102.75259	6	Moreau River	Non-Urban
TN	TNR9-0901	FW08TN010	36.60637	-85.50504	6	Cumberland River	Non-Urban
TN	TNR9-0902	FW08TN011	35.95145	-83.55066	7	French Broad River	Non-Urban
TN	TNR9-0903	FW08TN012	35.10401	-85.36090	8	Tennessee River	Urban
TN	TNR9-0904	FW08TN013	35.67241	-87.26333	6	Duck River	Non-Urban
TN	TNR9-0905	FW08TN015	36.12508	-83.18162	6	Nolichucky River	Non-Urban
TN	TNRM-1003	1 W 00111013	35.06895	-85.33960	8	Tennessee River	Urban
TX	TXR9-0901	FW08TX022	26.04502	-97.79641	8	Grande, Rio	Non-Urban
TX	TXR9-0901	FW08TX022	29.77151	-101.73182	8	Grande, Rio	Non-Urban
TX	TXR9-0902	FW08TX028	33.05566	-97.25306	5	Denton Creek	Non-Urban
TX	TXR9-0903	+	-		8		Urban
TX	TXR9-0904	FW08TX030 FW08TX033	25.84893 35.97241	-97.43996 -100.82439	7	Grande, Rio Canadian River	Non-Urban
TX	TXR9-0906	FW08TX035	29.15721	-97.38375	5	Sandies Creek	Non-Urban
TX	TXR9-0907	FW08TX037	30.57973	-94.99791	6	Trinity River	Non-Urban
TX	TXR9-0908	FW08TX038	26.23520	-98.54719	8	Grande, Rio	Urban
TX	TXR9-0909	FW08TX042	28.30211	-98.05815	7	Nueces River	Non-Urban
TX	TXR9-0910	FW08TX043	29.23893	-98.45168	5	Medina River	Non-Urban
TX	TXR9-0911	FW08TX046	31.77034	-103.77929	7	Pecos River	Non-Urban
TX	TXR9-0912	FW08TX050	28.95042	-100.64937	8	Grande, Rio	Non-Urban
TX	TXR9-0913	FW08TX052	34.56295	-100.62735	5	Prairie Dog Town Fork Red River	Non-Urban
TX	TXR9-0914	FW08TX053	31.93453	-95.43336	5	Neches River	Non-Urban
TX	TXR9-0915	FW08TX055	31.76248	-100.14048	6	Colorado River	Non-Urban
TX	TXR9-0916	FW08TX057	30.88169	-93.57254	6	Sabine River	Non-Urban
TX	TXR9-0917	FW08TX058	28.72577	-99.81584	5	Nueces River	Non-Urban
TX	TXR9-0918	FW08TX059	31.55041	-97.09174	7	Brazos River	Urban
TX	TXRM-1001	1 11 00 11100 5	29.02616	-103.31277	8	Grande, Rio	Non-Urban
UT	UTR9-0901	FW08UT014	37.22372	-109.20869	7	San Juan River	Non-Urban
UT	UTR9-0902	FW08UT016	41.59255	-111.14148	6	Bear River	Non-Urban
UT	UTR9-0903	FW08UT020	40.98295	-111.45065	5	Weber River	Non-Urban
UT	UTR9-0904	FW08UT021	37.74306	-112.09859	5	East Fork Sevier River	Non-Urban
UT	UTR9-0905	FW08UT022	39.08975	-109.10164	7	Colorado River	Non-Urban
UT	UTR9-0906	FW08UT023	38.35280	-109.75346	7	Colorado River	Non-Urban
UT	UTR9-0907	FW08UT026	39.30653	-110.40517	6	Price River	Non-Urban
UT	UTRM-1001	1 11 00 0 1 0 2 0	38.76150	-109.32372	7	Colorado River	Non-Urban
VA	VAR9-0901	FW08VA014	36.96530	-82.05180	5	Clinch River	Non-Urban
VA	VAR9-0902	FW08VA017	36.87645	-79.06775	5	Banister River	Non-Urban
VA	VAR9-0903	FW08VA018	37.31028	-80.68118	5	Walker Creek	Non-Urban
VA	VAR9-0904	FW08VA020	36.76203	-78.87142	5	Banister River	Non-Urban
VA	VAR9-0905	FW08VA022	38.30562	-78.90091	5	North River	Non-Urban
VA	VAR9-0906	FW08VA026	37.59328	-79.38321	6	James River	Non-Urban
VA	VAR9-0911	FW08VA038	37.12219	-79.35359	6	Roanoke River	Non-Urban
VA	VARO-1001	2 11 00 1 11030	37.83120	-77.12220	5	Mattaponi River	Non-Urban
VT	VTR9-0901	FW08VT006	42.79337	-72.52477	6	Connecticut River	Non-Urban
VT	VTR9-0902	FW08VT009	43.79297	-72.67631	5	White River	Non-Urban
VT	VTR9-0903	FW08VT011	44.48913	-73.14832	5	Winooski River	Urban
WA	WAR9-0901	FW08WA015	48.95608	-119.69332	5	Similkameen River	Non-Urban
WA	WAR9-0902	FW08WA016	45.69861	-120.41753	9	Columbia River	Non-Urban
WA	WAR9-0903	FW08WA017	48.52373	-122.05344	6	Skagit River	Non-Urban
	WAR9-0904	FW08WA020	46.27617	-118.19248	5	Touchet River	Non-Urban
WA	WAK9-0904	I F W UX W AUZU	40.7.70171	-110.19744)		INOH-UIDAD

	Site ID	Site ID			Stream	suc Study Sampling Li	Urban/
State	2013- 2014	2008-2009 ²	Lat	Long	Order	River Name	Non-urban
WA	WAR9-0906	FW08WA028	47.50383	-119.29244	5	Trail Lake Coulee	Non-Urban
WA	WAR9-0907	FW08WA029	47.84358	-121.69460	5	Skykomish River	Urban
WA	WAR9-0908	FW08WA032	46.27117	-119.57047	7	Yakima River	Non-Urban
WA	WAR9-0909	FW08WA033	47.69212	-121.96626	5	Snoqualmie River	Non-Urban
WA	WARM-1001		47.18231	-120.90807	6	Yakima River	Non-Urban
WI	WIR9-0901	FW08WI021	44.68674	-92.69129	8	Mississippi River	Non-Urban
WI	WIR9-0902	FW08WI022	44.00670	-90.05381	5	Yellow River	Non-Urban
WI	WIR9-0903	FW08WI029	42.53137	-90.64118	8	Mississippi River	Urban
WI	WIR9-0904	FW08WI030	43.21793	-89.82451	6	Wisconsin River	Non-Urban
WI	WIR9-0905	FW08WI031	44.74817	-91.15140	5	Eau Claire River	Non-Urban
WI	WIR9-0906	FW08WI033	43.82745	-91.27193	8	Mississippi River	Urban
WI	WIR9-0907	FW08WI034	44.97808	-89.63045	5	Wisconsin River	Urban
WI	WIR9-0908	FW08WI036	45.07960	-88.62394	5	Wolf River	Non-Urban
WI	WIR9-0909	FW08WI039	46.41642	-90.74116	5	Marengo River	Non-Urban
WI	WIR9-0910	FW08WI040	45.66598	-91.17972	5	Chippewa River	Non-Urban
WI	WIR9-0911	FW08WI041	42.65018	-90.03286	5	Pecatonica River	Non-Urban
WI	WIR9-0912	FW08WI044	42.89687	-88.89542	6	Rock River	Urban
WI	WIR9-0913	FW08WI045	44.36113	-91.91075	5	Buffalo River	Non-Urban
WI	WIR9-0914	FW08WI046	43.56469	-89.65428	6	Wisconsin River	Non-Urban
WI	WIRM-1001		45.58439	-89.46554	5	Wisconsin River	Non-Urban
WV	WVR9-0901	FW08WV005	37.54136	-82.03361	5	Tug Fork	Non-Urban
WV	WVR9-0902	FW08WV006	39.13143	-81.34434	5	Hughes River	Non-Urban
WV	WVR9-0903	FW08WV007	39.91877	-80.79683	8	Ohio River	Non-Urban
WV	WVR9-0904	FW08WV008	38.58809	-80.89452	5	Elk River	Non-Urban
WV	WVRM-1001		39.24890	-77.81410	6	Shenandoah River	Urban
WY	WYR9-0901	FW08WY016	42.85202	-106.18585	7	North Platte River	Non-Urban
WY	WYR9-0902	FW08WY020	41.59625	-109.14876	6	Bitter Creek	Non-Urban
WY	WYR9-0903	FW08WY021	44.47897	-109.38303	5	North Fork Shoshone River	Non-Urban
WY	WYR9-0904	FW08WY022	43.41402	-106.28598	5	Salt Creek	Non-Urban
WY	WYR9-0905	FW08WY026	44.62542	-105.30171	5	Little Powder River	Non-Urban
WY	WYR9-0906	FW08WY029	44.26445	-107.90091	6	Nowood River	Non-Urban
WY	WYR9-0907	FW08WY030	43.34957	-104.29569	6	Lance Creek	Non-Urban
WY	WYR9-0908	FW08WY034	44.69584	-106.33826	5	Clear Creek	Non-Urban
WY	WYR9-0909	FW08WY038	43.96561	-106.17143	6	Powder River	Non-Urban
WY	WYR9-0910	FW08WY039	42.82884	-106.36679	7	North Platte River	Urban
WY	WYR9-0911	FW08WY040	41.96621	-110.00073	7	Green River	Non-Urban
WY	WYR9-0912	FW08WY042	44.38685	-104.67731	5	Inyan Kara Creek	Non-Urban
WY	WYR9-0913	FW08WY043	42.11494	-104.98519	5	Laramie River	Non-Urban
WY	WYRM-1002		43.44464	-104.51173	6	Cheyenne River	Non-Urban

This list of sites is subject to change as the project proceeds. For example, access to some sites may not be granted by property owners. Other sites may not yield fish of suitable size or species. OST maintains the list of valid sites, and this QAPP will **not** be revised just to address changes in the list of sites.

² Empty cells in this column represent sites that were not selected for sampling in the 2008-2009 NRSA, but that are included in sample design for the 2013-2014 NRSA.

Appendix B

2013-2014 National Rivers and Streams Assessment Tissue Preparation, Homogenization, and Distribution Procedures

Note: This appendix contains the fish tissue preparation, homogenization, and distribution procedures developed by OST for the 2013-2014 NRSA. The information in this appendix formed the basis for the contractual SOW issued by CSC to the sample preparation laboratory. Therefore, the details of this appendix have **not** been revised to reflect that OST has prepared this QAPP. In addition, the acronyms, abbreviations, and units of measure listed in this appendix are not included in the list of acronyms at the front of the QAPP. Rather, they are spelled out on first usage in the appendix.

Appendix B

2013-2014 National Rivers and Streams Assessment Tissue Preparation, Homogenization, and Distribution Procedures

I. PURPOSE

This document describes the procedures that the sample preparation laboratory will follow when preparing fish tissue samples for EPA's National Rivers and Streams Assessment (2013-2014 NRSA) under contract to CSC. Adherence to these procedures will ensure that fish tissue preparation activities are performed consistently across all study samples and in a manner consistent with previous EPA fish tissue studies. The effort is divided into four components:

- A kickoff meeting and workshop involving all study participants, including the sample preparation laboratory staff, EPA, CSC, and Tetra Tech (EPA's sampling contractor)
- An initial demonstration of capabilities, also referred to as the QA study
- Normal fish tissue processing and distribution procedures, including quality control steps
- Preparation and analyses of rinsate samples and blanks for mercury, selected polychlorinated biphenyls (PCBs), and selected polybrominated diphenyl ethers (PBDEs), and preparation of rinsate samples and blanks for perfluorinated compounds (PFCs) to be analyzed by a laboratory under a separate CSC purchase order.

Each of these components is described in detail below.

EPA will prepare a quality assurance project plan (QAPP) for this project which will include the details of fish tissue sample preparation processes described in this SOW, including the description of the analytical procedures and the QC acceptance criteria. After award, CSC will provide the laboratory with a copy of EPA's QAPP for the project.

II. KICKOFF MEETING AND WORKSHOP

Following award of a purchase order, CSC will schedule a kickoff meeting and workshop to be held at the sample preparation laboratory at a mutually agreed upon date and time. Staff from all study participants, including the sample preparation laboratory, EPA, CSC, and Tetra Tech, will meet at the sample preparation laboratory to review the overall 2013-2014 NRSA project goals, the roles of each participant, the fish sample preparation procedures, and the communication strategies necessary to ensure successful completion of the project. In conjunction with that meeting, CSC will provide whole fish samples that will be used during a hands-on workshop on the specific procedures for fish sample preparation. All the sample preparation laboratory staff involved in the preparation of fish samples must attend the kickoff meeting and workshop.

The kickoff meeting and workshop will be billable to the CSC subcontract as a fixed price line item.

III. INITIAL DEMONSTRATION OF CAPABILITIES

A routine aspect of any procedure for sample preparation or analysis is an initial demonstration of capabilities, or QA study. For the 2013-2014 NRSA project, the sample preparation laboratory will receive three whole large fish provided by Tetra Tech. Each of these fish will be treated as a separate project sample and will be prepared using the procedures detailed in Section IV (i.e., Steps 1 to 24). In between each fish, the sample preparation laboratory will prepare the entire series of equipment rinsate samples and blanks described in Section IV, Steps 32 and 33, but analyze only the rinsates and blanks for mercury, PCBs, and PBDEs (Steps 34 and 35, and Attachment 1). The sample preparation laboratory

will perform triplicate determinations of lipids on each test sample, as described in Step 31. The results of the QA study will be reported to CSC.

Note: The sample preparation laboratory will not be authorized to process actual project samples until CSC determines that the QA study results meet the project objectives, including the adequacy of the sample preparation laboratory's equipment cleaning and homogenization procedures.

The sample aliquots prepared from these QA study samples will be stored frozen at the sample preparation laboratory for possible future use by EPA, or until CSC authorizes their disposal. Each of the samples prepared for the QA study will be billable under the CSC subcontract at the cost for a normal project sample.

IV. FISH TISSUE PROCESSING AND DISTRIBUTION PROCEDURES

The procedures for processing and distributing 2013-2014 NRSA composite fish tissue samples are described below. The process description is organized into the following components, including the quality control (QC) procedures:

- A. Sample Receipt and Storage
- B. Sample Handling
- C. Filleting and Homogenization Procedures, Including Removal of Plug Samples for Mercury Analysis
- D. Aliquoting and Distribution Procedures
- E. Equipment Cleaning between Composite Samples
- F. Lipid Determination on Every Homogenized Composite Sample
- G. Quality Control (QC) Procedures
- H. Reporting Requirements
- I. Shipping Samples

The individual steps in the overall process are presented as a series of numbered steps across the nine components listed above.

Note: The sample preparation laboratory may **not** process any fish tissue samples until directed by CSC to proceed. No samples collected from NRSA sampling sites may be processed until after the kickoff meeting and workshop and until CSC reviews the results of the initial demonstration of capabilities (QA study) described in Section III above.

Composite Sample Classifications

For the purposes of the 2013-2014 NRSA, EPA has classified each valid sample as a "routine" composite sample, or a "non-routine" composite sample, based on the following definitions:

- **Routine sample** A routine composite sample consists of five individual adult fish of a single species that meet EPA's length requirements (i.e., length of the smallest specimen in the composite is at least 75% of the length of the largest individual). Fillets from both sides of all five fish will be removed (total of 10 fillets) and homogenized to prepare one composite fillet sample.
- Non-routine sample A non-routine sample is any sample that does not meet the definition of a routine sample, including those that do not meet the 75% rule and those with fewer or greater than five fish. When non-routine samples are sent to the sample preparation laboratory, EPA and CSC will provide instructions for processing the non-routine samples. These instructions may include discarding some of the fish in the composite sample based on size before proceeding with filleting and homogenizing. In cases when fewer or more than five fish were collected, instructions may include processing some or all of those fish in the composite sample.

Each of the five fish in the routine samples must be filleted before homogenization. For non-routine composites, only the designated specimens (identified by specimen number) will be filleted and homogenized. For both types of samples, the specimens to be included in each composite must be scaled (i.e., scales removed) and both fillets from each specimen prepared as skin-on fillets (belly-flap included) to form the fillet composites.

Note: The classifications described above do not include samples that were collected from an incorrect sampling location, were an unnecessary duplicate sample, or contained an inappropriate fish species. EPA does not plan on using these "invalid" samples for the 2013-2014 NRSA, so it is imperative that the sample preparation laboratory not process any sample without specific instructions from CSC. Therefore, samples will be retained in frozen storage and processed only upon receipt of CSC-issued instructions. If the status of any composite sample in the instructions is not clear, contact CSC and wait for clarification.

IV.A Sample Receipt and Storage

Fish samples for the 2013-2014 NRSA are being collected by various organizations cooperating with EPA in this study, including State agencies, other Federal agencies, and contractors. Sample collection is expected to begin as early as May 2013, and continue through approximately November 2014, with the bulk of collection to occur between June and October of 2013 and June and October of 2014, respectively (i.e., a two-year sampling effort). Ultimately, EPA anticipates the collection of composite samples from up to 453 sites by the end of the collection effort in late 2014.

Samples will be shipped directly from the field sampling crews to the sample preparation laboratory for storage and processing. Therefore, the sample preparation laboratory must have sufficient freezer space to store **up to 150 unprocessed fish composite samples** (e.g., 150 5-fish composites) at a temperature of less than or equal to -20 °C from the time of receipt until completion of sample processing and sufficient freezer space to store **homogenized tissue aliquots from up to 100 processed samples** (e.g., up to 900 jars) prior to distribution. CSC will provide as much advance notice of sample shipments from the field crews as possible, but we anticipate that some shipments may arrive before we can notify the laboratory. CSC also will provide the laboratory with a list of all of the valid sites from which samples are being collected.

- 1. Although samples will be shipped frozen, on dry ice, they must be inspected promptly on receipt. As samples are received, the sample custodian must:
 - Check that each shipping container has arrived undamaged and verify that samples are still frozen and in good condition.
 - Check the temperature of one of the samples in the cooler using a thermometer that reads to at least -20 °C, or an infra-red (IR) temperature "gun" and record the reading.
 - Verify that all associated paperwork is complete, legible, and accurate.
 - Compare the information on the label on each individual fish specimen to the sample tracking
 form for each composite and verify that each specimen was included in the shipment and is
 properly wrapped and labeled.
 - Notify CSC of the fact that samples were received and of any discrepancies in the paperwork identified above.
 - Check that the samples were collected from sites on the list of valid whole-fish tissue sampling locations (uniquely designated by the site identification number) provided by CSC, and notify CSC immediately if samples have been received from sites not on that list.
 - Transfer the samples to the freezer for long-term storage.

2. Notify CSC immediately about any problems encountered upon receipt of samples. Problems involving sample integrity, conformity, or inconsistencies for fish tissue samples should be reported to CSC in writing (e.g., by email) as soon as possible following sample receipt and inspection.

Following sample processing, the sample preparation laboratory must store sample aliquots frozen to less than or equal -20 °C until they are distributed to the laboratories performing analyses under separate CSC purchase orders (see Sec IV.I).

IV.B Sample Handling

The whole fish collected for the 2013-2014 NRSA must remain frozen at less than or equal to -20 °C until the sample processing laboratory receives composite-specific processing instructions from CSC. Samples to be processed must be retrieved from the freezer, with their associated paperwork, and allowed to partially thaw before they can be processed.

- 3. CSC will send sample processing instructions to the laboratory via email. The instructions consist of an Excel spreadsheet file that details the site and sample identifiers for fish that EPA has determined are routine valid five-fish composites, or non-routine composites to be prepared. At a minimum, the Excel file will list the following fields for each individual fish specimen in a given composite sample:
 - Site ID
 - Date of collection
 - Sample ID (XXXXXX.YY, where YY usually ranges from 1 to 5 specimens in the composite, but can range up to 10)
 - Common name for the fish species
 - Measured length of each specimen in mm
 - Relative length order of the specimens in the composite (e.g., "1" for the longest specimen, etc.)
 - Composite type (predator or bottom dweller)
 - Composite classification (Routine, Non-Routine, or Invalid)
 - Deviation (e.g., why it is not routine or not valid)
 - Instructions (sample-specific details about which fish to process), including which two specimens to be used for plug sample collection

Samples shipped to the laboratory that EPA identifies as "invalid" are to be held in the freezer until CSC provides instructions for their disposition or disposal.

- 4. When retrieving samples from the freezer, the sample custodian must:
 - Verify that all associated paperwork stored with the samples is complete, legible, and accurate.
 - Compare the information on the label on each individual fish specimen to the processing instructions and notify CSC of any discrepancies between the sample labels and the Excel file of instructions. Problems involving sample paperwork, sample integrity, or custody inconsistencies for all fish tissue samples should be reported to CSC in writing (e.g., by email) as soon as possible following sample retrieval and inspection. Do not proceed with sample processing until discrepancies are resolved.

Note: The hardcopy paperwork generated by the field samplers and stored with the samples does *not* contain all of the information in the Excel instruction files. Therefore, lack of information on hardcopy field paperwork regarding the composite type, composite classification, or deviation is *not* a discrepancy that must be reported.

IV.C. Filleting and Homogenization Procedures, Including Plug Sampling for Mercury Analysis

As part of the overall 2013-2014 NRSA, mercury analyses will be performed on two types of samples: aliquots of the homogenized composite fillet samples and plugs removed from two fish in each composite with an 8-mm disposable biopsy tool (Acuderm brand Acu-Punch or equivalent). The sample processing instructions sent by CSC will include instructions to collect one plug sample each from two specific fish specimens in the sample composite, using the procedure described in Steps 11 - 16. Prior to collecting the plug sample for mercury, there are a number of steps that must be taken before preparing both types of samples.

- 5. Prior to preparing any samples, thoroughly clean utensils and cutting boards using the following series of procedures:
 - Wash with a detergent solution (phosphate- and scent-free) and warm tap water
 - Rinse three times with warm tap water
 - Rinse three times with DI water
 - Rinse with acetone
 - Rinse three times with DI water
 - Rinse with (not soak in) 5% nitric acid
 - Rinse three times with DI water

To control contamination, separate sets of utensils and cutting boards must be used for scaling fish and for filleting fish.

Note: The biopsy punches provided by EPA for collecting the plug samples are to be used as received and are **not** subjected to the cleaning procedures above.

- 6. Put on powder-free nitrile gloves before unpacking individual fish specimens for plug sampling (as directed) and for filleting and tissue homogenization. As samples are unpacked and unwrapped, inspect each fish carefully to verify that it has not been damaged during collection or shipment. If damage (e.g., tearing the skin or puncturing the gut) is observed, document it in the laboratory project log sheet and notify CSC before proceeding further.
- 7. The sample collection personnel measured the total length of each fish specimen in the field and recorded those lengths on the sample tracking form. However, the label applied to each wrapped specimen does not include the length information, and it may be difficult to reproduce the field measurements of fish length when the specimens are still partially frozen.

Therefore, begin processing the specimens by laying them out in order by specimen number (the portion of the sample ID after the decimal point) and allowing them to partially thaw to the point that each specimen can be laid relatively flat. Using the length data on the sample tracking form (or the relative length order data in the fish sample processing instructions spreadsheet), confirm that the specimen ID for the longest specimen recorded on the tracking form is the same as the specimen ID on the label of the longest specimen. Repeat this relative length comparison for each of the other specimen IDs to ensure that the length orders based on the recorded lengths in the sample tracking form are consistent with the specimen IDs on the individual fish labels. This check is important for confirming that the field crews attached the correct label to each fish in the composite sample.

If discrepancies are observed, document them in the laboratory project log sheet and notify CSC before proceeding further.

8. Weigh each fish to the nearest gram (wet weight) prior to any sample processing. Enter weight information for each individual fish into a laboratory project log sheet. Individual specimen weights eventually will be transferred to spreadsheets for submission to CSC.

- 9. Rinse each fish with deionized water as a precautionary measure to treat for possible contamination from sample handling in the field. Use HDPE wash bottles for rinsing fish and for cleaning homogenization equipment and utensils. Do **NOT** use Teflon[®] wash bottles for these procedures, because PFCs are among the target analytes for this study.
- 10. Before beginning the scaling process for the first fish in the composite, put on new powder-free nitrile gloves. (Gloves must be changed *between* composites, but the same gloves may be used for all fish *within* a given composite.) Fish with scales must be scaled (and any adhering slime should be removed) prior to filleting. *Begin with the two fish specimens designated by EPA for plug sampling.* Scale the first designated fish by laying it flat on a clean glass cutting board and scraping from the tail to the head using a stainless steel scaler or the blade-edge of a clean stainless steel knife.
- 11. Turn the first scaled fish specimen designated by EPA for the plug sample so that the left side is facing up. Insert a new 8-mm biopsy punch into the fish through the tissue in the dorsal (upper) portion of the specimen between the dorsal fin and the lateral line, avoiding areas where the punch may contact the viscera (internal organs). Insert the punch with a slight twisting motion, cutting the skin and muscle tissue. Once the punch is inserted to its full depth, use a slight bending or tilting motion of the punch to break off the end of the sample.
- 12. Remove the biopsy punch, taking care to ensure that the sample remains in the punch.
- 13. Place a laboratory pipette bulb on the end of the biopsy punch and squeeze the bulb quickly, blowing the tissue sample into a tared clean 20-mL scintillation vial (supplied by EPA).
- 14. Repeat Steps 10 through 13 with the second fish specimen designated by EPA for plug sampling. The same biopsy punch used for the first specimen is used for the second specimen.
- 15. After transferring the second plug to the tared vial, weigh the tared vial containing the two plugs and determine the combined weight of the plugs by difference. Label the vial with the Site ID, and the two Specimen IDs (XXXXXXXYY and XXXXXXZZ, where YY and ZZ are the specimen numbers of the fish designated by EPA for the plug samples), the total weight of the plugs, and the date the sample was processed.

Note: The two punch samples should yield at least 0.5 to 0.7 grams of fish tissue for mercury analysis.

- 16. Transfer the vial to the freezer within 30 minutes. (The vial may be stored in a small cooler in the sample processing area on water ice or dry ice while the remainder of the composite sample is processed.)
- 17. Continue scaling all the other fish in the sample composite as described in Step 10 above. Filleting can proceed after all scales have been removed from the skin and a separate clean cutting board and fillet knife are prepared or available.
- 18. Place each fish on a clean glass cutting board in preparation for the filleting process. Note that filleting should be conducted under the supervision of an experienced fisheries biologist, if possible. Ideally, fish should be filleted while ice crystals are still present in the muscle tissue. Fish should be thawed only to the point where it becomes possible to make an incision into the flesh. Remove both fillets (lateral muscle tissue with skin attached) from each fish specimen using clean, high-quality stainless steel knives. Include the belly flap (ventral muscle and skin) with each fillet. Care must be taken to avoid contaminating fillet tissues with material released from inadvertent puncture of internal organs. In the event that an internal organ is punctured, rinse the fillet with deionized water immediately after filleting and make a note on the laboratory project log sheet that a puncture has

- occurred. Bones still present in the tissue after filleting should be carefully removed using the tip of the fillet knife or a clean pair of forceps.
- 19. Samples should be homogenized partially frozen for ease of grinding. Composite the fillets using the "batch" method, in which all of the fillets from the individual specimens that comprise the sample are homogenized together, regardless of each individual specimen's proportion to one another (as opposed to the "individual" method, in which equal weights of tissue from each specimen are added together).
- 20. Process each sample using a size-appropriate homogenization apparatus (e.g., automatic grinder or high-speed blender). Entire fillets (with skin and belly flap) from both sides of each fish must be homogenized, and the entire homogenized volume of all fish fillets from the composite will be used to prepare the composite. Mix the tissues thoroughly until they are completely homogenized as evidenced by a final composite sample that consists of a fine paste of uniform color and texture. Chunks of skin or tissue will hinder extraction and digestion and, therefore, are NOT acceptable. Grinding of tissue may be easier when tissues are partially frozen. Chilling the grinder briefly with a few small pieces or pellets of dry ice may also keep the tissue from sticking to the equipment. Pellets of dry ice also may be added to the tissue as it enters the grinder.
- 21. Grind the sample a second time, using the same grinding equipment. This second grinding should proceed more quickly. The grinding equipment does not need to be cleaned between the first and second grinding of the sample. The final sample must consist of a fine paste of uniform color and texture. If there are obvious differences in color or texture, grind the entire sample a third time.
- 22. Measure the collective weight of the homogenized fillet tissue from each composite to the nearest gram (wet weight) after processing and record the total homogenized tissue weight of each composite on a laboratory project log sheet. The collective weight of the homogenized tissue from each sample will be transferred to spreadsheets for submission to CSC. At least 536 g of homogenized tissue will be needed to fill all of the containers in Table 1 below with their minimum acceptable masses. If a sample does not yield at least 536 g of homogenized tissue, contact CSC via email immediately and await instructions. As appropriate, place any less-than-536-g homogenized samples in the freezer while waiting for instructions, which are likely to involve preparing fewer archive aliquots.
- 23. After the final (second or third) grinding, clean the **grinding equipment and all other sample preparation equipment** using the procedures described in Step 29.
- 24. Once in every batch of 20 samples, verify the continued absence of equipment contamination and uniformity of homogenization using the procedures described in Steps 32 to 37.

IV.D. Aliquoting and Distribution Procedures

25. The sample preparation laboratory will prepare one bulk homogenate tissue aliquot per fish composite sample and use it to fill the pre-cleaned sample containers specified for each type of sample listed in Table 1, following the procedures described in Step 26. Except as noted in Table 1, all containers will be provided by the sample preparation laboratory. Documentation of their cleanliness provided by the vendor (i.e., certificates of analysis) must be retained by the sample preparation laboratory and provided to CSC on request. The target masses listed in Table 1 are designed to provide enough tissue for multiple analyses of each sample and analyte type, including tissue for QC purposes, as needed. The sample preparation laboratory should not exceed those target masses when filling the containers. The order of the containers and target masses in Table 1 are important and are designed to ensure that adequate tissue is available for all analyses, as well as archiving.

Table 1. 2013-2014 NRSA Initial Tissue Sample Aliquot Requirements

Analysis	Target Mass	Container Type	Destination
Mercury, plug	0.5 - 0.7 g	20-mL glass scintillation vial (provided by EPA)	TBD
Mercury, fillet	5 - 10 g	50-mL HDPE straight-sided jar with foil-lined lid , or conical HDPE tube with snap top	TBD
PFCs	60 - 65 g	100-mL HDPE straight-sided jar with foil-lined lid , or conical HDPE tube with snap top. <i>PTFE lid liners not allowed</i> .	TBD
PBDEs	30 - 35 g	125-mL straight-sided amber or clear glass jar with PTFE-lined lid	TBD
PCBs	30 - 35 g	125-mL straight-sided amber or clear glass jar with PTFE-lined lid	TBD
Lipids	10 - 15 g	Laboratory's choice, as this aliquot will be used in-house to determine the lipid content of the sample	In-house
Bulk Archive 1	250 - 260 g	500-mL straight-sided amber or clear glass jar with foil-lined lid	CSC Sample Repository
Small Archive 1	50 - 60 g	125-mL straight-sided amber or clear glass jar with foil-lined lid	CSC Sample Repository
Small Archive 2	50 - 60 g	125-mL straight-sided amber or clear glass jar with foil-lined lid	CSC Sample Repository
Bulk Archive 2	All remaining mass up to 260 g	500-mL straight-sided amber or clear glass jar with foil-lined lid	CSC Sample Repository
Total (to the nearest gram)*	536 - 801 g	Assumes at least 50 g of tissue is available for Bulk Archive 2	

^{*} In the event that insufficient fish tissue mass exists to prepare the required number of aliquots, contact CSC for instructions, per Step 22.

26. Prepare the sample aliquots for **mercury**, **PFCs**, **PBDEs**, and **PCBs**. Weigh an appropriate clean sample container (Table 1) to the nearest 0.5 g and record the weight. Transfer sufficient aliquots of ground sample to the container to achieve the target mass for that container in Table 1, weigh the container again, record the weight, and determine the weight of the aliquot to the nearest 0.5 g by difference. **The sample preparation laboratory must use foil-lined lids for jars containing the tissue aliquots for PFC analysis and the archived tissue samples, as specified in Table 1.**

Note: The archive sample jars are not filled until after sufficient volume for lipids determination has been collected, as described in Step 27. For the sample used for homogeneity testing, the archive jars are not filled until triple the lipid mass is collected (see Step 36).

When filling jars, leave sufficient space at the top of each jar to allow for expansion of the tissue as it freezes. *In no case should jars be filled beyond 80% capacity, as this may result in breakage on freezing.* Wipe off the outside of the jars to remove any tissue residue or moisture. Fill out a label for each container using a waterproof marker. Include the following information (at a minimum) on each label:

- site identification number,
- sample identification number,
- analysis type (e.g., mercury, PFCs, PBDEs, etc.),
- aliquot weight (to the nearest 0.5 gram),
- preparation batch ID, and
- preparation date (e.g., mm/dd/yyyy)

(Other information may be included on the label at the laboratory's discretion, provided that CSC is given an explanation of each additional field.)

Affix the label to the container with clear wide tape. Place each container inside one heavy-weight food-grade self-sealing plastic freezer bag to avoid sample loss due to breakage. Freeze the tissue aliquots at -20 °C, and maintain samples in the freezer until directed by CSC to ship them to the analytical laboratories. (CSC will not issue such instructions until equipment rinsate and homogeneity tests described in Steps 31 to 37 have been completed, reported, evaluated, and determined to be acceptable.)

- 27. After filling all of the containers for the aliquots for mercury, PFCs, PBDEs, and PCBs, remove 10 to 15 g of homogenized tissue to be used by the sample preparation laboratory to determine the lipid content of each sample. Place this aliquot in a clean glass or plastic container of suitable size and label it with the site ID and sample number. Transfer the lipid aliquot to the appropriate staff performing the lipid determinations described in Steps 31, 36, and 37.
- 28. The archive sample jars are not filled until after sufficient volume for lipids determination has been collected. Once the aliquots for mercury, PFCs, PBDEs, PCBs, and lipids have been collected, the remaining tissue mass is used to create at five archive samples. Begin by transferring 250 260 g of tissue to the first bulk archive sample container, thus ensuring that at least one large volume (bulk) aliquot is archived. Continue by transferring one 50 60 g aliquot to each of the two small archive containers. Ideally, sufficient homogenized fillet tissue mass will remain to produce a second bulk archive container. Therefore, transfer 250 260 g of tissue to the second bulk archive sample container. However, if less than 250 g of tissue is available, transfer all of the remaining homogenized tissue to the second bulk archive container. Seal and label the containers as described in Step 26 for the other aliquots.

Note: Step 22 requires that the laboratory contact CSC whenever a sample does not yield at least 536 g of tissue. CSC will provide direction to the laboratory regarding samples yielding less than 536 g of tissue that must be followed at this point in the procedure.

Any tissue that remains after filling the second bulk archive jar may be discarded.

IV.E. Equipment Cleaning between Composite Samples

- 29. All of the homogenization equipment must be thoroughly cleaned between each composite sample. Once all of the fillets from the individual specimens in a given composite sample have been homogenized, disassemble the homogenization equipment (i.e., blender, grinder, or other device) and thoroughly clean all surfaces and parts that contact the sample. Similarly, clean all knives, cutting boards, and other utensils used. At a minimum:
 - Wash with a detergent solution (phosphate- and scent-free) and warm tap water
 - Rinse three times with warm tap water
 - Rinse three times with deionized (DI) water
 - Rinse with acetone
 - Rinse three times with DI water
 - Rinse with (not soak in) 5% nitric acid
 - Rinse three times with DI water
 - Allow the components to air dry
- 30. Reassemble the homogenization equipment and proceed with homogenization of the next sample in the batch (e.g., begin with Step 6 above).

IV.F. Lipid Determination on Every Homogenized Composite Sample

The procedures for determining the lipid content of every fillet composite are described in Step 31 below. (Additional lipid determinations are required for one sample in every preparation batch, as described in Steps 36 and 37.)

31. Use the 5 to 10 g of homogenized tissue collected in Step 27 to determine the lipid content of the sample. Extract the aliquot using SW-846 Method 9071B. Determine the lipid content of that aliquot and record it in units of percent (i.e., grams of lipid per gram of tissue x 100), and provide the results to CSC by email, as described in Section IV.H. These results may be used by the laboratories conducting the other analyses to lipid-normalize their results.

IV.G. Quality Control (QC) Procedures

The project-specific QC procedures include preparation and testing of equipment rinsate samples and homogeneity testing, using lipids as a surrogate. The QC procedures are performed in two distinct phases: (1) as part of an initial demonstration of capabilities after the kickoff meeting and workshop with EPA, and (2) during normal operations.

<u>Initial demonstration of capabilities:</u> After the kickoff meeting and workshop, the sample preparation laboratory staff will prepare three test fish samples provided by Tetra Tech. Each test sample will consist of a single large fish which will be processed separately. Each of these test samples will be carried through the entire sample preparation and aliquoting procedures separately. The resulting sample aliquots will not be distributed to other laboratories at this time, but stored frozen. In between processing each individual fish sample, the sample preparation laboratory staff will clean all of the sample preparation equipment as described in Step 29 above. After each cleaning, the sample preparation laboratory staff will prepare the entire series of equipment rinsates and solvent blanks described in Step 32 below.

The sample preparation laboratory also will collect three lipid aliquots from each sample prepared during the initial demonstration and use them for triplicate determinations of lipids, as described in Step 36 below.

The results of the analyses of the rinsates and the homogeneity testing (three sets each) will be submitted to CSC for review. The sample preparation laboratory may **not** begin 2013-2014 NRSA sample preparation until CSC and EPA determine that the sample preparation laboratory has successfully demonstrated proficiency in meeting QC requirements for equipment cleaning and tissue homogenization.

Normal Operations: During normal sample preparation efforts, the sample preparation laboratory will prepare one set of rinsate samples and will conduct one set of triplicate lipid determinations per batch of 20 composite fish samples, as described in Steps 32 to 37, below. The batch-specific rinsate and homogeneity results will be reviewed by CSC and EPA. The sample preparation laboratory may continue to process up to one additional batch of 20 samples (based on sample preparation instructions provided by CSC) during that review process. However, the sample preparation laboratory may **not** continue beyond that next batch of samples until receiving notification from CSC that review of the prior batch rinsate and homogeneity test results is complete and the results were deemed satisfactory.

Thus, continued sample processing is dependent on both the quality of the sample preparation laboratory's efforts and on the timeliness of their delivery of QC results.

Rinsate and Blank Sample Production

- 32. Prior to reassembling the homogenization equipment (Step 30) between each of the samples processed during the initial demonstration of capabilities, and once per batch during normal operations, prepare three rinsate samples, as follows:
 - Prepare a **hexane rinsate sample** by pouring a 100-mL portion of pesticide-grade hexane over all parts of homogenization equipment, including the cutting boards and knives, and collect it in a clean glass container. Place an additional 100-mL aliquot of clean hexane in a similar glass container for use as a solvent blank. Allow the solvent to evaporate from the equipment. This rinsate and solvent blank will be analyzed for selected PCBs and PBDEs. Label, store, and analyze the PCB/PBDE rinsate and blank as described in Step 34.
 - Once the hexane has evaporated, prepare the **first DI water rinsate** using 250 mL of DI water. Collect the DI water rinsate in a clean glass or HDPE container. Place a second aliquot of DI water in a separate similar clean container for use as a blank. Acidify these two samples to pH < 2 with nitric acid. These rinsate and blank samples will be analyzed for mercury as described in Step 35.</p>
 - Prepare the **second DI water rinsate** using an additional 250 mL of DI water. Collect this rinsate in a clean glass container **with a non-PTFE lid liner**. Place a second aliquot of DI water in a separate similar clean glass container for use as a blank. This rinsate and blank will be analyzed for PFCs by a laboratory to be determined later, thus the non-PTFE lid liners are essential. CSC will provide the sample preparation laboratory with the PFC laboratory name and shipping information as soon as it is available. Label and store these PFC rinsates and blanks as described in Step 33.

Note: In order to minimize the number of project samples that might be affected by cross contamination, collect the normal rinsate samples on the first day that samples in a batch of 20 are processed. Ideally, the laboratory will vary the point at which the rinsates are collected on that first day over the course of the project (e.g., between the 1st and 2nd samples for one batch, the 2nd and 3rd samples for another batch, etc.).

33. Label each container as either "rinsate - [insert name of solvent]" or "blank - [insert name of solvent]," and include the date it was prepared (mm/dd/yyyy), the analysis type (Hg, PFCs, PCBs/PBDEs), and the preparation batch identifier. Store the rinsates and blanks cold (<6 °C).

Rinsate Analyses

- 34. As part of the initial demonstration of capabilities, the sample preparation laboratory will analyze three sets of hexane rinsate and blank samples for PCBs/PBDEs (e.g., one set prepared after each tissue sample prepared during the initial demonstration process) using EPA Methods 1668A and 1614, respectively. Those methods will require concentration of the hexane to a final volume of 0.5 mL, and analysis by GC and high resolution mass spectrometry, in order to identify the PCB/PBDE congeners of interest. During normal operations, the sample preparation laboratory will analyze one set of the hexane rinsate and blank samples per batch. (The PCB analyses will be conducted by Cape Fear Analytical and the PBDE analyses by Vista Analytical Laboratories, both under contract to Microbac.)
- 35. As part of the initial demonstration of capabilities, the sample preparation laboratory will analyze three sets of DI water rinsate and blank samples for mercury using EPA Method 245.1, a cold-vapor atomic absorption procedure (e.g., one set prepared after each tissue sample prepared during the initial demonstration process). During normal operations, the sample preparation laboratory will analyze one set of the DI water rinsate and blank samples per batch for mercury.

Corrective Actions for Rinsates

CSC will evaluate the rinsate results based on the mass of each analyte detected, and assuming that all of the apparent contamination could be transferred to a nominal 536-g mass of homogenized tissue. Results for mercury or any PCBs/PBDEs above the anticipated reporting limits for these analytes in tissue samples may be cause for corrective actions by the sample preparation laboratory. Such corrective actions may include revisions to the sample preparation laboratory's equipment cleaning procedures, followed by a successful demonstration of the revised cleaning procedures through preparation and analysis of additional rinsate samples.

Lipid Determination to Confirm Homogeneity

36. For each of the samples processed during the initial demonstration of capabilities, and for one sample in every batch of 20 composite samples prepared during normal operations, the sample preparation laboratory will conduct triplicate analyses of the lipid content of samples to confirm that the samples are homogeneous.

As with the collection of rinsate samples, the homogeneity testing must be performed on the first day on which samples in a batch of 20 are processed. However, the sample chosen for homogeneity testing must be one that yields enough tissue mass to support the added mass needed for triplicate lipid aliquots (15 to 30 g). Therefore, unless otherwise directed by CSC for a particular batch of samples, the sample preparation laboratory will select one sample processed on the first day of every batch that will provide well over 536 g of total tissue mass.

From that sample, remove three 5- to 10-g aliquots of tissue before filling the archive sample containers. Place these three aliquots in clean glass or plastic containers of suitable size and label each with the site ID, sample number, and an aliquot identifier of the laboratory's choice. Transfer the lipid aliquot to the appropriate staff performing the lipid determination.

37. From the lipid results, calculate the mean lipid content (in percent), the standard deviation (SD), and the relative standard deviation (RSD) using the formulae below, or the corresponding functions in Excel.

mean % lipids =
$$\frac{\sum_{i=1}^{3} (\% \text{ lipids})_{i}}{3}$$

$$SD = \sqrt{\frac{\sum\limits_{i=1}^{3} (\% \ lipids_i - mean \ lipids)^2}{2}}$$

$$RSD = \frac{SD}{mean}$$

If the RSD of the triplicate results is less than or equal to 15%, then the homogenization effort is judged to be sufficient for all samples in that preparation batch. For this sample analyzed in triplicate, the mean lipid content will be the value reported for that sample, following the requirements described in Step 31.

Corrective Actions for Homogeneity

If the RSD is greater than 15%, then corrective action is required for all samples in that preparation batch. Corrective actions will be determined by CSC in direct consultation with the laboratory and EPA, but the default corrective action consists of regrinding all of the aliquots from each composite sample in the affected batch until the RSD criterion is met.

This may entail retrieving all sample aliquots (see Table 1) from the freezer, allowing them to partially thaw, and homogenizing them again, beginning at Step 20. In these instances, all of the equipment cleaning procedures will be repeated between each composite sample, new lipids results will be determined for each composite, and a new homogenization QC determination (triplicate lipids on one sample per batch) will be performed. New sample containers will be required for any rehomogenized samples.

IV.H. Reporting Requirements

- 38. The sample preparation laboratory will prepare a weekly progress report to document the status of fish preparation activities and forward the report electronically to CSC. The format of the weekly progress report will be as an Excel spreadsheet. For each fillet composite processed or plug sample collected during that period, include at least the following information in the report:
 - site identification number,
 - sample identification number,
 - specimen numbers of the fish homogenized for the fillet composite,
 - specimen numbers of the fish from which the plug samples were collected,
 - common name for the fish species (provided to the laboratory in the instructions from EPA),
 - field-determined lengths and lab-determined weights of individual specimens that were filleted and homogenized,
 - field-determined lengths and lab-determined weights of individual specimens from which the plug samples were collected,
 - total composite sample (i.e., homogenate) weight (to the nearest gram),
 - total plug sample weight (to the nearest 0.1 gram),
 - analysis type (e.g., mercury, PFCs, PCBs, PBDEs, archive sample, etc.),
 - aliquot weight (to the nearest 0.5 gram),
 - preparation batch ID,
 - preparation date (e.g., mm/dd/yyyy),
 - QC sample identifiers associated with the batch of fillet composite samples,
 - lipid results for each fillet composite sample, and
 - airbill numbers for all sample shipments that week (these may include samples prepared during previous weeks), even though this information was transmitted to CSC at the time of shipment.

(Much of the sample-specific information above will be provided to the sample preparation laboratory electronically in the sample processing instructions from CSC.)

The weekly report will be due by COB Monday, or as agreed to in writing by CSC after consultation with the laboratory in the cases of holidays, and will document sample preparation progress for the previous week.

In addition, the laboratory must report the results of the rinsate analyses for mercury, PCBs, and PBDEs and the triplicate lipid results associated with the sample batch. Those results **must** be reported to CSC as soon after the analyses as practical to facilitate CSC's timely review and to minimize delays in receiving instructions to process future batches.

Note: As specified in the QC section of this document, the sample preparation laboratory may **not** continue beyond the next batch of samples until receiving notification from CSC that review of the prior batch rinsate and homogeneity test results is complete and the results were deemed satisfactory.

IV.I. Shipping Samples

39. No samples may be shipped until CSC and EPA have reviewed the sample homogeneity testing and rinsate results. CSC will notify the sample preparation laboratory by email when specific samples may be shipped, and to whom.

When shipping batches of pre-frozen fillet tissue aliquots, keep the individual containers bagged in the food-grade plastic freezer bags. Place these bags in a cooler with adequate space for the tissue containers, packing materials, and dry ice. (CSC may provide suitable coolers from existing stocks.) Secure each of the tissue containers with packing materials (e.g., bubble wrap or foam) before adding the dry ice. Place a modest layer of newspaper on top of the containers before adding the dry ice, as this can prevent cracking the lids. A single "section" of the local newspaper will usually suffice.

The amount of dry ice required for shipping will depend on the number of fillet tissue samples in the cooler and the time of year. It should be an adequate supply to keep the tissue samples frozen for 48 hours (i.e., a minimum of 25 pounds of dry ice per cooler for up to 10 pounds of fillet tissue samples).

Shipments of plug samples for mercury analyses may use smaller coolers and other forms of packing materials (e.g., foam blocks with pre-drilled holes) appropriate for the scintillation vials, but must be shipped on dry ice as well.

Record the samples contained in the cooler on a shipping form provided by CSC and place the form in a plastic bag taped to the inside lid of the cooler. (CSC will provide separate forms for plug samples and homogenized fillet samples.) Secure the outside of the cooler with sealing tape, address it to the sample recipient identified by CSC, and attach a dry ice (dangerous goods) label. Ship the cooler via an overnight express carrier on a date that will allow delivery of the cooler to the analytical laboratory on a normal business day (e.g., no Saturday deliveries and no deliveries on U.S. Federal holidays without express permission from CSC). Provide the air bill number for each shipment to CSC via email on the day that the shipment occurs. CSC will provide the sample preparation laboratory with a third-party FedEx account to which each shipment will be billed.

CSC Contact Information

Primary CSC Contact

Harry McCarty 6361 Walker Lane Alexandria, VA 22310 703-461-2392 hmccarty@csc.com

Alternative CSC Contact

Lynn Walters 6361 Walker Lane Alexandria, VA 22310 703-461-2060 lwalters3@csc.com

V. Deliverables

Item	Deliverable Description	Mechanism	Schedule
1	Kickoff meeting and workshop		July 16, 2013
2	Initial demonstration of capabilities		Begin within 3 days of receipt of test samples from Tetra Tech

Item	Deliverable Description	Mechanism	Schedule
3	Results of the initial demonstration, to include three sets of rinsate and solvent blank results for mercury and PBDEs, plus three sets of triplicate lipid determinations	Email	Close of Business (COB) of the day after results are generated
4	Confirmation of receipt of sample processing instructions, identifying any specific sample discrepancies	Email	COB on the day of receipt
5	Notification of samples that do not yield at least 536 g of homogenized fillet tissue	Email/phone	Immediately upon discovery during sample preparation
6	First completed batch of 20 homogenized fillet samples and 20 plug samples, ready for shipment at CSC's direction (i.e., sample turnaround time)		21 calendar days from receipt of sample processing instructions from CSC
7	Each subsequent batch of 20 homogenized fillet samples and 20 plug samples		14 calendar days from completion of the previous batch, or 14 days from receipt of sample processing instructions from CSC, whichever is longer
8	Mercury and PCB/PBDE results for rinsates and solvent blanks and lipid RSD results	Email/phone	COB of the day after results are generated
9	Weekly status report	Email	COB Monday of each week
10	Homogenized sample shipments	FedEx overnight	Within 3 working days of receipt of shipping information from CSC
11	Shipping information (airbills, shipping forms, etc.) for tissue or rinsate samples	Email	COB on day samples ship to other labs
12	Copies of all bench sheets, sample preparation records, and other project records	Hard copy or PDF	As directed by CSC after the completion of the project

ATTACHMENT 1 ANALYSES OF RINSATES AND BLANKS FOR MERCURY AND PCBs/PBDEs

This attachment describes the analyses of rinsate samples and blanks generated during the composite fish sample preparation process. The results of those analyses are important in demonstrating that the sample preparation laboratory's equipment cleaning procedures are effective at preventing cross-contamination between fish tissue samples.

A. EQUIPMENT AND MATERIALS:

- Mercury analyzer suitable for aqueous samples using cold-vapor atomic absorption (CVAA) instruments compatible with EPA Method 245. Must be capable of achieving an MDL of approximately 1 µg/L.
- Gas chromatograph with a high resolution mass spectrometric detector (GC/HRMS) suitable for analysis of PCB and PBDE congeners via EPA Methods 1668A and 1614.
- Solvent concentration equipment suitable for reducing hexane rinsates to final volumes of 0.5 to 10 mL.
- A PCB standard solution containing at least the following PCB congeners: **52**, **66**, **105**, **118**, **141**, **146**, **170**, **174**, **177**, **and 187**, to be used to establish retention times and perform calibration of the GC/HRMS. (Additional congeners can be included by the laboratory. These congeners represent those that EPA has found frequently, at relatively high concentrations, in other fish tissue studies.)
- A PBDE standard solution containing at least the following PBDE congeners: 47, 49, 66, 99, 100, 153, 154, and 155, to be used to establish retention times and perform calibration of the GC/HRMS. (Additional congeners can be included by the laboratory. These congeners represent those that EPA has found frequently, at relatively high concentrations, in other fish tissue studies.)
- Assorted glassware, syringes, etc.

B. RINSATE AND BLANK ANALYSES

During the initial demonstration of capabilities, the laboratory will prepare three sets of rinsate samples, i.e., one set after each fish prepared as part of that demonstration. Each set of rinsate samples will include:

- Two de-ionized water (DI) rinsate samples and two DI water blanks sample for analysis of mercury and for analysis of PFCs.
- One hexane rinsate sample and one hexane blank sample for analysis of PCBs and PBDEs (e.g., one rinsate may be analyzed for both groups of contaminants).

During normal sample preparation efforts, the laboratory will prepare rinsates at a frequency of one set for each batch of 20 fish tissue samples prepared. Up to 25 sets of rinsates are anticipated.

The laboratory will digest and analyze the mercury rinsates and blanks by CVAA. The laboratory will concentrate the PCB/PBDE rinsates and blanks to a final volume of 1 mL and analyze the concentrated samples by GC/HRMS. For each analysis, the laboratory will determine the mass of each analyte (mercury, PCB congener, or PBDE congener) in the total volume of each rinsate or blank sample, rather than the concentration of each analyte.

The laboratory will either perform a method detection limit (MDL) study for mercury in aqueous samples, or use existing aqueous MDL data for the CVAA instrument employed. The laboratory must be able to achieve an MDL of approximately 1 μ g/L. Mercury results will be reported down to the mass equivalent to the mass at the method detection limit (MDL) for aqueous samples.

Because the PCB/PBDE rinsates are not aqueous samples that are extracted, a traditional MDL study for aqueous samples does not apply. Therefore, the laboratory must perform an instrument detection limit (IDL) study before beginning any rinsate analyses. The IDL study will consist of analyzing 7 low-level standards containing the PCBs and PBDEs listed above, determining the standard deviation of results for each PCB and PBDE across all 7 analyses, and multiplying the standard deviation times 3.143, the Student's t-value for 7 replicates. The laboratory must achieve an IDL on the order of 0.5 ng/mL, for a 1-mL final volume.

PCB congeners and PBDE congeners will be identified based on the requirements of EPA Methods 1668A and 1614, respectively. PCB and PBDE results in the rinsates and blanks will be reported down to the mass equivalent to the IDL.

The rinsates for PFCs will not be analyzed by the laboratory, but will be held by the sample preparation laboratory.

C. QUALITY CONTROL

The quality control (QC) procedures required for the rinsate analyses include:

- MDL or IDL studies, as described above
- Instrument calibration (see Methods 245.1, 1668A, and 1614 for procedures and acceptance criteria)
- Instrument blanks for mercury, PCB, and PBDE analyses
- Calibration verification (once per analysis batch) for mercury, PCB, and PBDE analyses
- Laboratory control sample (LCS) once per analysis batch, for mercury only

The MDL and IDL results will be reviewed by CSC as soon as they become available, and the laboratory will not be authorized to prepare additional fish tissue samples until that review is complete and the results are acceptable.

The matrix for the mercury rinsates is reagent water, which should not adversely affect method performance. Therefore, matrix spike samples are not required for mercury.

Because the PCB/PBDE rinsates do not involve extraction of an environmental matrix, matrix spike samples are not applicable. Likewise, laboratory control samples are not applicable to PCBs and PBDEs.

The instrument blanks for mercury, PCBs, and PBDEs take the place of a traditional method blank that would be extracted along with environmental samples.

D. DELIVERABLES

Summary data from the rinsate analyses are to be delivered to CSC in an Excel file. That file must contain the following information, at a minimum:

- Batch ID to be established by the laboratory, but a simple approach would be to number or letter each sample batch (e.g., A to H, or 1 to 8). The batch ID for the rinsates prepared during the initial demonstration results may be reported as "QA study."
- Sample ID as described in the instructions for preparing the rinsates
- Lab sample ID unique internal identifier used by the laboratory, if any
- Prep date Date (MM/DD/YYYY) on which the rinsate or solvent blank was prepared
- Analysis type "Mercury," "PCB, "or "PBDE" (or "PCB/PBDE" if both types of analytes are analyzed together)
- Analysis date Date (MM/DD/YYYY) on which the rinsate or solvent blank was analyzed
- Analyte name PCB and PBDE congeners may be abbreviated as PCB-066, PBDE-047, etc.

- Mass of analyte found in micrograms for mercury, and either micrograms or nanograms for the PCBs and PBDEs, provided that the reporting units for PCBs and PBDEs are consistent throughout the effort
- Lab qualifiers as needed to describe any analytical concerns. A complete list of the qualifiers and their meanings must be included with each data submission (e.g., in a separate tab on the Excel file).
- Reporting limit for each analyte in the same mass units used for the results
- Instrument calibration data Submit as a separate tab in the Excel file. Must include results for the initial calibrations for mercury, PCBs, and PBDEs, as well as any relevant calibration verifications associated with the analyses. Include calibration equations (e.g., regressions) and metrics (e.g., correlation coefficient or calibration factor).

Separate Excel files may be provided for each type of analysis (mercury, PCBs, and PBDEs), at the laboratory's discretion. Raw data supporting each analysis (e.g., chromatograms or instrument printouts) must be retained by the laboratory and made available to CSC when requested, at no additional cost. If requested, raw data may be submitted in hard copy, or as a PDF file.

APPENDIX E

GLEC Fish Information Summary Tables

Fish Tissue Processing Field Data Table 1. **Boulder, Thomson, and Scanlon Reservoirs** Duluth, Minnessota U.S. Army Corps of Engineers GLEC Project Number: 5148

GLEC ID	QC	Reservoir	Description	# of Individuals	Field Weight 1	Field Weight 2	Field Weight 3	Field Weight 4	Field Weight 5	Total Mass (mg)	Perform Sex ID?	Perform Otolith?	SexID 1	SexID 2	SexID 3	SexID 4	SexID 5	Processed Tissue Shipped to Test America
5044		Boulder	Black Crappie A	6						116	No	No						11/7/16
5035		Boulder	Rock Bass A	9						368	No	No						11/7/16
5033		Boulder	Shiners A	Many						152	No	No						11/7/16
5032		Boulder	Shiners B	Many						152	No	No						11/7/16
5045		Boulder	Shiners C	Many						163	No	No						11/7/16
5041	Dupe	Boulder	Walleye A	3	664	578	577			1,819	1,2,3	1,2,3	M	M	M			11/7/16
5042		Boulder	Walleye B	3	131	212	81			424	1,2,3	1,2,3	M	M	M			11/7/16
5043		Boulder	Walleye C	5	58	84	83	72	73	370	1,2,3,4,5	1,2,3,4,5	IND	IND	IND	IND	IND	11/7/16
5027	MSD	Boulder	White Sucker A	3	221	1,007	619			1,847	1,2,3	1,2,3	IND	M	M			11/7/16
5029		Boulder	White Sucker B	3	622	1,230	1,150			3,002	1,2,3	1,2,3	M	M	M			11/7/16
5028		Boulder	White Sucker C	3	1,779	1,285	1,326			4,390	1,2,3	1,2,3	F	F	F			11/7/16
5031		Boulder	Yellow Perch A	13						378	No	No						11/7/16
5030		Boulder	Yellow Perch B	13						311	No	No						11/7/16
5034		Boulder	Yellow Perch C	12						304	No	No						11/7/16
5006		Thomson	North Pike A	3	275	178	186			639	1,2,3	1,2,3	F	F	F			11/14/16
5009		Thomson	Rock Bass A	3	50	58	142			250	1,2,3	1,2,3	M	F	M			11/14/16
5010		Thomson	Rock Bass B	8						150	No	No						11/7/16
5003		Thomson	Small Mouth Bass A	10						394	No	No						11/14/16
5036		Thomson	Small Mouth Bass B	3	763	768	714			2,245	1,2,3	1,2,3	F	M	F			11/14/16
5004		Thomson	Small Mouth Bass C	3	1,090	1,012	936			3,038	1,2,3	1,2,3	F	M	M			11/14/16
5038		Thomson	Small Mouth Bass D	9						358	No	No						11/7/16
5007	MSD	Thomson	Walleye A	3	261	360	311			932	1,2,3	1,2,3	M	M	M			11/7/16
5011	Dupe	Thomson	White Sucker A	3	1,204	1,144	1,064			3,412	1,2,3	1,2,3	F	F	F			11/14/16
5015		Thomson	White Sucker B	3	965	820	923			2,708	1,2,3	1,2,3	F	F	F			11/14/16
5014		Thomson	White Sucker C	3	1,070	618	633			2,321	1,2,3	1,2,3	F	F	F			11/14/16
5005	Dupe	Thomson	Yellow Perch A	3	268	352	239			859	1,2,3	1,2,3	F	F	F			11/14/16
5008		Thomson	Yellow Perch B	4	210	211	188	172		781	1,2,3,4	1,2,3,4	F	M	M	F		11/14/16
5019	Dupe	Scanlon	Northern Pike A	2	340	487				827	1,2	1,2	F	F				11/14/16
5024		Scanlon	Shiners A	Many						61	No	No						11/15/16
5001		Scanlon	Small Mouth Bass A	3	547	627	547			1,721	1,2,3	1,2,3	M	F	M			11/14/16
5002	Dupe	Scanlon	Small Mouth Bass B	3	473	587	278			1,338	1,2,3	1,2,3	F	M	F			11/15/16
5021		Scanlon	Small Mouth Bass C	3	213	371	274			858	1,2,3	1,2,3	F	F	M			11/14/16
5023		Scanlon	Walleye A	3	237	215	168			620	1,2,3	1,2,3	M	M	M			11/14/16
5022		Scanlon	White Sucker A	3	1,015	736	792			2,543	1,2,3	1,2,3	F	F	F			11/14/16
5017		Scanlon	White Sucker B	3	844	952	324			2,120	1,2,3	1,2,3	F	F	M			11/14/16
5016		Scanlon	White Sucker C	3	791	781	817			2,389	1,2,3	1,2,3	F	F	F			11/14/16
5025	MSD	Scanlon	Yellow Perch A	4	166	136	124	74		500	1,2,3,4	1,2,3,4	F	F	F	M		11/15/16
5020		Scanlon	Yellow Perch B	3	98	76	141			315	1,2,3	1,2,3	M	M	F			11/15/16
5018		Scanlon	Yellow Perch C	19						432	No	No						11/14/16

For greyed-out samples, see small species Tables 5, 6, and 7 for individual mass and length

Dupe - Send two distinct samples from the same homoginization to Test America for analysis with separate IDs

MSD - Send twice as much sample from the same homoginization to Test America for Test America laboratory Quality Assurance/Quality Control requirements

App E USACE AEM Group, Tissue Processing, Duluth, MN, 12.6.16.xlsx Page 1 of 1

Table 2. Fish Tissue Processing Laboratory Data Scanlon Reservoirs
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

GLEC ID	QC	Description	# of Individuals	Metric	1	2	3	4	SexID 1	SexID 2	SexID 3	SexID 4	Average	+10% of Average	-10% of Average	Samples all within 10% of Average
5019	Dupe	Northern Pike A	2	Length (mm)	415	459			F	F			437	481	393	Yes
5019	Dupe	Northern Pike A	2	Mass (g)	343	481			F	F			412	453	371	No
5024		Shiners A	Many													
5001		Small Mouth Bass A	3	Length (mm)	343	338	341		M	F	M		341	375	307	Yes
5001		Small Mouth Bass B	3	Mass (g)	552	631	555		M	F	M		579	637	521	Yes
5002	Dupe	Small Mouth Bass B	3	Length (mm)	321	345	272		F	M	F		313	344	281	No
5002	Dupe	Small Mouth Bass C	3	Mass (g)	481	594	282		F	M	F		452	498	407	No
5021		Small Mouth Bass C	3	Length (mm)	250	289	265		F	F	M		268	295	241	Yes
5021		SMB C	3	Mass (g)	218	379	279		F	F	M		292	321	263	No
5023		Walleye A	3	Length (mm)	307	290	276		М	M	M		291	320	262	Yes
5023		Walleye A	3	Mass (g)	241	216	172		М	M	M		210	231	189	No
5022		White Sucker A	3	Length (mm)	436	389	395		F	F	F		407	447	366	Yes
5022		White Sucker A	3	Mass (g)	1,016	736	796		F	F	F		849	934	764	No
5017		White Sucker B	3	Length (mm)	420	432	306		F	F	M		386	425	347	No
5017		White Sucker B	3	Mass (g)	826	939	320		F	F	M		695	765	626	No
5016		White Sucker C	3	Length (mm)	415	410	414		F	F	F		413	454	372	Yes
5016		White Sucker C	3	Mass (g)	785	743	799		F	F	F		776	853	698	Yes
5025	MSD	Yellow Perch A	4	Length (mm)	232	219	214	187	F	F	F	M	213	234	192	No
5025	MSD	Yellow Perch A	4	Mass (g)	170	137	125	75	F	F	F	M	127	139	114	No
5020		Yellow Perch B	3	Length (mm)	201	186	219		M	M	F		202	222	182	Yes
5020		Yellow Perch B	3	Mass (g)	100	87	142		M	M	F		110	121	99	No
5018		Yellow Perch C	19													

For greyed-out samples, see small species Table 5 for individual mass and length

Dupe - Send two distinct samples from the same homoginization to Test America for analysis with separate IDs

MSD - Send twice as much sample from the same homoginization to Test America for Test America laboratory Quality Assurance/Quality Control requirements

Table 3. Fish Tissue Processing Laboratory Data
Thomson Reservoir
Duluth, Minnessota
U.S. Army Corps of Engineers
GLEC Project Number: 5148

GLEC ID	QC	Description	# of Individuals	Metric	1	2	3	4	SexID 1	SexID 2	SexID 3	SexID 4	Average	+10% of Average	-10% of Average	Samples all within 10% of Average
5006		North Pike A	3	Length (mm)	371	347	339		F	F	F		352	388	317	Yes
5006		North Pike A	3	Mass (g)	278	179	183		F	F	F		213	235	192	No
5009		Rock Bass A	3	Length (mm)	136	145	192		М	F	M		158	173	142	No
5009		Rock Bass A	3	Mass (g)	50	58	132		М	F	M		80	88	72	No
5010		Rock Bass B	8													
5003		Small Mouth Bass A	10													
5036		Small Mouth Bass B	3	Length (mm)	366	311	363		F	M	F		347	381	312	No
5036		Small Mouth Bass B	3	Mass (g)	763	768	714		F	M	F		748	823	674	Yes
5004		Small Mouth Bass C	3	Length (mm)	393	348	393		F	M	M		378	416	340	Yes
5004		Small Mouth Bass C	3	Mass (g)	1,083	1,001	924		F	M	M		1,003	1,103	902	Yes
5038		Small Mouth Bass D	9													
5007	MSD	Walleye A	3	Length (mm)	317	332	330		M	M	M		326	359	294	Yes
5007	MSD	Walleye A	3	Mass (g)	261	360	309		М	M	M		310	341	279	No
5011	Dupe	White Sucker A	3	Length (mm)	468	468	480		F	F	F		472	519	425	Yes
5011	Dupe	White Sucker A	3	Mass (g)	1,023	1,108	1,169		F	F	F		1,100	1,210	990	Yes
5015		White Sucker B	3	Length (mm)	419	412	438		F	F	F		423	465	381	Yes
5015		White Sucker B	3	Mass (g)	949	794	892		F	F	F		878	966	791	Yes
5014		White Sucker C	3	Length (mm)	431	404	392		F	F	F		409	450	368	Yes
5014		White Sucker C	3	Mass (g)	1,030	591	620		F	F	F		747	822	672	No
5005	Dupe	Yellow Perch A	3	Length (mm)	271	276	259		F	F	F		269	296	242	Yes
5005	Dupe	Yellow Perch A	3	Mass (g)	267	345	238		F	F	F		283	312	255	No
5008		Yellow Perch B	4	Length (mm)	216	215	228	230	F	M	M	F	222	244	200	Yes
5008		Yellow Perch B	4	Mass (g)	138	138	190	168	F	M	M	F	159	174	143	No

For greyed-out samples, see small species Table 6 for individual mass and length

Dupe - Send two distinct samples from the same homoginization to Test America for analysis with separate IDs

MSD - Send twice as much sample from the same homoginization to Test America for Test America laboratory Quality Assurance/Quality Control requirements

 Table 4.
 Fish Tissue Processing Laboratory Data

Boulder Reservoirs Duluth, Minnessota U.S. Army Corps of Engineers

GLEC Project Number: 5148

GLEC ID	QC	Description	# of Individuals	Metric	1	2	3	4	5	SexID 1	SexID 2	SexID 3	SexID 4	SexID 5	Average	+10% of Average	-10% of Average	Samples all within 10% of Average
5044		Black Crappie A	6															
5035		Rock Bass A	9															
5033		Shiners A	Many															
5032		Shiners B	Many															
5045		Shiners C	Many															
5041	Dupe	Walleye A	3	Length (mm)	418	394	393			M	M	M			402	442	362	Yes
5041	Dupe	Walleye A	3	Mass (g)	671	599	591			M	M	M			620	682	558	Yes
5042		Walleye B	3	Length (mm)	248	288	219			M	M	M			252	277	227	No
5042		Walleye B	3	Mass (g)	127	213	79			M	M	M			140	154	126	No
5043		Walleye C	5	Length (mm)	204	213	220	200	211	IND	IND	IND	IND	IND	210	231	189	Yes
5043		Walleye C	5	Mass (g)	56	83	82	72	73	IND	IND	IND	IND	IND	73	81	66	No
5027	MSD	White Sucker A	3	Length (mm)	272	399	347			IND	M	M			339	373	305	No
5027	MSD	White Sucker A	3	Mass (g)	221	1,013	615			IND	M	M			616	678	555	No
5029		White Sucker B	3	Length (mm)	351	464	455			M	M	M			423	466	381	No
5029		White Sucker B	3	Mass (g)	616	1,232	1,147			M	M	M			998	1,098	899	No
5028		White Sucker C	3	Length (mm)	502	468	457			F	F	F			476	523	428	Yes
5028		White Sucker C	3	Mass (g)	1,884	1,368	1,326			F	F	F			1,526	1,679	1,373	No
5031		Yellow Perch A	13															
5030		Yellow Perch B	13															
5034		Yellow Perch C	12															

For greyed-out samples, see small species Table 7 for individual mass and length

Dupe - Send two distinct samples from the same homoginization to Test America for analysis with separate IDs

MSD - Send twice as much sample from the same homoginization to Test America for Test America laboratory Quality Assurance/Quality Control requirements

Table 5. Fish Tissue Processing Laboratory Data (continued)
Scanlon Reservoirs
Duluth, Minnessota

U.S. Army Corps of Engineers GLEC Project Number: 5148

GLEC ID	# of Individuals	Species	Individual	Mass (g)	Length (mm)
5024	many	Shiners A	Min	<1	15
			Max	33	120
5018	19	Yellow Perch C	1	132	216
			2	82	178
			3	43	153
			4	25	132
			5	20	118
			6	16	111
			7	15	109
			8	14	109
			9	18	116
			10	14	103
			11	12	103
			12	12	103
			13	10	97
			14	3	68
			15	2	66
			16	3	65
			17	3	70
			18	3	70
			19	2	59
			Average	23	108
			+10% Average	25	118
			-10% Average	20	97
		Samples all within 10%	6 of Average	No	No

U.S. Army Corps of Engineers GLEC Project Number: 5148

	# of				
GLEC ID	Individuals	Species	Individual	Mass (g)	Length (mm)
5010	8	Rock Bass B	1	20	97
			2	14	91
			3	19	97
			4	19	101
			5	23	107
			6	22	104
			7	18	95
			8	18	95
			Average	19	98
			+10% Average	21	108
			-10% Average	17	89
		Samples all within 10% of	Average	No	Yes
5003	10	Small Mouth Bass A	1	30	132
			2	30	135
			3	29	133
			4	35	142
			5	39	141
			6	41	138
			7	40	139
			8	47	151
			9	38	140
			10	64	161
			Average	39	141
			+10% Average	43	155
			-10% Average	35	127
		Samples all within 10% of	Average	No	No
5038	9	Small Mouth Bass D	1	57	156
			2	55	155
			3	63	169
			4	50	149
			5	39	141
			6	35	133
			7	28	124
			8	19	110
			9	16	100
			Average	40	137
			+10% Average	44	151
			-10% Average	36	124
		Samples all within 10% of	Average	No	No

Table 7. Fish Tissue Processing Laboratory Data (continued)
Boulder
Duluth, Minnessota

U.S. Army Corps of Engineers GLEC Project Number: 5148

	# of				
GLEC ID	Individuals	Species	Individual	Mass (g)	Length (mm)
5044	6	Black Crappie A	1	18	95
			2	14	86
			3	18	94
			4	21	99
			5	26	103
			6	25	104
			Average	20	97
			+10% Average	22	107
			-10% Average	18	87
		Samples all within 10% of		No	No
5035	9	Rock Bass A	1	29	108
			2	36	117
			3	23	102
			4	20	96
			5	22	101
			6	28	110
			7	24	103
			8	18	94
			9	19	100
			Average	24	103
			+10% Average	27	114
			-10% Average	22	93
		Samples all within 10% of		No	No
5033	many	Shiners A	Min	<1	18
			Max	24	125
5032	many	Shiners B	Min	<1	39
			Max	12	110
5045	many	Shiners C	Min	<1	9
			Max	32	101
5031	13	Yellow Perch A	1	77	181
			2	64	172
			3	48	156
			4	65	169
			5	16	109
			6	14	107
			7	15	111
			8	14	108
			9	15	106
			10	17	116
			11	15	111
			12	10	97
			13	12	103
			Average	29	127
			+10% Average	32	139
		0 1 11 11 100	-10% Average	26 N	114
		Samples all within 10% of	of Average	No	No

Table 7. Fish Tissue Processing Laboratory Data (continued)
Boulder
Duluth, Minnessota

U.S. Army Corps of Engineers GLEC Project Number: 5148

	# of				
GLEC ID	Individuals	Species	Individual	Mass (g)	Length (mm)
5030	13	Yellow Perch B	1	12	102
			2	46	162
			3	12	107
			4	35	143
			5	18	110
			6	11	96
			7	12	104
			8	11	100
			9	17	109
			10	12	99
			11	14	104
			12	41	147
			13	67	176
			Average	24	120
			+10% Average	26	132
			-10% Average	21	108
		Samples all within 10% of	f Average	No	No
5034	12	Yellow Perch C	1	11	99
			2	12	103
			3	12	104
			4	13	105
			5	14	108
			6	11	99
			7	13	103
			8	12	103
			9	45	154
			10	59	168
			11	47	146
			12	59	171
			Average	26	122
			+10% Average	28	134
			-10% Average	23	110
		Samples all within 10% of	f Average	No	No

APPENDIX F EPA and MCPA Macroinvertebrate COCs and Instructions

N= 14.500

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information.		Section B Required Project Information	Informa	thon:			Section C Invoice Information	Cormation				Sect	Section D EQuiS Information	tion:						
Company		Report To:					Attention					Facili	Facility_Name:		River Sedil	St. Louis River Sediment Areas of Concern	Page		jo	
Address		Copy To: praymaker@baywest.com	aker	abaywe	st.com		Company Name	Name.				Facili	Facility_Code:	St Loui	St Louis River Sed	pa		1		-
		nmcdonald@baywest.com	aywe	st.com			Address					Facil	Facility_ID:				#202	ć	1	
Email To:		Purchase Order No					ab Quote Reference	Reference	Į,			Subf	Subfacility_code	ie.				S	SLK-GLEC-3	7
Phone		Project Name:	SLR	Sedime	SLR Sediment AOCs		ab Project Manager	Manager		Mailee Garton	Sarton							Site Location		
Requested Due Date/TAT:	Standard	Project Number:									1							STATE		Z
		Visita Manda									1	1			Reques	Requested Analysis				
Section E Required Clent Information		Codes MATRIX CODE			Collection	U.		Pre	Preservatives	88		II.		1						
		Orinking Water DW Waste Water W Product WW Sol/Solid P				1												13E 15b	BUILSK-1020	-1020s
Sample Location ID		Oil SO Wipe OL Air WP	(1)	(awd	∃TA	əw	_				(86131	1	(8	(0691)				150	From BU165R-007	J.S. C.
	(sys sample code)		х сор	E TYPE	⁄a	1	Devies				snein)/		31747)/	Mercury				1,5 t	15 to be Collected From Bulls ROSS	65Ro
ŧ МЭТІ		77	ATAM	J4MA2 V90=0)			Unpre	CONH COS ² H	N ^g OH HCl	Metha Ma ₂ S ₂	Other	Lipids	X	Methyl				0 > 0	Comments	ants
Ex. BW15MLW-205	BW14MLW-005-0-0 15	0.0 75	0	6	2/12/15	120a		E										E		
1 BW16SR-001	BW16SR-001-M	>	TS	9	3/4/16-10KM						×	×	×	×				Priority Order 1 Dioxins/Lipi	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg. 3 MeH
2 BW16SR-002	BW16SR-002-M	1	13	0	Welle-Holette		Ē	I SI			×	×	×	×				Priority Order	Priority Order. 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
3 BW16SR-002	BW16SR-002-D	17	TS	g	9/19/16-10/19/16			61			×	×	×	×				Priority 1 Dioxir	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
4 BW16SR-102	BW16SR-102-D	100	S.	O	V19/16-10/1/						×	×	E					Priority 1 Dioxir	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
5 BW16SR-003	BW16SR-003-M	1	TS	o	Hale Polyn						×	×	×	×				Priority 1 Dioxir	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
6 BW16SR-103	BW16SR-103-M	A.	TS	g	Mall tology				121				×	×				Priority 1 Dioxir	Priority Order. 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
7 BW16SR-005	BW16SR-005-D	>	TS	U	3/19/16-10/A				241		×	×	×	×				Priority Order 1 Dioxins/Lipid	Priority Order: 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg. 3 MeH
8 BW16SR-005	BW16SR-005-C	>	T S	9	1/8/11-10/11		= .	E	J.E.		×	×	×	×				Priority 1 Dioxin	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg, 3 MeH
EPATEBRAD 9 EPATEBRAD	EPAIL BRHDWCR.	DWCR5 GR8	20	Je	The Rich Comp	Rendomiten					×	×	×	×				Priority 1 Dioxis	Priority Order 1 Dioxins/Lipids, 2 Hg, 3 MeHg	Hg. 3 MeH
10 EPA168R:HD	EPA16SR-HD-MCRS	RS	20	D D									×	×				Priority	Priority Order 1 Hg. 1 MeHg	. 1 MeHg
11 SPA18-TR:ND	EPA16-TR-HD-MCRS	CRS	22	2	£	Ģ							×	×	Ti			Priority	Priority Order 1 Hg. 1 MeHg	. 1 MeHg
10 EPA16-IR-HD	EPA16-TR-HD-C		15	0	*	Ī							×	×				Priority	Priority Order 1 Hg, 1 MeHg	I. I MeHg
W 1652	-003 BWIG-SK-	003 - D	75	9	1/12/4-1/2/10	ĺ					×	X	×	×	Ē					
Pa	AL COMMENTS		LINGUI	SHED BY	RELINQUISHED BY / AFFILIATION	DATE	TIME			AC	ACCEPTED BY / AFFILIATION	BYIAFE	ILIATION			DATE	TIME	SAMP	SAMPLE CONDITIONS	SNOL
o Sample name extension definition M = Mayfly	90	Am	40	X	BayDest	Modil	hol											1		
D = Phagonfly C = Crayfish MCRS = Macrobenthos																			(N/A)	Cooler
					SAMPLER	SAMPLER NAME AND SIGNATURE	ATURE								1			(o)	on les	(N/A
					PRINT Name of SAMPLER;	of SAMPLER:		H				1							овляс) Apops
					SIGNATURE of SAMPLER:	of SAMPLER:					DAT	E Signe	DATE Signed (MM/DD/YY):	imm					эЯ	ng
											1	1								

N=50+ 19.00

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC)

(Complete and include a minimum of one per cooler) CHAIN OF CUSTODY RECORD

Traverse City, MI 49686 739 Hastings Street

www.glec.com

Phone 231-941-2230 Fax 231-941-2240

Section I.		Section II.		
Submitting Company: EPA 1 Link - Conthrest	Ecol.	D . v. Project Name: S	St. Louis Auc	
Report Results To: Jal Hoffman	Man	Project Number:		
Address: 6201 Cengalin Blad Duloth MA	Dulul MN 55804	74 P.O.#:		
Phone: 218 529 5422	E-mail: Loftme-yor	_	itials Client ESA/MPCA	4
Section III. Sample Information at Collection	Collection			Section IV.
LAB USE	Sample Information	Grab or	Sample Containers	
# GLEC ID# Sample Identification	Date Time Matrix	rix Composite Preservative		Requested Processing/Analysis
1 16-1816-410-003	16.11.14 11.00 HD	0 Coup. 64 14	-	Divx. 1.4 /45 2.9 5
2 16-88-HD-CUI	10-11-10 12 55 H	HO com. ou	14	2.3
3 16-5A. HU-232	11-11-10 11:55 140	-	<i>'</i>	62.00 -
4 1 - 6R. HJ - CO-1	16-11-10 10-46 HD	C 3 . M. 3 .	7	3.9.5
5 10-6K. HO-EUS	16 11 10 10:16 HD	Comp 62	i a	2/3
9				40
Client/Sampler Notes:				
RELEASED BY / ORGANIZATION	NIZATION	DATE TIME		RECEIVED BY / ORGANIZATION DATE TIME
Joe (Ho hue or	EPA DUILLE	11/13/10 12:40 PM	Print Name & O	
Signature De Company			Signature	
Print Name & Organization			Print Name & Organization	
Signature			Signature	
FOR LAB USE ONLY				
Temperature of Samples:	ۍ ا		☐ Received on Wet Ice	☐ Received on Dry Ice
Notes/Anomalies/Discrepancies:				
MATRIX CODES:	S = SEDIMENT W = SURFACE WATE	E = EFFLUENT GW = GROUNDWATER	TER	SL = SLUDGE AO = AOLIATIC OBGANIEM
				AU - AUUATIC URGANISIN

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC)

(Complete and include a minimum of one per cooler) CHAIN OF CUSTODY RECORD

Traverse City, MI 49686

739 Hastings Street

www.glec.com

Phone 231-941-2230 Fax 231-941-2240

Section I.						Section II.							
Submitti	ing Com	Submitting Company 10 Conference	12 EN	Ž	2	Project Name:	ne: ST	Lous	S	A	20		
Report R	Report Results To:	IN LAZORCHO	A		}	Project Number:	nber:						
Address:	200	201 Chadan Blug Dul	S. Dulles	S. 5	NS SS	P.O.#:							
Phone: 513	363	5697076 Saw	Soundary.	Jun &	DEPU,	Sampled by:	initials	Client	M				
Section III.	1000	e Informati	ection			10					Sect	Section IV.	
LAE	LAB USE		Sample Information	Informa	ition	Grab or		Sample Containers	Contair	saec			
# GLE	GLEC ID#	Sample Identification	Date	Time	Matrix (Composite	Matrix Composite Preservative	Type	Size	No.	Requested Pro	Requested Processing/Analysis	515
1 16	16-71	HO-016 142	10/10/		HO	11	156	4.	1		DIOXIA/194	3.49	
1 2 16	16-TR	HO-016292			GH	11) //	See S	/		0 1	2.48	
3 76	16-TR	HD-017"	3.7		11	1,	37			1	11 11	6,19	
1 4 16	16-712	H1)-013/2	11		11	") (/	11 11	0.69	Z
1 5 16	11-71	2/6 610 - OH	1/		χ	11	11	austra	No	/	11 11	1.2 gm	me
1 6 16	16-71	Zh 800 - OH	11		11	11	11		,	1	31	1,69	gar
Client/S	Sample	Client/Sampler Notes: 16_TR-0087/	11 2		11	11	7 //	Joyle	ach,	/	10 70	600	20
		116-11-018	11		11	,,	11			/	11 11	1019	N
		RELEASED BY / ORGANIZATION	NOITN			DATE	TIME		RECEI	VED BY /	RECEIVED BY / ORGANIZATION	DATE	TIME
Print Name & Organization	e & Organi	ization CPA	a but	7		11/13/16	12:339	Print Name & Organization	& Organi	ration			ij
Signature	Les X	4		1		, ,		Signature					
Print Name & Organization	& Organi	cation				1		Print Name & Organization	& Organi;	ration			
Signature								Signature					
FOR LAB USE ONLY Temperature of Sar	S USE OF	FOR LAB USE ONLY Temperature of Samples:	ູ					☐ Received on Wet Ice	ed on V	Net Ice		☐ Received on Dry Ice	
Notes/A.	nomalie	Notes/Anomalies/Discrepancies:					1						
									N				
	Σ	MATRIX CODES:	S = SEDIMENT W = SURFACE WATE	1ENT E WATE		E = EF GW = GRO	E = EFFLUENT GW = GROUNDWATER				AO	SL = SLUDGE AO = AQUATIC ORGANISM	SANISM

V= 6 of 19 jar

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC) CHAIN OF CUSTODY RECORD

Complete and include a minimum of one per cooler)

739 Hastings Street

Phone 231-941-2230 www.glec.com

TIME AO = AQUATIC ORGANISM Fax 231-941-2240 0 Requested Processing/Analysis Q D, 5 SL = SLUDGE DATE ☐ Received on Dry Ice Section IV. Traverse City, MI 49686 RECEIVED BY / ORGANIZATION Dioxed Ch C 17 ☐ Received on Wet Ice Sample Containers rint Name & Organization Print Name & Organization No. Size Client Type Signature Signature Time | Matrix Composite Preservative GW = GROUNDWATER 166 TIME -E = EFFLUENT LA 200 Project Number: Project Name: Sampled by: GLEC. Section II. Grab or 11/11/11 DATE 3 P.O.#; 11 = man. Jackepa Dolo Hyma All 1 Sample Information 1 9:36 01:0 10:35 9.53 0:00 W = SURFACE WATE S = SEDIMENT HOFFMANTIN 0-15-14 JOC Date 6201 Consolan Blub Sample Information at Collection 7 2 RELEASED BY / ORGANIZATION EPA Sample Identification Phone: 218-539-5420 110-005 4 00 -1007 16-5/2 FD, 003 3 16-56-HD -00 WAY WAY lotes/Anomalies/Discrepancies: MATRIX CODES: Report Results To: Joe (emperature of Samples: Client/Sampler Notes: CH Submitting Company: int Name & Organization int Name & Organization OR LAB USE ONLY 1651 16-51 4 16-512 GLEC ID# 6 16-54 LAB USE Section III. Section I. Address: gnature ignature 2

SLR team,

I know last week there were a few emails going back and forth but wanted to make sure everyone was in agreement with the macroinvertebrates (and to make sure I understand). I have attached Mariah's recent spreadsheet and mine for reference. From my understanding of the discussions so far this is what I have:

- 1. 3 Mayfly samples from Scanlon (BW16SR-001-M to 003-M) plus a duplicate (BW16SR103-M) for %lipids, dioxin, MeHg, Total Hg
- 2. 2 Dragonfly samples from Scanlon (BW16SR-002 and 005) plus a duplicate (BW16SR-102) for %lipids, dioxin, MeHg, Total Hg
- 3. 1 Crawfish sample from Scanlon (BW16SR-005-C) for %lipids, dioxin, MeHg, Total Hg
- 4. 1 Macrobenthos from Boulder (EPA16-BR-HD-M) by combining all Boulder Reservoir jars for % lipids, dioxin, and total Hg
- 5. 1 Thomson crawfish (EPA16TR-HD-C) combined and ran for total Hg, and % lipids
- 7 Lumbriculus: (4 from Thomson), (2 from Scanlon) and (1 from Boulder) for %lipids, dioxin, MeHg, Total Hg

Based on the summary above, please see the following questions:

- 1. According to my spreadsheet (macroninvertcollectionsummary), there are 4.5 g from EPA Scanlon Macrobenthos and 5.8 g EPA Thomson Macrobenthos. Is it possible and does anyone have any objections to at least running these samples for % lipids, Total Hg and/or MeHg?
- 2. I do not have it written in my notes, I apologize, but did the group come to the agreement that no snails should be analyzed?
- 3. If the group has finalized the testing numbers, Mariah, how many samples does that leave us with to plan for spring?

Meaghan Kern Great Lakes National Program Office U.S. Environmental Protection Agency 77 W. Jackson Blvd. Chicago, IL 60604

Phone: (312) 353-5784

calcs-fish tissue mod October sampling.xlsx Macroinvertebratecollect ionsummar...716 (1).xlsx

Species bioma: Mayfly Scanlon 39.36 BW16SR-001 39.36 BW16SR-002 40.43 BW16SR-003 51.67	Chail					
39.36 40.43 51.67		Dragonfly	Crawfish Alderfly	Alderfly		Macros (g)
					Scanlon	
	33.8				BW165R-HD-001	1.0
		51.72			BW16SR-HD-007	0.7
					BW16SR-HD-003	1.4
BW16SR-004 NONE					BW165R-HD-004	0.5
BW16SR-005	88	48.4	37		BW16SR-HD-005	6.0
		4				4.5
Thomson NONE					Thomson	
					EPA16-TR-HD-016	2.4
					EPA16-TR-HD-017	0.1
					EPA16-TR-HD-013	9.0
					EPA16-TR-HD-008	1.6
					EPA16-TR-HD-018	1.1
						5.8
					Boulder	
BW16BR-001				6.0	EPA16-BR-HD-001	2.3
BW16BR-002				2.4	EPA16-8R-HD-002	6.2
BW16BR-003					EPA16-BR-HD-003	2.9
					EPA16-BR-HD-004	3.9
					EPA16-BR-HD-005	5.1

0.4

crawfish (g)

9.9

combined for % lipids, total Hg, and dloxin combining for % lipids, and total Hg?

Will be analyzed for Hg, Total Hg, % lipids, and dioxin 7 Lumbriculus samples for Hg, Total Hg, % lipids, and dioxin

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Cotology is a LEGAL DOCUMENT, All referant feets must be considered accounted.

535.77 12

Section A Required Clarat Information	Section of Required P	Regulard Project Information	Sominide	1		ı	Investo information	nation			0	EduiS Intenta	Mich						
Company	Repo	Report To					Attention				Fao.	actify, Name	St Loue	2) Livus River Sed ment Areas at Compute	Comun	Page		7	
Achdresies	Copy To		位のでき	वार्वाचीयाच्या द्वारा अवस्थात	350		Company Name	nte.			,00E	FOURT CODE	Stron	St Louis River Sed			-	5	-
	Juni Duni	emcdonald@baywest.com	VWest.	5000			Adding				Fact	Facility, ID				#000 000#			
Email Fo	Purch	Purchase Order No.	V24.11.1				Lab Quete Reference	appak			14n2	aparté Jorgang	4				īs.	SLR-GLEC-3	
Phone			SLR Se	SLR Sediment AOCs	AOCs		Lat Gray and the same	25. de :	Marled	Marlee Garton	-						Sita Location		l.
Requested Our Date (TAT):	Standard Proje	Project Number															STATE	Z Z	z
-	DINO.	Valid Matrix	-	-						H	$\ \ $	$\ \ $	П	Requested Analysis	313				
Section E Required Commons		Codes			Collection	Uo		Preservatives	sevie										
	Denking Water DW Water Anto v Product W/V Sont Sold P	o o o															322	BUILSK-1070 Tobe colleded	200
Sample Location ID	Sample to war	808	3	(#NC	∃TA	əwi					(80191		(000)				7.50	From BU/LESR-001	SAS SAS
# Matri		826	ODD XIBTAL	30Y1 319WAI D D BARD 6	'a	1	1'20' Jubreserved LOF CONTAL	ICI INO ²	HOel O.S.cl tonsdleh	19th(spid Sueify/suixoi	HZIZ) Amaisi	opply Weich				from 0 × 0	rs tobe Coll From Bullss as a DUP.	Jolle Las GSR 003
EL BRISACAHIN	BW14242-005-0-015		1		6.8	4704			1		+		3					Comments	2
1 BV7165R-001	BW16SR-001-M	\	ly.	200	21.9h . 121.11					I	×	×	×				Princitly Older	Priority Order.	3 Modes
2 B***165R-002	BW16\$R-002-M	1	TS	W 0	Phill while						×		×				Prenty Gray 1 Downship	Preuty Grav. 1 Downstapde, 2 Hg. 3 NeHg	3 Werkg
3 BW165R-602	BW165R-002-D -	?	ž:	0 9//	Virtue - 10/L/T						×	×	×				Priority Order T Districtup	Prody Order T Downs Upds, 2 Hg. 3 MeHg	3 Kroke
■ BW165R-102	BW16SR-102-D	ě	93	0							×	7 1					Pronty Order 1 Decembring	Pronfy Order 1 Doesnay Johns, 2 Hg, 3 MoHg	3 MeHa
\$ BW185R-003	BW16SR-003-M	1	မှု	0	York KILLIC						×	×	×				Pronty 1 Oscar	Pronty Onger 1 Oxemscapeda, 2 kg, 3 MeHg	3 MeHg
6 BW 65R-103	BW16SR-103-M	3	22	0 5	Plate soluti							×	×				Pricrity 1 Deann	Pricing Order 1 Deams Japeds 2 Hg, 3 MinHg	3 NoHg
7 8071658-005	BW16SR-005-D		in in	0 3/	Shalle the A						×	×	×				Percent, Ordon	Priority Order 1 Downstapets, 2 Hp. 3 Geltg	3 faeting
8 BW1658-300	BW165R-005-C			0							×	×	×				Priority 1 Cymra	P. cotty Order I Community 2 8 9, 3 Modes	3.15449
EPATE-BEAD	EPATIC BRANCHED CENTRE EPATIC BRANCHED MORE		<u> </u>	5		Agus Sum Hers					×	ж	×				Priority Order 1 Octobring	Priority Order Desiry Lupds: 2 Hg, 3 MeHg	3 Mores
10 EPA16887FD	EPA16SR-HD-MCRS		2	*	ź							ж	×				Paorite	Pasent, Order 1 Hg 1 Modę	Mork
11 SPAIGHRAND	EPA16-1R-HD-MCRS		2	14 F								ж	×				Piont	Piort, Order 1 Hg, 1 Mertin	Merig
10 EPAIGIR-HD	EPATE-TR-HD-C		ia.	100	x							ж	×				Pronty	Pronty Order 1 Hg, 1 MeHg	SHOP
11 BW 1652-003	-003 BW16-5K-003	0	75	1/6 5	7/18 16-1-/C/lu						^ ×	X	×						
ADDITIONA	L COMMENTS	RELI	RSINDNI	NEO BY	RELINQUISHED BY / AFFILIATION	DATE	Table			CCEPTE	ACCEPTED BY / AFFILIATION	RIATION		DATE		THE	SAMP	SAMPLE CONDITIONS	N.S.
Samples Harme avitantican definition	4	Am	1	F	#/bay/Vest	11/09/1	lhol								+				
D Color y CREATER MARKETON	1_1																	1	{#1
10					SAMPLER	FR NAME AND SIGNATURE	AAY UDE										t a	itheal e	(a) (a)
					PRINT Hamm	PRINT Name of SAMPLER:													_
					SIGNATURE	SIGNATURE of SAMPLER:				6	DATE Signed (MILIDDONY):	d (Multipo	1AU					_	m.2

V= 60 of 19 10

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC) CHAIN OF CUSTODY RECORD

(Complete and include a minimum of one per cooler)

739 Hastings Street

Traverse City, MI 49686

Phone 231-941-2230 Fax 231-941-2240 www.glec.com

TIME AO = AQUATIC ORGANISM 10 a Requested Processing/Analysis しかり SL = SLUDGE 0 DATE Ö C Received on Dry Ice Section IV. ~ Sample Bull 5R-HD RECEIVED BY / ORGANIZATION Doxes 200 ý 7 Received on Wet Ice Sample Containers int Name & Organization hint Name & Organization Type Size No. Client Signature Signature Time Matrix Composite Preservative initials (7-1 FICE. GW = GROUNDWATER 166 TIME) * -E = EFFLUENT L4 2000 Project Number. Project Name: Sampled by: Section II. 11/11/16 Grab or DATE Š P.O.#: ? --Howan Jackepa Dule Hyman 9 Sample Information -٦ 1 2-15-16 9:36 01.0 9.53 10.33 8.0 W = SURFACE WATE Samples S = SEDIMENT HOFF Mand Jim Date ç Consolar 15/10 Sample Information at Collection) / \exists -RELEASED BY / ORGANIZATION EP.1 Sample Identification Phone: 3 (8-539-5420 H1)-005 an €. 140-008 2 16-5/4 HU-003 16-58 HD-007 00 dif 4.82 3 14-50-HD -00 lotes/Anomalies/Discrepancies: MATRIX CODES: Report Results To: Tree emperature of Samples: Client/Sampler Notes: 1970 CI Submitting Company: rint Name & Organization OR LAB USE ONLY 16-51 5 1650 6 16-54 GLEC ID# LAB USE Section III. Section 1. Address: gnature gnature 4

Total Mercury methyl mercury

order 7 Lipids

Fest America analysis

Composit

N: 8 of 19 jers

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC)

CHAIN OF CUSTODY RECORD

Traverse City, MI 49686 739 Hastings Street (Complete and include a minimum of one per cooler)

Phone 231-941-2230 Fax 231-941-2240 www.glec.com

Š	Section I.	G. C.			S	Section II.						
Sub	mitting Col	Submitting Sampanyi & Confirmed	1 EN	Dic) p	Project Name:		STLOUS	1	中のへ		
Rep	Report Results To:	IN LAZORChu	A	(3	Project Number:	ber:					
Ade	Address:	6301 Conadan BUD	Sheet	AL MO	Ď	P.O.#:						
Phc	Phone: 513	547076 Soundant	No. 1	Jun GEM	-	Sampled by:	initials	Client				
Š	Section III.	Sample Information at Collection			J	10				S	Section IV.	
	LAB USE		Sample	Sample Information	ou	Grab or		Sample Containers	ntainers			
#	GLEC ID#	Sample Identification	Date	Time A	Aatrix (C	omposite	Time Matrix Composite Preservative	Type Size	.oN	Requested	Requested Processing/Analysis	nalysis
П,	16-71	140-016 142	1 chille	f	HO	13	150		1	Dioxia/14	4 3.US	ck.
77	16-TR	,		7	GH	11))/	1220	1	11 11	2.49	ch
m	16-TR) 1		11	,,	17		1	1 11	810 11	4
4	16-72	HO-013/2	11		11	11) (/	, , , , ,	0	0.69M
ĽŊ,	16-77	HO-01372	1,		2	17	17	arfeet		1 11	11 1.2	2 gm
0	8/16-7/2	HO -008 1/2	22	7	11	11	11		/	, ,,	01/ 116	San
Ü	int/Sampl	Client/Sampler Notes: 16_TR-0087/	2 11	`) (11	11.	Soften	1	11	0.0	
		116-71-018	11		11	, ,	3 /		/	21 /	10/1	ng.
		RELEASED BY / ORGANIZATION	NON			DATE	TIME		RECEIVED BY	RECEIVED BY / ORGANIZATION	70	DATE TIME
Print	Print Name & Organization	swizatog.	1 Dulut	1.5	_	11/11/11	12:00:50	Print Name & Organization	rganizatıon			
Sign	Signature							Signature				
Print	Print Name & Organization	notion						Print Name & Organization	rganitation			
Sign	Signature							Signature				
FO	FOR LAB USE ONLY Temperature of Sar	FOR LAB USE ONLY Temperature of Samples:	, ,					☐ Received on Wet Ice	on Wet Ic		☐ Received on Dry Ice	o
No	es/Anomal	Notes/Anomalies/Discrepancies:										
		MATRIX CODES:	S = SEDIMENT W = SURFACE WATE	ENT		E = EFFLUENT GW = GROUNDWATER	LUENT				SL = SLUDGE AO = AQUATIC ORGANISM	UDGE CORGANISM
	J-M-C	GUEC Leb Composite	1	Samp	solos	the state	320	Sample		EPA 16 T	RHD.	E
					7	di	TA an	TA analysis order	· {	90 40.00	- +otal	mercury
	,		•		,			1	+	9	<	

EPA 16 TR HD

N= 8 of 19 jers

GREAT LAKES ENVIRONMENTAL CENTER, INC. (GLEC)

CHAIN OF CUSTODY RECORD

Traverse City, MI 49686 739 Hastings Street (Complete and include a minimum of one per cooler)

www.glec.com

Phone 231-941-2230 Fax 231-941-2240

Ă	Section I.				Section 11.						Г
Su	bmitting	Submitting Company, O Cuticue	and Earl Die)	Project Name:		Lous	4	70		
Re	Report Results To:	747	d		Project Number:	<u>:</u>	1				T
Ad	dress:	3	S. Duduille is	NO.	P.O.#:						1
P.	Phone; 513	5277076 20	In Chall I'm DEM		Sampled by:	initials	Client				
Š	Section III.	Sample information at C			100	(Se	Section IV.	
_			Sample Information	ation	Grab or		Sample Containers	tainers	C Production of	and the second s	T
#	GLEC ID#	ID# Sample Identification	Date Time	_	Matrix (Composite Preservative	Preservative	Type Size	No.	naleanhau	requested Fracessing/Analysis	
\ \-\	16-71		1 delas	HO	1)	100		in	Dioxia/14	3.49	
2	16-TR	-		GH	11	1	Cont.	1	11 11	2.49	
3	16-TR	140-01	4 6	11	11	1.7		/	11 11	41.0	
4	16-7/2	12 HI)-013/2	1/	17	"	31		/	1 11	1. 0.69n	
2	16.7P	12 HO -013 HZ	14	2)	11	11	Justin	,	11 27	1.2gm	
2	16-71	12 HO - 008 42	3.2	17	11	11		-	11 16	1,6 gray	
2	ent/San	Client/Sampler Notes: 16_TR-008 7/	1, 2) (2	1,1	Derback	\	18 78	100 gas	
		116-71-018	11	11	1.4	37		\	11 10	1.1 Pm	
		RELEASED BY / ORGANIZATION	ATION		DATE	TIME	æ	ECENTED BY	RECEIVED BY / ORGANIZATION	DATE TIME	#1
Pri	HName &	Print Name & Organization.	PA DULLAR		11/15/14	12:53860	Print Name & Organization	ganizatron			
§ /	Signature	1					Signature				
Prir	It Name & (Print Name & Organization					Print Name & Organization	ganization			
7.0	Signature						Signature				
5	FOR LAB USE ONLY	SE ONLY	:								
No Te	mperatu tes/Anor	Temperature of Samples: Notes/Anomalies/Discrepancies:	ပ္				☐ Received on Wet Ice	on Wet Ice		☐ Received on Dry Ice	
		MATRIX CODES:	S = SEDIMENT W = SURFACE WATE	.	E = EFF GW = GROU	E = EFFLUENT GW = GROUNDWATER			A	St = Studge AO = AQUATIC ORGANISM	
	5275	c Leb composite	c de samp	mples	t/s	350	Sample		EPA/6 TO	18 HB	2
			_ ,	w) 1	<i>∞</i> _	T& a	TA analys,5 order	l,	150	101st mercal	OC
)	はに	WIFE IND COMPOSITE	4 6	7	- X	W. 18	5 ala .	TO416	10 10 FJ	10 1	j.

APPENDIX G

Scanlon Reservoir Fish Samples Analytical Results Summary Table

		MN16+SR-NP-A	MN16+SR-NP-A	MN16+SR-GSH-A	MN16+SR-SMB-A	MN16+SR-SMB-B	MN16+SR-SMB-C	MN16+SR-WAL-A	MN16+SR-WS-A	MN16+SR-WS-B	MN16+SR-WS-C	MN16+SR+YP-A	MN16 + SR + YP - B	MN16+SR+YP-C
Fish		Northern Pike	Northern Pike	Shiner Mix	Smallmouth Bass	Smallmouth Bass	Smallmouth Bass	Walleye	White Sucker	White Sucker	White Sucker	Yellow Perch	Yellow Perch	Yellow Perch
GLEC Lab ID		5019	5019	5024	5001	5002	5021	5023	5022	5017	5016	5025	5020	5018
Weight Homoginized	mg	827	827	61	1721	1338	858	620	2543	2120	2389	500	315	432
Weights within 10% of Avera	age	No	No	NA	Yes	No	No	No	No	No	Yes	No	No	No
Lengths within 10% of Avera	age	Yes	Yes	NA	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	No
Test America Lab ID		180-60837-14	180-60837-15	180-60852-1	180-60837-17	180-60852-2	180-60837-18	180-60837-16	180-60837-19	180-60837-20	180-60837-13	180-60852-3	180-60852-4	180-60837-21
Total Mercury	mg/kg	0.12 J	0.13	0.054 J	0.22	0.2	0.071 J	0.12 J	0.075 J	0.067 J	0.083 J	0.086 J	0.079 J	0.092 J
Methyl Mercury	μg/kg	100	110	41	230	170	110	110	96	58	95	89	98	74
% Lipids	%	0.14	0.16	0.55	1.3	1.1	1.1	0.37	3.1	1.3	1.8	0.72	0.56	0.40
1998 WHO FISH TEQ ND=F	EDL	0.32	0.26	0.18	0.85	0.78	0.58	0.37	1.0	0.48	0.68	0.28	0.52	0.45
2005 WHO HUMAN TEQ N	ND=0	0.30	0.22	0.10	0.81	0.73	0.56	0.32	1.0	0.47	0.68	0.25	0.51	0.45
2,3,7,8-TCDD	pg/g	0.058 J	0.084 Q J	0.051 Q J	0.24 Q J	0.27 Q J	0.15 Q J	0.078 Q J	0.11 Q J	0.13 J	0.20 Q J	0.030 U	0.12 Q J	0.081 Q J
Total TCDD	pg/g	0.078 Q J	0.084 Q J	0.051 Q J	0.24 Q J	0.27 Q J	0.15 Q J	0.14 Q J	0.27 Q J	0.18 Q J	0.20 Q J	0.030 U	0.15 Q J	0.081 Q J
1,2,3,7,8-PeCDD	pg/g	0.18 QBJ	0.095 QBJ	0.035 U	0.40 QBJ	0.25 B Q J	0.25 QBJ	0.21 B J	0.41 QBJ	0.23 Q B J	0.28 QBJ	0.12 B J	0.16 Q B J	0.23 QBJ
Total PeCDD	pg/g	0.18 QBJ	0.095 QBJ	0.035 U	0.40 QBJ	0.25 B Q J	0.25 QBJ	0.21 B J	1.0 J Q B	0.49 Q J B	0.28 QBJ	0.18 QЈВ	0.16 QBJ	0.23 QBJ
1,2,3,4,7,8-HxCDD	pg/g	0.027 U	0.042 U	0.045 U	0.035 U	0.026 U	0.031 U	0.035 U	0.16 Q J	0.042 U	0.051 U	0.052 U	0.031 U	0.038 U
1,2,3,6,7,8-HxCDD	pg/g	0.11 J	0.040 U	0.047 U	0.22 Q J	0.20 J	0.20 J	0.037 U	0.63 J	0.22 Q J	0.61 J	0.38 J	0.35 Q J	0.37 J
1,2,3,7,8,9-HxCDD	pg/g	0.025 U	0.038 U	0.043 U	0.031 U	0.025 U	0.030 U	0.034 U	0.030 U	0.041 U	0.049 U	0.19 J	0.029 U	0.13 Q J
Total HxCDD	pg/g	0.11 J	0.040 U	0.045 U	0.22 Q J	0.20 J	0.20 J	0.035 U	1.4 J Q	0.22 Q J	1.2 Q J	0.58 J	0.35 Q J	0.50 Q J
1,2,3,4,6,7,8-HpCDD	pg/g	0.039 U	0.045 U	0.24 QBJ	0.058 U	0.042 U	0.056 U	0.17 QBJ	0.75 Q B J	0.72 B J	0.67 QBJ	0.69 B J	0.59 QBJ	0.82 B J
Total HpCDD	pg/g	0.11 Q J	0.045 U	0.24 QBJ	0.058 U	0.042 U	0.056 U	0.17 QBJ	1.2 Q J B	1.2 Q J B	1.1 QJB	0.69 B J	0.59 QBJ	0.82 B J
OCDD	pg/g	0.57 B J	0.73 QBJ	0.97 B J	0.75 QBJ	0.95 B J	1.0 B J	1.0 QBJ	3.6 Q B J	3.6 B J	3.1 B J	1.7 B J	2.2 B J	2.4 B J
2,3,7,8-TCDF	pg/g	0.16 Q J	0.098 Q J	0.15 Q J	0.33 Q J	0.18 Q J	0.32 J	0.043 U	1.5 Q	0.46 J	0.44 Q J	0.085 Q J	0.18 Q J	0.15 J
Total TCDF	pg/g	14 Q	13 Q	5.3 Q	31 Q	44 Q	48 Q	8.4 Q	75 Q	6.8 Q	2.3 Q	7.3 Q	37 Q	26 Q
1,2,3,7,8-PeCDF	pg/g	0.028 U	0.031 U	0.037 U	0.042 U	0.036 U	0.041 U	0.032 U	0.047 U	0.035 U	0.027 U	0.049 U	0.042 U	0.040 U
2,3,4,7,8-PeCDF	pg/g	0.023 U	0.030 U	0.034 U	0.22 Q J	0.27 J	0.040 U	0.031 U	0.37 J	0.035 U	0.19 J	0.046 U	0.15 Q J	0.038 U
Total PeCDF	pg/g	1.3 J Q	1.4 J Q	0.26 Q J	4.2 Q J	20 Q	8.8 Q	1.2 Q J	14 Q	0.88 Q J	0.58 Q J	4.0 J Q	6.2 J Q	3.4 J Q
1,2,3,4,7,8-HxCDF	pg/g	0.026 U	0.033 U	0.30 Q J	0.035 U	0.029 U	0.039 U	0.046 U	0.2 Q J	0.056 U	0.18 Q J	0.17 J	0.22 Q J	0.036 U
1,2,3,6,7,8-HxCDF	pg/g	0.34 QBJ	0.26 QBJ	0.063 U	0.47 QBJ	0.92 QBJ	1.1 QBJ	0.26 QBJ	1.2 Q B J	0.22 Q B J	0.052 U	0.34 QBJ	1.0 QBJ	0.59 QBJ
2,3,4,6,7,8-HxCDF	pg/g	0.024 U	0.031 U	0.045 U	0.035 U	0.028 U	0.042 U	0.032 U	0.037 U	0.041 U	0.029 U	0.050 U	0.039 U	0.039 U
1,2,3,7,8,9-HxCDF	pg/g	0.030 U	0.040 U	0.053 U	0.047 U	0.033 U	0.051 U	0.043 U	0.048 U	0.052 U	0.035 U	0.069 U	0.049 U	0.051 U
Total HxCDF	pg/g	1.3 J Q B	1.0 QJB	0.64 Q J	4.2 J Q B	6.3 QJB	7.7 QJB	1.8 JQB	16 QB	2.5 J Q B	3.1 J Q	4.8 J Q B	8.4 J Q B	5.6 J Q B
1,2,3,4,6,7,8-HpCDF	pg/g	0.08 QBJ	0.028 U	0.17 QBJ	0.21 Q B J	0.18 QBJ	0.035 U	0.33 QBJ	1.4 B J	1.1 QBJ	1.5 B J	0.86 QBJ	0.60 B J	0.89 B J
1,2,3,4,7,8,9-HpCDF	pg/g	0.056 QBJ	0.039 U	0.038 U	0.043 U	0.031 U	0.043 U	0.039 U	0.044 U	0.038 U	0.033 U	0.062 U	0.042 U	0.043 U
Total HpCDF	pg/g	0.14 QBJ	0.032 U	0.17 QBJ	0.21 Q B J	0.18 QBJ	0.039 U	0.58 QJB	2.2 Q J B	1.9 J Q B	2.6 QJB	1.1 QJB	0.77 JB	1.2 QJB
OCDF	pg/g	0.15 B J	0.049 QBJ	0.28 QBJ	0.22 B J	0.12 QBJ	0.024 U	0.16 B J	0.37 B J	0.31 QBJ	0.38 B J	0.38 B J	0.28 B J	0.19 QBJ

*Results are on an as-received (wet-weight) basis, and have not been corrected for dry weight or % lipids.

App G Scanlon Lab Summary Table.xlsx Page 1 of 1

B - The analyte is present in the associated method blank at a detectable level. J - The reported result is an estimata

Q - Estimated maximum possible concentration.
U - Not detected
TEQ calculated with non-detect values (U) being 0

APPENDIX H

Thomson Reservoir Fish Samples Analytical Results Summary Table

DULUTH RESERVOIRS (SCANLON, THOMSON, AND BOULDER) DULUTH MINNESOTA 2016 TISSUE ANALYSIS

Sample ID		MN16+TR-NP-A	MN16+TR-RB-A	MN16+TR-RB-B	MN16+TR-SMB-A	MN16+TR-SMB-B	MN16+TR-SMB-C	MN16+TR-SMB-D	MN16+TR-WAL-A	MN16+TR-WS-A	MN16+TR-WS-A DUP	MN16+TR-WS-B	MN16+TR-WS-C	MN16+TR+YP-A	MN16+TR+YP-A Dup	MN16+TR+YP-B
Fish		Northern Pike	Rock Bass	Rock Bass	Smallmouth Bass	Smallmouth Bass	Smallmouth Bass	Smallmouth Bass	Walleye	White Sucker	White Sucker	White Sucker	White Sucker	Yellow Perch	Yellow Perch	Yellow Perch
GLEC Lab ID		5006	5009	5010	5003	5036	5004	5038	5007	5011	5011	5015	5014	5005	5005	5008
Weight Homoginized	mg	639	250	150	394	2245	3038	3358	932	3412	3412	2708	2321	859	859	781
Weights within 10% of A	Average	No	No	No	No	Yes	Yes	No	No	Yes	Yes	No	Yes	No	No	No
Lengths within 10% of A	Average	Yes	No	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Test America Lab ID		180-60837-7	180-60837-3	180-60593-16	180-60837-4	180-60837-5	180-60837-6	180-60593-17	180-60593-15	180-60837-11	180-60837-12	180-60837-1	180-60837-2	180-60837-8	180-60837-9	180-60837-10
Total Mercury	mg/kg	0.066 J	0.11 J	0.049 JB	0.078 J	0.17	0.22	0.1 JB	0.17 B	0.12 J	0.12 J	0.086 J	0.1 J	0.085 J	0.083 J	0.053 J
Methyl Mercury	μg/kg	78	92	83	70	140	220	99	200	110	110	94	110	74	73	49
% Lipids	%	0.071 J	0.48	0.96	0.73	1.3	1.1	1.3	0.6	3.1	3.6	2.7	2.2	1.8	2.2	1.1
1998 WHO FISH TEQ N	ND=EDL	0.28	0.31	0.25	0.26	0.56	0.77	0.24	0.42	1.1	0.84	0.36	0.73	0.46	0.48	0.74
2005 WHO HUMAN TE	EQ ND=0	0.27	0.28	0.029	0.18	0.50	0.65	0.016	0.32	1.1	0.82	0.35	0.69	0.46	0.48	0.77
2,3,7,8-TCDD	pg/g	0.074 QJ	0.056 Q J	0.039 U	0.046 U	0.11 Q J	0.14 Q J	0.038 U	0.043 U	0.26 Q J	0.19 Q J	0.051 Q J	0.20 Q J	0.045 Q J	0.083 Q J	0.14 Q J
Total TCDD	pg/g	0.074 QJ	0.056 Q J	0.039 U	0.15 QJB	0.11 Q J	0.26 B Q J	0.038 U	0.043 U	0.54 Q J	0.49 Q J	0.051 Q J	0.32 Q J	0.12 QJB	0.083 Q J	0.14 Q J
1,2,3,7,8-PeCDD	pg/g	0.084 QJ	0.17 Q J	0.034 U	0.063 Q J	0.30 Q J	0.29 Q J	0.050 U	0.18 Q J	0.41 Q J	0.27 QBJ	0.18 Q J	0.20 Q J	0.14 Q J	0.19 J	0.35 J
Total PeCDD	pg/g	0.084 QJ	0.17 Q J	0.034 U	0.063 Q J	0.30 Q J	0.29 Q J	0.050 U	0.18 Q J	0.73 Q J	0.72 QJB	0.45 Q J	0.20 Q J	0.18 Q J	0.19 J	0.35 J
1,2,3,4,7,8-HxCDD	pg/g	0.026 U	0.025 U	0.097 U	0.025 U	0.031 U	0.037 U	0.083 U	0.070 U	0.11 Q J	0.11 Q J	0.049 U	0.048 U	0.031 U	0.032 U	0.028 U
1,2,3,6,7,8-HxCDD	pg/g	0.11 Q J	0.063 Q J	0.110 U	0.12 J	0.035 U	0.31 J	0.084 U	0.26 J	0.55 Q J	0.50 J	0.23 Q J	0.41 J	0.42 Q J	0.36 Q J	0.40 Q J
1,2,3,7,8,9-HxCDD	pg/g	0.026 U	0.024 U	0.096 U	0.023 U	0.031 U	0.037 U	0.078 U	0.067 U	0.027 U	0.031 U	0.047 U	0.047 U	0.12 J	0.12 Q J	0.18 J
Total HxCDD	pg/g	0.11 Q J	0.063 Q J	0.100 U	0.12 J	0.032 U	0.31 J	0.082 U	0.26 J	0.92 Q J	0.61 Q J	0.23 Q J	0.41 J	0.54 J Q	0.49 Q J	0.58 J Q
1,2,3,4,6,7,8-HpCDD	pg/g	0.19 QJ	0.11 Q J	0.110 U	0.061 U	0.068 U	0.062 U	0.120 U	0.098 U	0.60 Q J	0.59 QBJ	0.23 Q J	0.43 Q J	1.3 J	1.2 J	1.1 J
Total HpCDD	pg/g	0.19 Q J	0.19 Q J	0.110 U	0.20 Q J	0.068 U	0.062 U	0.120 U	0.098 U	0.76 J Q	0.76 QJB	0.52 Q J	0.68 Q J	1.3 J	1.3 Q J	1.4 J
OCDD	pg/g	1.1 B J	0.42 QBJ	1.3 B J	2.2 QBJ	0.44 QBJ	1.1 B J	0.76 QBJ	0.92 B J	2.1 B J	1.3 QBJ	1.7 B J	1.9 B J	2.8 B J	2.7 QBJ	3.1 B J
2,3,7,8-TCDF	pg/g	0.28 Q J	0.12 J	0.24 J	0.15 J	0.061 Q J	0.24 J	0.054 U	0.082 Q J	0.96 J	0.94 J	0.62 J	0.61 Q J	0.17 Q J	0.15 Q J	0.42 J
Total TCDF	pg/g	13 Q	13 Q	0.54 Q J	15 Q	5.4 Q	5.3 Q	0.64 J Q	25 Q	40 Q	38 Q	6.2 Q	6.5 Q	20 Q	2.6 Q	21 Q
1,2,3,7,8-PeCDF	pg/g	0.027 U	0.037 U	0.038 U	0.039 U	0.032 U	0.17 Q J	0.044 U	0.053 U	0.035 U	0.12 Q J	0.048 U	0.063 U	0.041 U	0.062 Q J	0.032 U
2,3,4,7,8-PeCDF	pg/g	0.025 U	0.035 U	0.037 U	0.14 Q J	0.16 Q J	0.54 J	0.052 Q J	0.054 U	0.36 J	0.34 J	0.047 U	0.36 J	0.17 Q J	0.18 J	0.15 Q J
Total PeCDF	pg/g	3.5 JQ	1.6 J Q	0.037 U	3.7 Q J	0.96 Q J	1.7 Q J	0.15 Q J	6.2 J Q	5.2 J Q	5.4 Q J	0.27 Q J	1.7 Q J	3.9 J Q	0.55 Q J	4.4 J Q
1,2,3,4,7,8-HxCDF	pg/g	0.030 U	0.033 U	0.350 U	0.038 U	0.034 U	0.066 U	0.290 U	0.097 U	0.18 Q J	0.15 Q J	0.059 U	0.39 Q J	0.045 U	0.048 U	0.19 Q J
1,2,3,6,7,8-HxCDF	pg/g	0.71 QJ	0.31 Q J	0.460 U	0.48 Q J	0.34 J	0.070 U	0.330 U	0.98 B J	0.89 Q J	0.69 QBJ	0.21 Q J	0.34 Q J	1.3 Q J	0.50 J	0.92 Q J
2,3,4,6,7,8-HxCDF	pg/g	0.025 U	0.034 U	0.050 U	0.042 U	0.035 U	0.043 U	0.057 U	0.057 U	0.028 U	0.026 U	0.044 U	0.050 U	0.043 U	0.093 Q J	0.031 U
1,2,3,7,8,9-HxCDF	pg/g	0.029 U	0.042 U	0.063 U	0.052 U	0.048 U	0.055 U	0.067 U	0.075 U	0.034 U	0.035 U	0.046 U	0.066 U	0.053 U	0.036 U	0.040 U
Total HxCDF	pg/g	4.5 Q J	2.3 J Q	0.69 Q J	4.2 Q J	1.5 J Q	1.4 Q J	0.100 U	6.2 JQB	8.3 Q J	6.8 QJB	2.0 Q J	3.4 J Q	9.1 J Q	4.4 J Q	8.2 Q J
1,2,3,4,6,7,8-HpCDF	pg/g	0.031 U	0.23 QBJ	0.44 QBJ	0.037 U	0.020 U	0.075 U	0.170 U	0.27 QBJ	0.74 B J	0.68 B J	0.58 B J	0.47 QBJ	1.2 QBJ	1.2 QBJ	1.1 B J
1,2,3,4,7,8,9-HpCDF	pg/g	0.034 U	0.043 U	0.051 U	0.048 U	0.029 U	0.062 U	0.054 U	0.086 U	0.031 U	0.035 U	0.053 U	0.048 U	0.056 U	0.045 U	0.029 U
Total HpCDF	pg/g	0.032 U	0.23 QBJ	0.44 QBJ	0.042 U	0.024 U	0.068 U	0.080 U	0.27 QBJ	1.1 QJB	1.0 QJB	0.93 QJB	0.84 QJB	1.4 QJB	1.4 QJB	1.4 QJB
OCDF	pg/g	0.039 J	0.037 Q J	0.12 QBJ	0.0093 U	0.031 Q J	0.032 Q J	0.045 U	0.25 QBJ	0.20 J	0.14 B J	0.13 Q J	0.32 J	0.065 J	0.08 Q J	0.17 Q J

*Results are on an as-received (wet-weight) basis, and have not been corrected for dry weight or % lipids.

App H Thomson Lab Summary Table.xlsx Page 1 of 1

B - The analyte is present in the associated method blank at a detectable level. $\label{eq:J-the} \textbf{J} - \text{The reported result is an estimata}$

Q - Estimated maximum possible concentration.

U - Not detected

TEQ calculated with non-detect values (U) being ND=0

APPENDIX I

Boulder Lake Reservoir Fish Samples Analytical Results Summary Table

Sample ID		MN16+BR+BLC-A	MN16+BR+RB-A	MN16+BR+GSH-A	MN16+BR+GSH-B	MN16+BR+GSH-C	MN16+BR+WAL-A	MN16+BR+WAL-A	MN16+BR-WAL-B	MN16+BR+WAL-C	MN16+BR+WS-A	MN16+BR+WS-B	MN16+BR+WS-C	MN16+BR+YP-A	MN16+BR+YP-B	MN16+BR+YP-C
Fish		Black Crappie	Rock Bass	Shiner Mix	Shiner Mix	Shiner Mix	Walleye	Walleye	Walleye	Walleye	White Sucker	White Sucker	White Sucker	Yellow Perch	Yellow Perch	Yellow Perch
Lab ID		5044	5035	5033	5032	5045	5041	5041	5042	5043	5027	5029	5028	5031	5030	5034
Weight Homoginized	mg	116	368	152	152	163	1819	424	370	370	1847	3002	4390	378	311	304
Weights within 10% of	Average	No	No	NA	NA	NA	Yes	Yes	No	Yes	No	No	No	No	No	No
Lengths within 10% of	Average	No	No	NA	NA	NA	Yes	Yes	No	Yes	No	No	Yes	No	No	No
Test America Lab ID		180-60593-2	180-60593-1	180-60593-6	180-60593-7	180-60593-8	180-60593-9	180-60593-20	180-60593-14	180-60593-10	180-60593-12	180-60593-11	180-60593-13	180-60593-3	180-60593-4	180-60593-5
Methyl Mercury	μg/kg	53	76	62	65	62	140	140	120	130	57	81	110	56	54	65
Total Mercury	mg/kg	0.068 JB	0.077 JB	0.064 JB	0.071 JB	0.068 JB	0.13 JB	0.12 JB	0.098 JB	0.11 JB	0.056 JB	0.071 JB	0.051 JB	0.073 JB	0.068 JB	0.077 JB
% Lipids	%	1.0	1.2	1.8	1.5	2.0	2.0	2.0	0.28	0.27	2.2	2.5	3.5	0.52	0.27	0.45
1998 WHO FISH TEQ	ND=EDL	0.10	0.13	0.11	0.13	0.084	0.2	0.20	0.11	0.11	0.22	0.22	0.14	0.14	0.14	0.098
2005 WHO HUMAN T	EQ ND=0	0.00015	0.0002	0.00086	0.018	0.00012	0.17	0.028	0.0045	0.000075	0.16	0.11	0.018	0.035	0.00016	0.000066
2,3,7,8-TCDD	pg/g	0.026 U	0.037 U	0.031 U	0.037 U	0.016 U	0.046 J	0.033 U	0.032 U	0.027 U	0.028 U	0.029 U	0.033 U	0.024 U	0.038 U	0.027 U
Total TCDD	pg/g	0.026 U	0.037 U	0.031 U	0.037 U	0.04 Q B J	0.091 J	0.047 J	0.032 U	0.027 U	0.036 Q J	0.029 U	0.068 Q J	0.024 U	0.048 Q J	0.027 U
1,2,3,7,8-PeCDD	pg/g	0.022 U	0.026 U	0.023 U	0.029 U	0.023 U	0.086 Q J	0.049 U	0.029 U	0.025 U	0.12 Q J	0.11 Q J	0.037 U	0.029 U	0.032 U	0.024 U
Total PeCDD	pg/g	0.022 U	0.026 U	0.023 U	0.11 Q J	0.023 U	0.086 Q J	0.049 U	0.093 Q J	0.025 U	0.33 J Q	0.30 Q J	0.89 Q J	0.029 U	0.032 U	0.024 U
1,2,3,4,7,8-HxCDD	pg/g	0.034 U	0.042 U	0.040 U	0.038 U	0.029 U	0.035 U	0.059 U	0.037 U	0.034 U	0.033 U	0.040 U	0.034 U	0.034 U	0.049 U	0.032 U
1,2,3,6,7,8-HxCDD	pg/g	0.031 U	0.042 U	0.043 U	0.037 U	0.030 U	0.038 U	0.067 U	0.039 U	0.035 U	0.099 Q J	0.042 U	0.034 U	0.033 U	0.051 U	0.032 U
1,2,3,7,8,9-HxCDD	pg/g	0.030 U	0.039 U	0.039 U	0.15 J	0.028 U	0.034 U	0.058 U	0.035 U	0.032 U	0.030 U	0.038 U	0.032 U	0.031 U	0.047 U	0.030 U
Total HxCDD	pg/g	0.032 U	0.041 U	0.040 U	0.15 J	0.029 U	0.035 U	0.061 U	1.2 J	0.034 U	0.099 Q J	0.040 U	0.033 U	0.033 U	0.049 U	0.031 U
1,2,3,4,6,7,8-HpCDD	pg/g	0.051 U	0.056 U	0.060 U	0.049 U	0.046 U	0.47 J	0.081 U	0.045 U	0.048 U	0.055 U	0.057 U	0.051 U	0.091 Q J	0.064 U	0.040 U
Total HpCDD	pg/g	0.051 U	0.18 Q J	0.060 U	0.049 U	0.068 Q J	0.73 Q J	0.081 U	0.045 U	0.048 U	0.055 U	0.057 U	0.051 U	0.091 Q J	0.064 U	0.040 U
OCDD	pg/g	0.5 B J	0.68 B J	1.1 QBJ	0.66 B J	0.36 QBJ	3.9 B J	0.29 QBJ	0.71 B J	0.25 QBJ	0.39 B J	0.49 B J	0.38 B J	0.40 Q B J	0.55 QBJ	0.22 QBJ
2,3,7,8-TCDF	pg/g	0.057 U	0.067 U	0.049 U	0.061 U	0.040 U	0.079 U	0.110 U	0.039 U	0.050 U	0.12 Q J	0.072 U	0.067 U	0.053 U	0.072 U	0.044 U
Total TCDF	pg/g	9.0 Q	8.1 Q	9.5 Q	9.3 Q	9.4 Q	90 Q	34 Q	13 Q	11 Q	25 Q	31 Q	42 Q	20 Q	14 Q	10 Q
1,2,3,7,8-PeCDF	pg/g	0.041 U	0.043 U	0.041 U	0.034 U	0.033 U	0.048 U	0.060 U	0.025 U	0.041 U	0.034 U	0.038 U	0.035 U	0.041 U	0.056 U	0.032 U
2,3,4,7,8-PeCDF	pg/g	0.035 U	0.040 U	0.038 U	0.033 U	0.031 U	0.048 U	0.060 U	0.025 U	0.035 U	0.031 U	0.034 U	0.032 U	0.071 Q J	0.050 U	0.029 U
Total PeCDF	pg/g	0.54 Q J	1.5 J	0.67 Q J	1.4 Q J	0.49 Q J	6.6 J Q	6.4 J Q	0.67 Q J	0.89 Q J	4.7 Q J	2.1 J	3.0 J Q	1.4 Q J	0.92 Q J	0.45 Q J
1,2,3,4,7,8-HxCDF	pg/g	0.033 U	0.042 U	0.032 U	0.034 U	0.024 U	0.036 U	0.084 U	0.043 QBJ	0.034 U	0.030 U	0.036 U	0.030 U	0.031 U	0.039 U	0.028 U
1,2,3,6,7,8-HxCDF	pg/g	0.033 U	0.039 U	0.033 U	0.035 U	0.023 U	0.25 Q J	0.28 Q B J	0.025 U	0.034 U	0.13 Q J	0.037 U	0.18 Q J	0.13 Q J	0.039 U	0.026 U
2,3,4,6,7,8-HxCDF	pg/g	0.032 U	0.033 U	0.033 U	0.035 U	0.026 U	0.038 U	0.059 U	0.027 U	0.035 U	0.052 Q J	0.040 U	0.032 U	0.033 U	0.040 U	0.027 U
1,2,3,7,8,9-HxCDF	pg/g	0.045 U	0.045 U	0.041 U	0.048 U	0.033 U	0.050 U	0.072 U	0.033 U	0.047 U	0.045 U	0.051 U	0.041 U	0.043 U	0.056 U	0.039 U
Total HxCDF	pg/g	0.035 U	0.039 U	0.12 Q J	0.037 U	0.026 U	1.3 Q J	2.7 J Q B	0.043 QBJ	0.15 Q J	0.46 Q J	0.19 Q J	0.64 Q J	0.24 Q J	0.042 U	0.029 U
1,2,3,4,6,7,8-HpCDF	pg/g	0.017 U	0.020 U	0.053 QBJ	0.12 B J	0.013 U	0.3 B J	0.059 U	0.014 U	0.022 U	0.055 QBJ	0.018 U	0.022 U	0.019 U	0.022 U	0.015 U
1,2,3,4,7,8,9-HpCDF	pg/g	0.024 U	0.031 U	0.028 U	0.15 Q J	0.020 U	0.044 U	0.053 U	0.021 U	0.034 U	0.035 U	0.030 U	0.037 U	0.026 U	0.036 U	0.022 U
Total HpCDF	pg/g	0.020 U	0.024 U	0.053 QBJ	0.27 BJQ	0.016 U	0.3 B J	0.055 U	0.017 U	0.027 U	0.055 QBJ	0.023 U	0.027 U	0.022 U	0.027 U	0.018 U
OCDF	pg/g	0.021 U	0.031 U	0.021 U	0.27 QBJ	0.043 QBJ	0.62 B J	0.072 QBJ	0.026 U	0.027 U	0.026 U	0.11 QBJ	0.10 B J	0.089 QBJ	0.026 U	0.019 U

^{*}Results are on an as-received (wet-weight) basis, and have not been corrected for dry weight or % lipids.

App I Boulder Lake Lab Summary Table.xlsx Page 1 of 1

B - The analyte is present in the associated method blank at a detectable level. J - The reported result is an estimata Q - Estimated maximum possible concentration.

TEQ calculated with non-detect values (U) being ND=0

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

Macroinvertebrate Analytical Results Summary Table

DULUTH RESERVOIRS (SCANLON, THOMSON, AND BOULDER) DULUTH MINNESOTA 2016 TISSUE ANALYSIS

APPENDIX M MACROINVERTRABRATE SAMPLES ANALYTICAL RESULTS SUMMARY TABLE

Reservoir		Scanlon	Boulder Lake	Scanlon	Thomson	Thomson								
Sample ID		BW16SR-001M	BW16SR-002M	BW16SR-003M	BW16SR-103M	BW16SR-002D	BW16SR-102D	BW16SR-003D	BW16SR-005D	BW16SR-005C	EPA16-BR- HD-001-MCRS	EPA16-SR- HD-001-MCRS	EPA16-TR- HD-001-MCRS	EPA16-TR- HD-001-C
TA Laboratory ID		180-61461-1	180-61461-2	180-61461-5	180-61461-6	180-61461-3	180-61461-4	180-61461-7	180-61461-8	180-61461-9	180-61461-10	180-61461-11	180-61461-12	180-61461-13
Organism		Mayfly	Mayfly	Mayfly	Mayfly	Dragonfly	Dragonfly	Dragonfly	Dragonfly	Crawfish	Macro	Macro	Macro	Crawfish
Methyl Mercury	μg/kg	3.1	3.3	4.5	3.6	23	NA	NA	25	18	4.3	4.5	2.7	34
Mercury	mg/kg	0.034 U	0.031 U	0.036 U	0.033 U	0.029 U	NA	NA	0.030 U	0.030 U	0.032 U	0.037 U	0.036 U	0.036 Ј
Percent Lipids	%	0.72	0.56	0.66	NA	0.68	0.81	0.69	0.78	0.39	0.72	NA	NA	NA
1998 WHO FISH TEQ NE	D=EDL	1.5	0.51	1.3	NA	0.47	0.58	0.92	0.44	0.59	0.30	NA	NA	NA
2005 WHO HUMAN TEQ) ND=0	1.7	0.41	1.5	NA	0.47	0.28	0.84	0.41	0.63	0.016	NA	NA	NA
2,3,7,8-TCDD	pg/g	0.15 J	0.055 U	0.074 U	NA	0.036 U	0.100 U	0.094 U	0.050 U	0.037 Q J	0.091 U	NA	NA	NA
Total TCDD	pg/g	1.4 Q B J	0.61 Q B J	0.78 QBJ	NA	0.7 Q B J	3.3 QB	1.2 QJ	0.53 QBJ	1.2 BJQ	0.091 U	NA	NA	NA
1,2,3,7,8-PeCDD	pg/g	0.44 J	0.064 U	0.082 U	NA	0.045 U	0.099 U	0.110 U	0.058 U	0.098 U	0.051 U	NA	NA	NA
Total PeCDD	pg/g	3.0 Q J	0.93 JQ	1.8 QJ	NA	1.2 JQ	0.35 Q J	1.8 QJ	0.76 Q J	4.3 J Q	0.051 U	NA	NA	NA
1,2,3,4,7,8-HxCDD	pg/g	0.35 Q J	0.066 U	0.1 U	NA	0.058 U	0.130 U	0.190 U	0.071 U	0.093 U	0.110 U	NA	NA	NA
1,2,3,6,7,8-HxCDD	pg/g	1.5 J	0.49 J	2.0 Q J	NA	0.53 QJ	0.130 U	1.4 J	0.80 J	1.1 J	0.120 U	NA	NA	NA
1,2,3,7,8,9-HxCDD	pg/g	1.1 J	0.062 U	1.1 J	NA	0.29 J	0.120 U	0.69 QJ	0.33 J	0.72 J	0.110 U	NA	NA	NA
Total HxCDD	pg/g	17 Q	4.1 J	16 Q	NA	3.7 QJ	3.3 Q J	11 JQ	4.9 J Q	9.7	0.110 U	NA	NA	NA
1,2,3,4,6,7,8-HpCDD	pg/g	15	4.7 J	15	NA	5.8	4.4 J	13	5.9	5.2	0.34 Q J	NA	NA	NA
Total HpCDD	pg/g	39	12	30	NA	11 Q	9.0 Q J	27	12	11	0.34 Q J	NA	NA	NA
OCDD	pg/g	150 B	47 B	94 B	NA	44 B	35 QB	87 B	40 B	33 B	4.0 QBJ	NA	NA	NA
2,3,7,8-TCDF	pg/g	0.58 QJ	0.069 U	0.34 QJ	NA	0.2 Q J	0.086 U	0.110 U	0.050 U	0.38 Q J	0.087 U	NA	NA	NA
Total TCDF	pg/g	7.2 Q	3.6 Q	7.7 Q	NA	1.6 J Q	0.96 Q J	2.5 Q J	1.5 Q	5.9 Q	2.0 Q J	NA	NA	NA
1,2,3,7,8-PeCDF	pg/g	0.066 U	0.055 U	0.083 U	NA	0.051 U	0.093 U	0.120 U	0.054 U	0.079 U	0.088 U	NA	NA	NA
2,3,4,7,8-PeCDF	pg/g	0.26 J	0.050 U	0.082 U	NA	0.045 U	0.082 U	0.110 U	0.051 U	0.073 U	0.078 U	NA	NA	NA
Total PeCDF	pg/g	4.3 JQ	1.6 QJ	6.5 JQ	NA	2.3 JQ	1.1 Q J	1.7 Q J	2.3 J Q	6.9 Q J	0.082 U	NA	NA	NA
1,2,3,4,7,8-HxCDF	pg/g	0.76 J	0.34 Q J	1.5 J	NA	0.45 J	0.100 U	0.130 U	0.26 Q J	0.53 J	0.110 U	NA	NA	NA
1,2,3,6,7,8-HxCDF	pg/g	1.5 QJ	0.92 Q J	1.6 J	NA	0.66 QJ	0.80 Q J	1.1 J	0.48 J	0.52 Q J	0.096 U	NA	NA	NA
2,3,4,6,7,8-HxCDF	pg/g	0.22 Q J	0.062 U	0.48 J	NA	0.058 U	0.110 U	0.130 U	0.062 U	0.25 Q J	0.098 U	NA	NA	NA
1,2,3,7,8,9-HxCDF	pg/g	0.079 U	0.079 U	0.12 U	NA	0.076 U	0.140 U	0.160 U	0.081 U	0.098 U	0.120 U	NA	NA	NA
Total HxCDF	pg/g	26 Q	16 Q	80 Q	NA	14 Q	12 J Q	24	13 Q	26 Q	0.100 U	NA	NA	NA
1,2,3,4,6,7,8-HpCDF	pg/g	24 B	17 B	64 B	NA	18 B	14 B	36 B	15 B	18 B	1.1 QBJ	NA	NA	NA
1,2,3,4,7,8,9-HpCDF	pg/g	0.37 Q J	0.073 U	0.65 QJ	NA	0.078 U	0.140 U	0.160 U	0.097 U	0.10 U	0.170 U	NA	NA	NA
Total HpCDF	pg/g	45 B Q	33 B	120 QB	NA	31 B	24 B	64 B	27 B	28 B	1.9 QJB	NA	NA	NA
OCDF	pg/g	8.7 BJ	4.3 B J	17 B	NA	6.4 B J	4.5 QBJ	12 B J	4.9 JB	5.6 B J	0.33 QBJ	NA	NA	NA

*Results are on an as-received (wet-weight) basis, and have not been corrected for dry weight or % lipids.

NA - Sample not analyzed due to client request or lack of organisms

B - The analyte is present in the associated method blank at a detectable level.

J - The reported result is an estimate

Q - Estimated maximum possible concentration.

App M Macro Lab Summary Table.xlsx Page 1 of 1

U - Not detected

TEQ calculated with non-detect values (U) being 0

APPENDIX N

APPENDIX O

Lumbriculus Variegatus Analytical Results Summary Table

DULUTH RESERVOIRS (SCANLON, THOMSON, AND BOULDER) DULUTH MINNESOTA 2016 TISSUE ANALYSIS

APPENDIX O LUMBRICULUS VARIEGATUS SAMPLES ANALYTICAL RESULTS SUMMARY TABLE

Reservoir			Bould	ler	Scanle	on	Scanle	on	Thom	son	Thom	ison	Thomse	on	Thoms	on
	BACKGROU DAY 0		BW161		BW16 -004		BW168 -016		BW16 -008		BW16 -01		BW167 -017		BW167 -018	
GLEC Lab ID			1109	97	1109	5	1109	6	1110)1	1110	00	11098	3	11099	9
Test America Lab ID	180-62135	5-8	180-621	135-1	180-621	35-2	180-621	35-3	180-621	35-7	180-62	135-6	180-6213	35-4	180-6213	35-5
Methyl Mercury μg/kg	0.088		0.15		0.24		0.32		0.19		0.22		0.23		0.25	
Mercury mg/kg	0.038	U	0.038	U	0.036	U	0.037	U	0.038	U	0.038	U	0.033	U	0.030	U
Percent Lipids %	1.2		0.63		0.71		0.74		0.74		0.68		0.61		0.62	
1998 WHO FISH TEQ ND=EDL	0.19		0.17		1.1		4.0		0.33		0.39		0.50		0.46	
2005 WHO HUMAN TEQ ND=0	0.013		0.00024		1.3		4.3		0.10		0.14		0.33		0.25	
1,2,3,4,6,7,8-HpCDD	0.1	U	0.082	U	8.1		15		0.76	QJ	1.7	QJ	4.1	J	1.6	QJ
1,2,3,4,6,7,8-HpCDF	0.16	U	0.044	U	14	В	86	В	3.3	QBJ	2.6	ВЈ	12	В	12	В
1,2,3,4,7,8-HxCDD	0.057	U	0.051	U	0.087	U	0.44	QJ	0.094	U	0.073	U	0.073	U	0.065	U
1,2,3,4,7,8-HxCDF	0.057	U	0.066	U	0.66	J	2.6	J	0.06	U	0.063	U	0.075	U	0.065	U
1,2,3,4,7,8,9-HpCDF	0.19	U	0.053	U	0.1	U	0.7	QJ	0.09	U	0.074	U	0.1	U	0.094	U
1,2,3,6,7,8-HxCDD	0.056	U	0.056	U	1.3	QJ	3.6	J	0.39	J	0.08	U	0.41	QJ	0.29	QJ
1,2,3,6,7,8-HxCDF	0.052	U	0.059	U	1.1	QJ	4.5	QJ	0.23	QJ	0.39	QJ	0.88	QJ	0.53	QJ
1,2,3,7,8-PeCDD	0.055	U	0.044	U	0.082	U	1.3	QJ	0.076	U	0.08	U	0.075	U	0.092	U
1,2,3,7,8-PeCDF	0.054	U	0.06	U	0.077	U	0.094	U	0.064	U	0.066	U	0.079	U	0.059	U
1,2,3,7,8,9-HxCDD	0.053	U	0.05	U	0.36	QJ	1.6	J	0.087	U	0.071	U	0.069	U	0.059	U
1,2,3,7,8,9-HxCDF	0.063	U	0.069	U	0.083	U	0.12	U	0.082	U	0.077	U	0.095	U	0.086	U
2,3,4,6,7,8-HxCDF	0.052	U	0.058	U	0.065	U	0.4	QJ	0.064	U	0.062	U	0.076	U	0.069	U
2,3,4,7,8-PeCDF	0.047	U	0.051	U	0.071	U	0.72	J	0.062	U	0.06	U	0.07	U	0.055	U
2,3,7,8-TCDD	0.046	U	0.043	U	0.47	QJ	0.35	QJ	0.085	U	0.12	U	0.083	U	0.083	U
2,3,7,8-TCDF	0.13	QJ	0.077	U	2.8		0.96	J	0.09	U	0.56	QJ	0.33	QJ	0.3	J
OCDD	0.6	ВJ	0.68	ВЈ	52	В	110	В	5.2	QBJ	13	В	30	В	13	QB
OCDF	0.12	ВJ	0.12	QBJ	4.5	ВЈ	25	В	0.88	ВЈ	1.2	ВЈ	3.9	ВЈ	2.6	ВЈ
Total HpCDD	0.1	U	0.082	U	16		32		2.2	JQ	3.9	JQ	9.3		3.7	QJ
Total HpCDF	0.17	U	0.048	U	29	В	160	B Q	7	J Q B	5.6	J B	24	В	23	В
Total HxCDD	0.055	U	0.052	U	6.4	J Q	21	Q	1.8	J	1.3	JQ	3	J Q	2.4	JQ
Total HxCDF	0.055	U	0.063	U	16	Q	65	Q	3.5	QJ	4.1	J Q	11	Q	9.6	Q
Total PeCDD	0.055	U	0.044	U	1.8	QJ	8.5	JQ	0.84	QJ	0.08	U	0.74	QJ	0.092	U
Total PeCDF	0.05	U	0.31	QJ	5.9	JQ	14	J Q	1	QJ	1.1	J Q	1.4	QJ	1	QJ
Total TCDD	0.046	U	0.043	U	2.2	ВЈQ	4.5	B Q	0.95	ВЈQ	1.4	QBJ	1.4	QBJ	1.1	QBJ
Total TCDF	2.8	Q	4.8	Q	20	Q	23	Q	5.6	Q	6.2	Q	5.9	Q	8	Q

^{*}Results are on an as-received (wet-weight) basis, and have not been corrected for dry weight or % lipids.

App O Lumbriculus summary Table.xlsx Page 1 of 1

B - The analyte is present in the associated method blank at a detectable level.

J - The reported result is an estimata

Q - Estimated maximum possible concentration.

U - Not detected

TEQ calculated with non-detect values (U) being 0

APPENDIX P

APPENDIX Q

APPENDIX R

APPENDIX S

Appendix C Disposal Documentation

June 2017 BWJ160749

WASTESTREAM INFORMATION PROFILE

Recertification	//		221/200000000	Disposal Code
Veolia ES LOCATI Invoice Addres Manifest from	ADDRESS	CITY	ST	
Veolia ES TSDF rec	questedTechnology request	ed Generator No	Generator EPA	A ID No. MND982612368
1. Generator Nam Address 525 City Duluth	ne MPCA-Duluth South Lake Ave, Suit	e State <u>MN</u>	State Wastestr Country USA ZIP 558	
	ting Waste Investigation	n river sediment samp: azardous WastePG RQ amtlb		vaste Area
RQ Desc: 1.		2		
DOT Desc: 1.		2		
5. Waste Codes Wastewater 6. Physical and ch pH a	Non Wastewater	Sub Category Check all that apply Flash Point (F)	Solids % suspended % settleable % dissolved Free Liquid Range 0% to	% ash water solubility BTU/lb
Physical S s	a air reacti w water rea c cyanide r f sulfide re e explosive o oxidizing p peroxide quid CFR 268.45	active s shock sens reactive t temp sensite eactive m polymeriza e n OSHA care g acid I infectious former h inhalation	tive ation/monomer cinogen hazard Zone: NO	Odor a none X b mild c strong describe Halogens Br 0 % Bromine Cl 0 % Chlorine F 0 % Fluorine I 0 % Iodine
Viscosity by Layer:	multilayered:	b bi-layered: Second Layer high (syrup) medium (oil) low (water) solid	Bottom Layer high (syrup) medium (oil) low (water)	Color
Used oil yo	HOC <1000 ppm or > 1000 p		2	WIP No.

River sediment		Units	Constituents	Range	Un
	100	%			
al Composition Must Equal or Exceed 100%					_
ther:				V	
Is the wastestream being imported into the USA?			Yes No 2		
Does the wastestream contain PCBs regulated by	40CFR?		Yes No 2		
PCB concentrationppm Is the wastestream subject to the Marine Pollutant	Dogulations?		Yes No 2	7	
Is the wastestream subject to the Marine Pollutant Is the wastestream subject to Benzene NESHAP?			Yes No 2		
If yes, is the wastestream subject to Notification a		irements?	Yes No 2		
Benzene concentration ppm					
Is the wastestream subject to RCRA subpart CC c			Yes No 2		
Volatile organic concentration, if known p					
CC approved analytical method Generator Is the wastestream from a CERCLA or state mand			Yes No 2	a	
Container Information (Identify UN container					
Site: St. Louis River Reservoirs (SLR)				
Duluth, MN 55802					
Duluth, MN 55802					
Duluth, MN 55802					
Duluth, MN 55802					
	wacte?	Ves 😨 No	If was please attach		
analytical or an MSDS available that describes the	waste?	Yes 🗷 No [If yes, please attach.		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this	and all attached	documents cont	ains true and accurate descriptions of this waste.		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix	and all attached ox I or by using a	documents cont n equivalent me	tains true and accurate descriptions of this waste.		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this	and all attached ox I or by using a	documents cont n equivalent me	tains true and accurate descriptions of this waste. Sthod. All relevant information regarding known of the street		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix	and all attached ox I or by using a	documents cont n equivalent me	tains true and accurate descriptions of this waste. Sthod. All relevant information regarding known of the street		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed. Heidi Bauman	and all attached on X I or by using an I authorize sam	documents cont n equivalent me	tains true and accurate descriptions of this waste. ethod. All relevant information regarding known of the state shipment for purposes of recertification.		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendict the possession of the generator has been disclosed.	and all attached on X I or by using an I authorize sam	documents cont n equivalent me	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the state shipment for purposes of recertification. 218-302-6607 PHONE		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this epresentative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed. Heidi Bauman	and all attached on X I or by using an I authorize sam	documents cont n equivalent me	tains true and accurate descriptions of this waste. ethod. All relevant information regarding known of the state shipment for purposes of recertification.		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendic the possession of the generator has been disclosed. Heidi Bauman	and all attached on X I or by using an I authorize sam	documents cont n equivalent me	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the state shipment for purposes of recertification. 218-302-6607 PHONE		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed. Heich Bauman NAME (PRINT OR TYPE) Which Bauman SIGNATURE	and all attached on X I or by using an I authorize sam	documents cont n equivalent me	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the state shipment for purposes of recertification. 218-302-6607 PHONE		
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed. Heich Bauman NAME (PRINT OR TYPE) WHICH BAUMAN SIGNATURE	and all attached on X I or by using an I authorize sam	documents cont n equivalent me pling of any wa	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the steen shipment for purposes of recertification. 218-302-6607 PHONE Project Manager TITLE	DATE	hazar
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed. Heich Bauman NAME (PRINT OR TYPE) Which Bauman SIGNATURE	and all attached on X I or by using an I authorize sam	documents cont n equivalent me pling of any wa	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the steen shipment for purposes of recertification. 218-302-6607 PHONE Project Manager TITLE	DATE	haza
analytical or an MSDS available that describes the ENERATOR CERTIFICATION ereby certify that all information submitted in this representative as defined in 40 CFR 261 - Appendix the possession of the generator has been disclosed. Heidi Bauman NAME (PRINT OR TYPE) WHAT SIGNATURE	and all attached on X I or by using an I authorize sam	documents cont n equivalent me pling of any wa	tains true and accurate descriptions of this waste. Sethod. All relevant information regarding known of the steen shipment for purposes of recertification. 218-302-6607 PHONE Project Manager TITLE	DATE	haza

FINONHIAZARDONA	1 Gerérator IO Number	' ' i	3 Emergency Pespon			recking Numb	
WASTE MANIFEST 1 5 Gundalors Name and Mailing 10-CA - Include 5.75 South Lanks Districts, NEW 55.	m Ave, Bullu 488		JR: \$00-4 Generator's Site Acting 81-R ACC 85 Service On Dath 180	se (faifferent Rives	than making active	253;	
Generator's Prone 18 7 6 Trunsporter 1 Company Name BAY MERT (LLC) 7 Tin sporter 2 Company Name					US EPAID	120543	<u> </u>
8 Despaid factly terminal Ventils RG feet Will 8945: Boo	huleal (tolui.toma-tWD undary Road				WATUR S U.S. EPAID	063136 Number	9
We no monde	<u>55 5897 </u>		10 Co-		11 Total Opanity	396714 12 Um WI,Vol	<u> </u>
How Dray, H	on PCPS many done Maste	•.	0° 20	Type Life	250	P	
MOUDOS !	NIN RCRA HAZArdo	usivaste	01	LP	رتو در	ام ا	
-					 		
13 Sperial Handing Instructors				 	<u> </u>		
14. GENERATOR'S/OFFEROR'	LR dediment 2.) 06 contracted by Bay Me S CERTIFICATION. Hereby decrare that the co d, and are mail respects in proper condition for the condition of the con	nienia of this consignment are	さられていること。特 fully and accurately de	SSF 71	by me pruper shir	ping name, en	<u> </u>
General's SOfteror's Printed Typ	ed Name		able		-	·	
15 International Stepments Transporter Signature (for export 16 Trans, order Acknowledgment		Export from U		niryesif			
Transporter 1 Phreed Typed Ner	ne ≤-2≥	<u>.</u>	akne	<u> </u>			Month Day Y
17 Elsov sancy 17a Disc (pancy Indication Spec	> Cuarety	Туре	Residue	<i>,</i> 	Pan al Pe	ecion	Ful Reactor
176. Allerrate Facility (or General Facility's Prione	mor!		Monfest Relorence	- Number	US FPA D	Yumbar	
17c. Signal use of Attended Facilities	ty for Generation				-		Morth Day Y
18 Design, 1ad Facility Owner or Project/Typed Name	Coerato: Cerchication of receipt of materials co	_,	is roled in Hem 179				March Day Y
FIDELRI'	LKINN JR		Tolul		<u> </u>	\rightarrow	1212811 co

October 26, 2016

Nancy McDonald Bay West 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 12, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

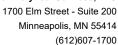
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 Alaska Certification UST-107 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014

Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

Virginia VELAP ID: 460263

North Dakota Certification #: R-150

Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA#: 4150

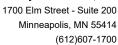
Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505

Virginia VELAP ID: 460263

Virginia VELAP Certification ID: 460263
Wisconsin Certification #: 405132750
Wisconsin DATCP Certification #: 105-444

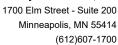


SAMPLE SUMMARY

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10366073001	BW16-RB01-092816	Water	09/28/16 16:30	10/12/16 18:30
10366073002	BW16-RB01-092216	Water	09/22/16 17:00	10/12/16 18:30
10366073003	BW16-RB01-100416	Water	10/04/16 17:34	10/12/16 18:30
10366073004	BW16-RB01-100516	Water	10/05/16 17:30	10/12/16 18:30
10366073005	BW16-RB02-100516	Water	10/05/16 17:35	10/12/16 18:30
10366073006	SLRIDW-101116	Solid	10/11/16 16:30	10/12/16 18:30



SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOCs

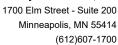
Pace Project No.: 10366073

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10366073001	BW16-RB01-092816	EPA 7470A	LMW	1	PASI-M
10366073002	BW16-RB01-092216	EPA 7470A	LMW	1	PASI-M
10366073003	BW16-RB01-100416	EPA 7470A	LMW	1	PASI-M
10366073004	BW16-RB01-100516	EPA 7470A	LMW	1	PASI-M
10366073005	BW16-RB02-100516	EPA 7470A	LMW	1	PASI-M
10366073006	SLRIDW-101116	WI MOD DRO	JRH	2	PASI-M
		EPA 6010C	DM	7	PASI-M
		EPA 7470A	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 1010	DEY	1	PASI-G
		EPA 9045	PH1	1	PASI-M

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM


Sample: BW16-RB01-092816 Lab ID: 10366073001 Collected: 09/28/16 16:30 Received: 10/12/16 18:30 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

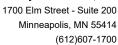
7470A Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A

Mercury ND ug/L 0.20 0.031 1 10/21/16 09:57 10/24/16 13:56 7439-97-6

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM


Sample: BW16-RB01-092216 Lab ID: 10366073002 Collected: 09/22/16 17:00 Received: 10/12/16 18:30 Matrix: Water

Report

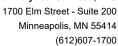
Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

7470A Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A

Mercury ND ug/L 0.20 0.031 1 10/21/16 09:57 10/24/16 13:58 7439-97-6 H1

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073


Date: 10/26/2016 04:41 PM

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

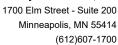
7470A Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A

Mercury ND ug/L 0.20 0.031 1 10/21/16 09:57 10/24/16 14:04 7439-97-6

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM


Sample: BW16-RB01-100516 Lab ID: 10366073004 Collected: 10/05/16 17:30 Received: 10/12/16 18:30 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

7470A Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A

Mercury ND ug/L 0.20 0.031 1 10/21/16 09:57 10/24/16 14:07 7439-97-6

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

Sample: BW16-RB02-100516 Lab ID: 10366073005 Collected: 10/05/16 17:35 Received: 10/12/16 18:30 Matrix: Water

Report

Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual

7470A Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A

Mercury ND ug/L 0.20 0.031 1 10/21/16 09:57 10/24/16 14:13 7439-97-6

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

Sample: SLRIDW-101116 Lab ID: 10366073006 Collected: 10/11/16 16:30 Received: 10/12/16 18:30 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **WIDRO GCS** Analytical Method: WI MOD DRO Preparation Method: WI MOD DRO WDRO C10-C28 22.8 10/20/16 11:20 10/21/16 18:01 5.4J mg/kg 53 Surrogates n-Triacontane (S) 59 %. 50-150 10/20/16 11:20 10/21/16 18:01 638-68-6 Analytical Method: EPA 6010C Preparation Method: EPA 3010 6010C MET ICP, TCLP Leachate Method/Date: EPA 1311; 10/20/16 17:26 Initial pH: 7.09; Final pH: 1.54 Arsenic ND mg/L 0.10 0.034 10/22/16 13:30 10/24/16 05:30 7440-38-2 0.42 0.20 0.079 Barium mg/L 10/22/16 13:30 10/24/16 05:30 7440-39-3 0.0020J 0.0011 Cadmium mg/L 0.015 10/22/16 13:30 10/24/16 05:30 7440-43-9 Chromium ND mg/L 0.050 0.0046 10/22/16 13:30 10/24/16 05:30 7440-47-3 Lead ND mg/L 0.050 0.0091 10/22/16 13:30 10/24/16 05:30 7439-92-1 Selenium ND mg/L 0.12 0.051 10/22/16 13:30 10/24/16 05:30 7782-49-2 ND 0.050 0.0050 Silver mg/L 10/22/16 13:30 10/24/16 05:30 7440-22-4 Analytical Method: EPA 7470A Preparation Method: EPA 7470A 7470A Mercury, TCLP Leachate Method/Date: EPA 1311; 10/20/16 17:26 Initial pH: 7.09; Final pH: 1.54 ug/L 0.60 0.094 10/22/16 12:10 10/24/16 13:49 7439-97-6 Mercury **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 54.9 % 0.10 0.10 10/25/16 10:36 1010 Flashpoint, Closed Cup Analytical Method: EPA 1010 Flashpoint >134 deg F 10/21/16 13:15 1M,S9 9045 pH Analytical Method: EPA 9045 pH at 25 Degrees C 6.8 Std. Units 0.10 0.10 10/18/16 14:25 Н6

(612)607-1700

QUALITY CONTROL DATA

J160139 SLR Sediment AOCs Project:

Pace Project No.: 10366073

QC Batch: 442411 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470A Mercury TCLP

Associated Lab Samples: 10366073006

METHOD BLANK: 2410478 Matrix: Water

Associated Lab Samples: 10366073006

Reporting Limit MDL Qualifiers Parameter Units Result Analyzed

ND 0.60 0.094 10/24/16 13:44 Mercury ug/L

Blank

METHOD BLANK: 2406967 Matrix: Water

Associated Lab Samples: 10366073006

Blank Reporting Limit MDL Parameter Units Result Analyzed Qualifiers ND 10/24/16 14:27 Mercury 0.60 0.094 ug/L

METHOD BLANK: Matrix: Water

Associated Lab Samples: 10366073006

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Mercury ND 0.60 0.094 10/24/16 14:29 ug/L

LABORATORY CONTROL SAMPLE: 2410479

Date: 10/26/2016 04:41 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

Mercury ug/L 15 16.6 111 80-120

MS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2410481 2410480

10366073006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Conc. ug/L ND 15 15 16.1 16.4 107 80-120 2 20 Mercury 110

MSD

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

QC Batch: 441326 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470A Mercury Water

Associated Lab Samples: 10366073001, 10366073002, 10366073003, 10366073004, 10366073005

METHOD BLANK: 2402473 Matrix: Water

Associated Lab Samples: 10366073001, 10366073002, 10366073003, 10366073004, 10366073005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Mercury ug/L ND 0.20 0.031 10/24/16 13:52

LABORATORY CONTROL SAMPLE: 2402474

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 5 4.8 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2402475 2402476

MS MSD 10366073002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND 5 5 5.0 4.4 80-120 12 20 H1 Mercury ug/L 99 88

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Minneapolis, MN 55414 (612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

QC Batch: 442410 Analysis Method: EPA 6010C
QC Batch Method: EPA 3010 Analysis Description: 6010C TCLP

Associated Lab Samples: 10366073006

METHOD BLANK: 2410468 Matrix: Water

Associated Lab Samples: 10366073006

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.10	0.034	10/24/16 05:12	
Barium	mg/L	ND	0.20	0.079	10/24/16 05:12	
Cadmium	mg/L	ND	0.015	0.0011	10/24/16 05:12	
Chromium	mg/L	ND	0.050	0.0046	10/24/16 05:12	
Lead	mg/L	ND	0.050	0.0091	10/24/16 05:12	
Selenium	mg/L	ND	0.12	0.051	10/24/16 05:12	
Silver	mg/L	ND	0.050	0.0050	10/24/16 05:12	

METHOD BLANK: 2406967 Matrix: Water

Associated Lab Samples: 10366073006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND	0.10	0.034	10/24/16 06:01	
Barium	mg/L	ND	0.20	0.079	10/24/16 06:01	
Cadmium	mg/L	ND	0.015	0.0011	10/24/16 06:01	
Chromium	mg/L	ND	0.050	0.0046	10/24/16 06:01	
Lead	mg/L	ND	0.050	0.0091	10/24/16 06:01	
Selenium	mg/L	ND	0.12	0.051	10/24/16 06:01	
Silver	mg/L	ND	0.050	0.0050	10/24/16 06:01	

METHOD BLANK: 2406968 Matrix: Water

Associated Lab Samples: 10366073006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Arsenic	mg/L	ND ND	0.10	0.034	10/24/16 06:04	
Barium	mg/L	ND	0.20	0.079	10/24/16 06:04	
Cadmium	mg/L	ND	0.015	0.0011	10/24/16 06:04	
Chromium	mg/L	ND	0.050	0.0046	10/24/16 06:04	
Lead	mg/L	ND	0.050	0.0091	10/24/16 06:04	
Selenium	mg/L	ND	0.12	0.051	10/24/16 06:04	
Silver	mg/L	ND	0.050	0.0050	10/24/16 06:04	

LABORATORY CONTROL SAMPLE: 2410469

Date: 10/26/2016 04:41 PM

Danamatan	11	Spike	LCS	LCS	% Rec	0
Parameter	Units	ts Conc. Result		% Rec	Limits	Qualifiers
Arsenic	mg/L	5	4.8	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

LABORATORY CONTROL SAMPLE:	2410469					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Barium	mg/L		4.6	93	80-120	
Cadmium	mg/L	5	4.7	93	80-120	
Chromium	mg/L	5	4.6	92	80-120	
Lead	mg/L	5	4.6	91	80-120	
Selenium	mg/L	5	5.1	101	80-120	
Silver	mg/L	2.5	2.4	95	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 24104	70		2410471							
Parameter	1 Units	0360736019 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	ND	5	5	5.0	5.0	100	100	75-125		30	
Barium	mg/L	292 ug/L	5	5	5.0	5.0	94	94	75-125	0	30	
Cadmium	mg/L	ND	5	5	4.8	4.8	96	96	75-125	1	30	
Chromium	mg/L	ND	5	5	4.7	4.7	94	93	75-125	1	30	
Lead	mg/L	0.18	5	5	4.8	4.8	93	93	75-125	1	30	
Selenium	mg/L	ND	5	5	5.2	5.2	104	103	75-125	1	30	
Silver	mg/L	ND	2.5	2.5	2.5	2.5	99	98	75-125	1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

ASTM D2974

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

QC Batch: 443074

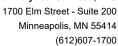
QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10366073006

SAMPLE DUPLICATE: 2414709

Parameter Units Result Result RPD RPD Qualifiers

Analysis Method:


Percent Moisture % 15.1 15.5 3 30

SAMPLE DUPLICATE: 2414743

Date: 10/26/2016 04:41 PM

10366077001 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 57.9 58.8 1 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

QC Batch: 442280 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 10366073006

METHOD BLANK: 2409537 Matrix: Solid

Associated Lab Samples: 10366073006

Blank Reporting Parameter Limit MDL Qualifiers Units Result Analyzed WDRO C10-C28 ND 10.0 2.3 10/21/16 13:56 mg/kg 10/21/16 13:56 n-Triacontane (S) %. 68 50-150

LABORATORY CONTROL SAMPLE & LCSD: 2409538 2409539										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
WDRO C10-C28	mg/kg	80	65.5	68.9	82	86	70-120	5	20	
n-Triacontane (S)	%.				80	77	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

QC Batch: 238889 Analysis Method: EPA 1010

QC Batch Method: EPA 1010 Analysis Description: 1010 Flash Point, Closed Cup

Associated Lab Samples: 10366073006

LABORATORY CONTROL SAMPLE: 1415269

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Flashpoint deg F 82.0

SAMPLE DUPLICATE: 1415390

Parameter Units Result Result RPD RPD Qualifiers

Flashpoint deg F 108 114

SAMPLE DUPLICATE: 1415978

Parameter Units Result Result RPD RPD Qualifiers

Flashpoint deg F 144 140

SAMPLE DUPLICATE: 1416003

Parameter Units 40140418002 Dup Max
Result Result RPD RPD Qualifiers

Flashpoint deg F 140 142

SAMPLE DUPLICATE: 1416018

Date: 10/26/2016 04:41 PM

40140430001 Dup Max
Parameter Units Result Result RPD RPD Qualifiers

Flashpoint deg F 156 160

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

QC Batch: 441692 Analysis Method: EPA 9045
QC Batch Method: EPA 9045 Analysis Description: 9045 pH

Associated Lab Samples: 10366073006

LABORATORY CONTROL SAMPLE: 2404481

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Std. Units pH at 25 Degrees C 5 5.0 100 98-102

SAMPLE DUPLICATE: 2404482

10366324001 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers pH at 25 Degrees C Std. Units 7.6 7.6 0 3 H6

SAMPLE DUPLICATE: 2404483

Date: 10/26/2016 04:41 PM

10365981001 Dup Max Result RPD RPD Qualifiers Parameter Units Result 11.1 pH at 25 Degrees C Std. Units 11.1 0 3 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

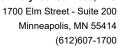
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G	Pace Analytical Services - Green Bay
PASI-M	Pace Analytical Services - Minneapolis


ANALYTE QUALIFIERS

Date: 10/26/2016 04:41 PM

1M	This sample contained free liquid on the surface. The free liquid was stirred into the rest of the sample before the sample
	was analyzed. Analysis was stopped at 134 degrees F when the sample boiled over.
H1	Analysis conducted outside the recognized method holding time.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

S9 The laboratory is not accredited for this parameter by the certifying body for this state.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10366073

Date: 10/26/2016 04:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10366073006	SLRIDW-101116	WI MOD DRO	442280	WI MOD DRO	442566
10366073006	SLRIDW-101116	EPA 3010	442410	EPA 6010C	442813
10366073006	SLRIDW-101116	EPA 7470A	442411	EPA 7470A	442689
10366073001	BW16-RB01-092816	EPA 7470A	441326	EPA 7470A	442672
10366073002	BW16-RB01-092216	EPA 7470A	441326	EPA 7470A	442672
10366073003	BW16-RB01-100416	EPA 7470A	441326	EPA 7470A	442672
10366073004	BW16-RB01-100516	EPA 7470A	441326	EPA 7470A	442672
10366073005	BW16-RB02-100516	EPA 7470A	441326	EPA 7470A	442672
10366073006	SLRIDW-101116	ASTM D2974	443074		
10366073006	SLRIDW-101116	EPA 1010	238889		
10366073006	SLRIDW-101116	EPA 9045	441692		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

(MA) tosini seigms3 Ó 0 02 Z SAMPLE CONDITIONS Custody Sealed Cooler Comments 2 0 SLR-Misc.-1 Received on Ice(())(N) mar sampler nar sample onar sample ₽ eat Borer STATE Site Location 6 2007 200 (0366073 0 $\tilde{\theta}$ 3 3 14:45 #505 Page 1600 ζ¢. EQUIS Information: Facility_Name: St Louis River Sediment Areas of Concern 1/-2101 101/0/10 Requested Analysis DATE 10/17 DATE Signed (MM/DD/m): 10/12/16 acility_Code: St Louis River Sed OH (EPA 9045D) 547023 (Et-6ed MT&A) Inioqdaslsubfacility_code: ACCEPTED BY / AFFILIATION (ояаім) ояа Section D acility ID: (CLP Metals (SW-846 1311/6010) (see uote pelow) Oyeyemi Odujole 3000017136 Bay West, LLC MUSSON Accounts Payable 5 Empire Drive Dther Methanol ge _EO_SS_SBN Preservatives HOSN ЮH nvoice Information [€]ONH ab Quote Reference hris. ab Project Manager этрапу Nате [⊅]OS²H Section C 2 2445 3/445 ttention: Unpreserved SAMPLER NAME AND SIGNATURE # OF CONTAINERS Ð, 511,416 SIGNATURE of SAMPLER: 10/0 PRINT Name of SAMPLER: DATE 1630 1734 38 1730 1735 8 əwiT 1204 Collection iris Musson/Bayluest RELINQUISHED BY / AFFILIATION 9/28/16 10/11/16 3/12/15 9/22/16 10/4/16 10/5/16 10/5/16 **DATE** SLR Sediment AOCs Nancy McDonald (9MOD=D 8AFD=D ø ø ø Ø ø O J160139 Copy To: Paul Raymaker **BAYT BJ9MA8** Required Project Information: S ₹ ၀ွ MATRIX CODE ₹ ₹ ≥ ₹ urchase Order No.: CODE roject Number: Drinking Water DW
Waste Water W
Product WW
Soll/Solid SD
Oil SD
Wipe OL
Wipe OL
Air WP
Tissue AR
Ofter OT roject Name: Valid Matrix Codes Section B Report To: Sample labels request analysis of nickel and zinc. Analysis should be conducted for mercuny and riot nickel and zinc.
Reference Pace Subcontractor Order Form signed by Pace on 946/116

D

D

O

O

O

O MATRIX BW14MLW-005-0-0.15 BW16-RB01-092816 BW16-RB01-092216 BW16-RB01-100416 BW16-RB01-100516 BW16-RB02-100516 SLRIDW-101116 Sample ID (sys_sample_code) ADDITIONAL COMMENTS 651-291-3483 nmcdonald@baywest.com Section E Required Client Information dress: 5 Empire Drive Company: Bay West, LLC quested Due Date/TAT: Required Client Information: Sample
Location ID
(sys_loc_code) St. Paul, MN 55103 BW15MLW-005 Rinsate Blank Rinsate Blank Rinsate Blank Rinsate Blank Rinsate Blank Waste Profile Sample Section A mail To: # MaTi Ä 2 3 \$ 12 5 6 Ŧ •

Pace Analytical*

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016

Page 1 of 2
Issuing Authority:

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Client Name:	-2		Project	# WO#: 10366073
Ban West LLS	a superior			
	USPS	c	lient	4) H 4 1 1 H 10 1 1 1 1 1 1 1 1 1
Commercial Pace SpeeDee	Other:_			10366073
Tracking Number:				<u> </u>
Custody Seal on Cooler/Box Present? Yes No	:	Seals Inte	act? 🔀	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	Non	e 🔲 (Other:	Temp Blank? ☑ Yes ☐ No
Thermometer ☐ 151401163 ☐ B88A912167504 Used: ☐ 151401164 ☐ B88A0143310098	Тур	e of Ice:	"⊠We	t Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 3.3.1.5 Cooler Temp Corre	cted (°C)	3.5		Biological Tissue Frozen? ☐ Yes ☐ No ☐ N/A
Temp should be above freezing to 6°C	r: <u>70</u>	7	Dat	e and Initials of Person Examining Contents: 36 10/12/1
USDA Regulated Soil (N/A, water sample)	atos: Al Z	ΔR Δ7 C4	Δ EL GΔ :	iD, LA Did samples originate from a foreign source (internationally,
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			□Yes	No including Hawaii and Puerto Rico)? Yes No
If Yes to either question, fill out a Regul	ated Soil	Checklis	st (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	√Ves	□No	□N/A	1,
Chain of Custody Filled Out?	Yes	No	□N/A	2.
Chain of Custody Relinquished?	Ýes	_ □No _	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	No	□N/A	4.
Samples Arrived within Hold Time?	₽Ÿes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	□Ño	□N/A	6.
Rush Turn Around Time Requested?	☐Yes -	□No	N/A	7.
Sufficient Volume?	⊿fŶes	□No	□N/A	8.
Correct Containers Used?	∭Yes	□No	□N/A	9.
-Pace Containers Used?	<u>/</u> Yes	□No	□n/A	
Containers Intact?	∕ Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	☐Yes	∐No	☑Ñ/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	√Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:	<u> </u>			
All containers needing acid/base preservation have been		□No	□n/a	13. ∭HNO₃ □H₂SO₄ □NaOH □HCI
checked? All containers needing preservation are found to be in	√aYes	Πио	∟м/А	Sample # 1 2 2
compliance with EPA recommendation?	- 6			1.1-5.1
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease,	⊉ Yes	No ((())(Initial when
DRO/8015 water) DOC	Yes	□No	ZN/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes	□No	N/A	14.
Trip Blank Present?	□Yes	□No	É Øy/A	15.
Trip Blank Custody Seals Present?	∏Yes	□No	"⊡N/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				

Workorder: 10366073 Workorder Name: J160139 SLR Sediment AOCs Owner Received Date: 10/12/2016 Results Requested By: 10/26/2016

ြင္ပ	3	N	T	Iran	1	5	4	ω	2	T		P P			Z M U	170	Pac	Rep	1
ler Te				iransters	,					SLRIC			1	(o	Minneapol	O Elm	Lori Castille Pace Analyt	Report To	
Cooler Temperature on Receipt らっちゃの		walter	TA A	Released By						SLRIDW-101116	Pic in	Sample ID		Filorie (012)007-1700	Minneapolis, MN 55414	1700 Elm Street	le Viical Minnesot		
n Receipt				A THE PROPERTY OF THE PROPERTY						900						i	ນັ		
22.22										PS	adái	ë							0.00
ငိ	-	10	3	Date						10/11/2016 16:30	nate/ illie							Sut	
Custo	_	DIESTINO 08/28	10/14/16/170	Date/Time						-	L				Green B Phone (Suite 9	Pace An	Subcontract To	00.00
Custody Seal Yor N		٢		Received By	_					10366073006	Labib				Green Bay, WI 54302 Phone (920)469-2436	Suite 9	Pace Analytical Green Bay	То	Section of the option of the optimization of the option of
Yor		KOK		Ву						Solid	Matrix				302	מַ	en Bay		200
Z		Blire									Un	preserved	Pre						U
Rece		Hate Phrown too											Preserved Containers						CWI
Received on Ice	+	70/12		Date/Time									tainers						CALLEL VECE
1		96		O						×	*****	Flas	φł						ived Date
Y)or	:	0220									-								dle.
z												bli disament astronya			· Various and an article and article article and article and article article and article and article article article and article article article article and article artic			Req	10/12
								4										uested,	0107
Sa					C													Requested Analysis	UTIZIZUTO Results Requested By:
mples					Comments		_		+		***********					Marin de la companya			Skeq
Intad					3											inactional company			Delsen
Samples Intact Y, or	5							-	\dashv	<u>.</u>			Water and the state of the stat		***************************************		-	_	ъy:
۲ 2							And the state of t	**************************************	8	-Appage	LAB USE ONLY								10/26
								And a second	<i>d</i>	40	ONLY				*************************************	***************************************			10/26/2016

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Client Name:	<i>,</i> ,,,,		Project	# ฟู่ง#: 10366073
Bay West LL	Charge			
Courier: Fed Ex DIPS	USPS	\Box	Client	40140194
Commercial Pace SpeeDee	Other:		J	18 366 8/3
Tracking Number:				are and the
Custody Seal on Cooler/Box Present? Yes No		Seals Int	tact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□Non	e 🗌	Other:	Temp Blank? Yes No
Thermometer ☐ 151401163 ☐ B88A912167504 Used: ☐ 151401164 ☐ B88A014331005	מעו	e of Ice:	,ØWe	et Blue Done Samples on ice, cooling process has begun
Cooler Temp Read (°C): 35 15 Cooler Temp Core	ected (°C)	1:3.5		Biological Tissue Frozen? Yes No N/A
Temp should be above freezing to 6°C	or: <u>† ()</u>	3	Dat	te and Initials of Person Examining Contents: 36 (0/12/1)
USDA Regulated Soil (N/A, water sample) Did samples originate in a guarantine zone within the United S	tatos: Al /	10 A7 C	A F: CA	ID, LA Did samples originate from a foreign source (internationally,
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	IOLES, AL, A	4R, AZ, C	A, FL, GA, ☐Yes	Did samples originate from a foreign source (internationally including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Regu	ılated Soil	Checkli	st (F-MN	-Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Ves	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	.edYes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	N/A	4.
Samples Arrived within Hold Time?	₽Ves	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	☐Yes	_ DÑo_	□N/A	6.
Rush Turn Around Time Requested?	□Yes		□N/A	7.
Sufficient Volume?	⊿ Ŷęs	□No	□n/a	8.
Correct Containers Used?	íZÍYes	□No	□n/a	9.
-Pace Containers Used?	<u>Æ</u> Ýes	□No	□N/A	
Containers Intact?	₫ Ŷes	□No	□n/a	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	☑Ñ/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	ZÍYes	□No	□n/a	12.
Includes Date/Time/ID/Analysis Matrix: (3) 3 / All containers needing acid/base preservation have been	<u> </u>			
checked? All containers needing preservation are found to be in	Yes	□No	□n/a	13. □HNO₃ □H₂SO₄ □NaOH □HCI
compliance with EPA recommendation?	•			Sample # f f f f f f f f f f f f f f f f f f
(HNO ₃ , H₂SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	₽Yes	□No	_ □N/A	* J
Exceptions: VOA, Coliform, TOC, Oil and Grease, (DRÖ/8015 (water) DOC	∵E√er	U (♥/ \ □No	Ø N/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes	□No		completed: preservative: 14.
Trip Blank Present?	Yes	□No	ØŊ/A	15.
Trip Blank Custody Seals Present?	□Yes	□No	, 🗖 N/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:		***************************************		
Project Manager Review: Low Extr		**		Date: 10/14/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

		Proje	ect #: 1.0# : 4	40140194
Client Name: Page MNI	<u></u>		WOTT	TOLTOLOT
Courier: Fed Ex F UPS - Client F Pac	e Bther: 11)a	1400		
Tracking #: 1186263-5			40140194	
Custody Seal on Cooler/Box Present: yes	no Seals in	ntact: yes	no (
Custody Seal on Samples Present: Tyes 7	no Seals ir	ntact: Tyes	no	
Packing Material: Bubble Wrap Bub	ble Bags	None Other	T	
Thermometer Used 5R-53		Wet Blue Dry N	ę ,	n ice, cooling process has begun
_	<u> 5.5 _</u> E	Biological Tissue	is Frozen: Tyes	
Temp Blank Present: yes no			r no	Person examining contents:
Temp should be above freezing to 6°C for all sample exc Frozen Biota Samples should be received ≤ 0°C.	ept Biota.	Comments:		Initials:
Chain of Custody Present:	ZYes □No □	□N/A 1.		
Chain of Custody Filled Out:	Yes No [□N/A 2.		
Chain of Custody Relinquished:	ØYes □No □	□N/A 3.		
Sampler Name & Signature on COC:	□Yes □No 🛭	IN/A 4. IEW	00	RA 1015/16
Samples Arrived within Hold Time:		□N/A 5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		·
Short Hold Time Analysis (<72hr):	□Yes □No □	□n/a 6.		
Rush Turn Around Time Requested:	□Yes ØNo [□N/A 7.10/26		Kf 10/18/16
Sufficient Volume:	Zves □No □	□N/A 8.		- v y y y y
Correct Containers Used:	ØYes □No □	□N/A 9.		
-Pace Containers Used:	□Yes □No 및	2fn/A		
-Pace IR Containers Used:	ØYes □No □	Jn/a	, M	
Containers Intact:	ZYes □No □	□N/A 10.		
Filtered volume received for Dissolved tests	□Yes □No □	M/A 11.		
Sample Labels match COC:	ZYes □No □	□N/A 12.		-
-Includes date/time/ID/Analysis Matrix:	- Cu			
All containers needing preservation have been checked. (Non-Compliance noted in 13.)	□Yes □No □	2N/A 13.	HNO3 H2SO4	「NaOH
All containers needing preservation are found to be in				z.
compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes □No □	ZN/A		/
exceptions: VOA, coliform, TOC, TOX, TOH,	□Yes ZÎNo	Initial when	Lab Std #ID of	Date/
O&G, WIDROW, Phenolics, OTHER:		completed	preservative	Time:
Headspace in VOA Vials (>6mm): Trip Blank Present:		₫N/A 14.		
	•	®N/A 15.		
Trip Blank Custody Seals Present	□Yes □No	ŽN/A		
Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution:			if checked, see attack	ned form for additional comments
Person Contacted:	D	ate/Time:	ii oncorou, see attaci	is similar additional comments
Comments/ Resolution:				
				
Decised Manager Decision				10/1/
Project Manager Review:			Date:	17/16

Appendix D Laboratory Analytical Reports

June 2017 BWJ160749

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation						
Proj	ect nan	ne: _	SLR Sediments AOCs – Thomson Reservoir		Laboratory: Pace - 10365380				
Wor	Work order number: <u>3000017136</u>					t date	(mm/dd/yyyy): <u>10/27/2016</u>		
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environn						
	Ques	tions		Yes	No	N/A	Comments		
	a.	Is th	ere a chain of custody (COC) with the report?						
	b.	Is th	ere a sample condition form with the report?	\boxtimes					
	C.	Wer	e there samples requiring preservation?		\boxtimes				
		i.	If so, were they properly preserved?			\boxtimes			
		ii.	Were they received on ice?	\boxtimes					
	d.	d. Were samples received in the correct containers?							
		i.	Was there enough sample volume/weight to complete all requested analyses?						
		ii.	Was there enough extra sample collected to complete method required batch QC?	\boxtimes					
	е.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes					
	f.	f. Are there notes about sample condition or holding time issues on the COC? Explain impact.							
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				Sample BW16TR-101-0.15-0.35 was listed on the COC, but was not collected. No data were qualified.		
2.	Cali	brat	ion						
	Ques	tion		Yes	No	N/A	Comments		
	a.	calib	he report narrative or data qualifiers indicate oration problems for any analyses? If yes,		M				

ues	tion		Yes	No	N/A	Comments
a.	Do any of the analyses contain samples for field or trip blanks?					
	i.	If yes, are there target analytes present above the reporting limit?				
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
b.		Do method blanks for any analyses contain target analytes above the reporting limit?		\boxtimes		
	i.	If yes, are the same compounds present in the samples?				
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.			\boxtimes	

Surrogates Question No Yes N/A Comments Are there organic analyses that contain surrogate compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes Below the lab limits? ii. \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
а.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)				
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.	Are there LCS/LCSD compounds outside lab limits? (These should have a data qualifier.)			\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

Mat	trix S	pike	/Matrix Spike Duplicate/Sam _l	ole D	uplic	ate ((MS/MSD/Dup)
Que	stion			Yes	No	N/A	Comments
a.			lytical methods used require an MS D? If no, skip to 6.b.				
	i.		the required matrix spikes been ared and reported?				
	ii.	If no, as to	is there and explanation in the report why?				
	iii.		ne lab process an alternate spiked ole (such as LCSD) instead?				MS/MSDs were performed as batch QC.
	iv.	Are th	ne lab limits specified on the report?	\boxtimes			
	V.	comp	ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?	\boxtimes			
	vi.	Are th	nere compounds outside the lab limits?	\boxtimes			
		1.	If yes, are the analytes above the lab limits?				
		2.	Below the lab limits?				The MS recovery for TOC was biased low a outside QC limits in the batch QC from SDG 10365379.
		3.	Is the source sample also flagged for compounds outside lab limits?				The source sample was not included with th samples in this SDG.
b.			e duplicate reported for the analytical ? If no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the mits?	\boxtimes			
	ii.		has the associated source sample flagged?				
C.	Wha	at is the	e impact of failed QC on this project?				
Met	thod	Dete	ection Limits/Report Limits				
Que	stion			Yes	No	N/A	Comments
a.	clea	rly liste	ng and/or method detection limits ed on the report for all analyses? (may led quantitation limits)				

Α

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

651-296-6300 • 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • n-ean2-11h • 10/20/11 Page 3 of 3

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10365390

Sample Receipt Date: 10/07/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: 108002 State Cert #: 027-053-137

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

This report has been reviewed by:

you haut October 24, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 24, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 29-94%. Except for three low values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates. Results obtained from the analyses of diluted sample extracts were flagged "D".

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean reference matrix or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 77-130% with relative percent differences (RPDs) generally from 0.1-19.5%. The background-subtracted recovery values obtained for 2,3,7,8-TCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDF, HpCDD, OCDF, and OCDD in the matrix spike and/or matrix spike duplicate were outside the 70-130% target range. Also, the RPD values obtained for TCDF and 1,2,3,4,6,7,8-HpCDF were above the 20% target upper limit. These deviations may be due to the levels of the affected congeners in the sample material and/or sample inhomogeneity.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Ō	Section A Required Client Information	ı:	Section B Required Project	Informa	ation:				ation lice In	C forma	ation:						Section	on D Informa	lion:			ÌĆ	3(e 5	39	Ó				
ξ١	Company: Bay West, Ll	C	Report To:	Nan	cy McD	onald		Atte	ntion:			Αc	cour	nts Pa	ayabl	е		/_Name:		ıls River	Sedime	nt Areas o	of Conce	em	Page			of	•	
Ź	Address: 5 Empire Dri	/e	Copy To: Paul F	Raym	aker			Con	npany	Nam	e:		Bay	/ Wes	st, LL	С	Facility	/_Code:	St Lo	uis Riv	er Sed				1 3		1	-		1
	St. Paul, MN 55103							Add	ress:			5	Em	pire [Drive		Facility	/_ID:	5470	23					COC#	<i></i>				
	Email To: nmcdonald@	baywest.com	Purchase Order N	0.:	10800	02		Lab (Quote	Refere	ince:		- ;	30000	01713	36	Subfac	cility_cod	e :									SLR	TR-1	
2	Phone: 6	51-291-3483	Project Name:	SLR	Sedim	ent AOCs		Lab I	Projeci	l Mana	iger;		Оу	еуеп	ni Odı	ujole							•			Si	ite Loca	tion	MI	.1
3	Requested Due Date/TAT:	Standard	Project Number:	J160	139																						STA	TE:	IVII	N
IJ,									,						`		Service.	1840		Requ	ested	Analys	sis		444.8					
0		ction E	Valid Matrix Codes MATRIX CODE			Collecti	on			-	Pres	erve	lives	S		2														
8200	Sample Location ID (sys_loc_code) **	Sample iD (sys_sample_code) 1	Orinking Water DW Waste Water W Product WW Soil/Soild P Dil SO Wipe OL Air WP rissue AR Other TS OT	MATRIX CODE	SAMPLE TYPE (G=GRAB C=COMP)	DATE	Time	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HNO3	HCI	Na,S,O,	Methanol	Other	Dioxins and furans (SW-846 829DA)	Mercury (EPA 7471B)	% Moisture										Co	mment	s
	Ex. BW15MLW-005	BW14MLW-005-0-0	.15	so	G	3/12/15	1204				T				13											П	T			
ı	1 BW16TR-001	BW16TR-001-0.0-0	.15	so	G	10/5/16	1415	3	3							1	1	1										001		
	2 BW16TR-001	BW16TR-001-0.15-		so	G	10/5/16	1421		3	\top	1	Ť	1	+		1	1	1				1			1	\Box		002		
	3 BW16TR-001	BW16TR-101-0.15-		so	G	10/5/16	1426	2		1	\dagger					1	1	·										<i>6</i> 03	,	
ı	4 BW16TR-002	BW16TR-002-0.0-0	.15	so	G	10/5/16	1510	3	3							1	1	1				1			1			604		
	5 BW16TR-002	BW16TR-002-0.30-		so	G	10/5/16	1515	6	6	\top	1					2.5	2.5	1				1							305	
l	6 BW16TR-003	BW16TR-003-0.0-0		so	G	10/5/16	1530	3		\top	†		\dagger	T		<u> </u>	1	1	-	-					+	 			<u> </u>	
	7 BW16TR-003	BW16TR-003-0.27-		so	G	10/5/16	1535	3		$^{+}$	+	T	╁	Ħ		<u> </u>	1	1		 	-	+			+	\vdash	\vdash	α	-	
		BW 101 R-003-0.27-	0.02	30	-	10/3/16	1333	3	3	+	1	+	+	\top		<u> </u>	†	'							+	\vdash			<u>_</u>	
	8				-				\dashv	\dashv	-+	+	Ť		\exists		 				_	 			+					
	10									+	\dagger	+	\dagger	+			+			 	 	1	 	1	-			-		
Ì		·								1	1		T				-					<u> </u>			†					
	11:								H	\dashv	†			T												-				
	12 ADDITIO	NAL COMMENTS	RE	LINC	JISHED I	BY / AFFILIATION	DATE		TIME			yk delt	-0.		ACCE	PTED BY	Y / AFFIL	IATION	42,574			DATE			TIME		 	SAMPLE C	ONDITIO	NS
श		₩	(hric)	V.	KKON	Bay West	10/7/11	70	₹	۲,	W	Λ.	λ -1	-	آ م	<u> </u>	<u>λ 6~2</u>	'n			10	711) <	555		4.	1	-	
ď	Reference Pace Subcontract 9/16/16	tor Order Form signed by Pa				Polson	10/2/10	<u>~</u>	ريا دورا	,				$\frac{2}{\gamma}$	<u>ا سعا</u>		<u>. w.</u>				101	7(101	<u> </u>	120			4.6	? Y	11	4
ח סו	· ·	e de la companya de	7		\ \		101710	70	7 3	<u></u>		1/	V 4 ,									17/			136	-	٠.	8	Ē	न
Ş								ļ* '		\top	* 1	<i>y -</i> 5	, 4	- 11							<u> </u>		<u> </u>	T .	<u> </u>			Received on Ice (Y/N)	Custody Sealed Cooter	Samples Intact (Y/N)
ار						SAMPLER	NAME AND SIG	NAT	URE	ily. i		ary ý			8 (d Edu		(13) A	13 JA	\$6.55.4		50,979 c	23 15		ရီ (၁	. 8	Seak	Se all
						PRINT Name	of SAMPLER:	_	h	Ľ	<u>'S</u>	$_{\perp}$	VĮ.	US.	501	1			٠,								I	3celve	stody	атріє
	•					SIGNATURE	of SAMPLER:		1/2	.C		9	$\overline{\mathcal{U}}$			DATE	Signed (MM/DD/	YY):	10	/7	116	,			1	1	ا ھ	ļŏ	» ا

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Client Name:			Project	# WO#:10365390
BayWest LLC	-			MOTE - A COUNTY 1 MIN
Courier: Fed Ex UPS	USPS		lient	
Commercial Pace SpeeDee	Other:			10365390
Tracking Number:				18303330
Custody Seal on Cooler/Box Present? Yes No		Seals Int	act? 🔎	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□Non	e 🔲	Other:	Temp Blank? Yes No
Thermometer Used: 151401163 888A91216750	4 98	e of Ice:	∕ We	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C):	rected (°C): <u>"</u>	7.2.	
Temp should be above freezing to 6°C B Correction Fact	or: <u>+C</u>	<u>.フ</u>	` Dat	te and Initials of Person Examining Contents: <u> </u>
USDA Regulated Soil (N/A, water sample) 10/7/16 Did samples originate in a quarantine zone within the United S	States: A) /	ΔR Δ7 C	Δ FI GA:	ID, LA. Did samples originate from a foreign source (internationally,
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			Yes	No including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Reg	ulated Soil	Checklis	st (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Z Yes	No	□N/A	1.
Chain of Custody Filled Out?	☑Yes ☐	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	□N/A	4.
Samples Arrived within Hold Time?	√ZYes	□No	□n/a	5.
Short Hold Time Analysis (<72 hr)?	Yes	ΔNo	□N/A	6.
Rush Turn Around Time Requested?	☐Yes	⊿Ño	□N/A	7.
Sufficient Volume?	□Yes	□No	□N/A	8.
Correct Containers Used?	⊠Yes	□No	□n/A	9.
-Pace Containers Used?	Yes	No	□N/A	
Containers Intact?	Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	⊿ N/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match-COC?	☑Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:				
All-containers needing acid/base preservation have been checked?	□Yes	ΠNο	ZÑ/A	13. ☐HNO ₃ ☐H₂SO ₄ ☐NaOH ☐HCI
All containers needing preservation are found to be in			۱۹/۸	Sample #
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	∐Yes	□No	□ le l7a	•
Exceptions: VOA, Coliform, TOC, Oil and Grease,	Пію	[_]IAO	J2M7A	Initial when Lot # of added
DRO/8015 (water) DOC	Yes	□No	□N/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes	No	□M/A	14.
Trip Blank Present?	Yes	□No	DN/A	15.
Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased):	∐Yes	∏No	JØN/A	
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Field Data Required? Yes No
Comments/Boselution				Date/Time:
comments/Resolution:				
Project Manager Review:	hu	1		Date: 40/40/40
			copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of the North Carolina DEHNR Certification Off

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-001-0.00.15

 Lab Sample ID
 10365390001

 Filename
 F161020B_07

 Injected By
 SMT

Total Amount Extracted 13.1 g Matrix Solid % Moisture 48.8 Dilution NA

10/05/2016 14:15 Dry Weight Extracted 6.71 g Collected ICAL ID Received F161011 10/07/2016 19:35 CCal Filename(s) F161020A_12 & F161020B_17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/20/2016 20:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	4.2 17.0		0.180 0.180	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 86 71
2,3,7,8-TCDD Total TCDD	1.1 12.0		0.190 J 0.190	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	65 73 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.3 38.0	1.3 	0.097 IJ 0.064 J 0.080	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	71 78 79 70
1,2,3,7,8-PeCDD Total PeCDD	1.8 24.0		0.093 J 0.093	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 52 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	6.9 16.0 5.2		0.180 J 0.099 0.100 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	61 49
1,2,3,7,8,9-HxCDF Total HxCDF	2.0 320.0		0.071 J 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.0 17.0 8.0 140.0		0.870 J 0.200 0.100 0.390	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	530.0 5.4 1000.0		0.300 0.320 J 0.310	Total 2,3,7,8-TCDD Equivalence: 20 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	320.0 690.0		1.100 1.100			
OCDF OCDD	300.0 3700.0		0.980 0.380			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-001-0.15-0.35

Lab Sample ID 10365390002 Filename F161020B_08 Injected By SMT

13.1 g **Total Amount Extracted** Matrix Solid % Moisture 46.9 Dilution NA

10/05/2016 14:21 Dry Weight Extracted 6.96 g Collected ICÁL ID Received F161011 10/07/2016 19:35 CCal Filename(s) F161020A_12 & F161020B_17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/20/2016 21:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	22.0 51.0		0.37 0.37	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 82 65
2,3,7,8-TCDD Total TCDD	6.7 31.0		0.34 0.34	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	55 67 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.5 4.9 84.0		0.26 J 0.13 J 0.19	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	62 64 70 67
1,2,3,7,8-PeCDD Total PeCDD	3.1 53.0		0.25 J 0.25	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	56 46 42
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 23.0 10.0		0.20 0.38 0.25	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	60 42
1,2,3,7,8,9-HxCDF Total HxCDF	3.7 240.0		0.37 J 0.30	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.3 58.0 19.0 410.0	 	0.39 J 0.46 0.53 0.46	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	850.0 17.0 870.0		0.42 0.65 0.53	Total 2,3,7,8-TCDD Equivalence: 55 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1300.0 2900.0		0.13 0.13			
OCDF OCDD	1200.0 22000.0		0.53 0.31 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

EDL = Estimated Detection Limit

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-101-0.15-0.35

 Lab Sample ID
 10365390003

 Filename
 F161020B_09

Injected By SMT

Total Amount Extracted 13.5 g Matrix Solid % Moisture 47.7 Dilution NA

Dry Weight Extracted 7.06 g Collected 10/05/2016 14:26 ICÁL ID F161011 Received 10/07/2016 19:35 CCal Filename(s) F161020A 12 & F161020B 17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/20/2016 21:50

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	20.0 59.0		0.62 0.62	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	81 92 72
2,3,7,8-TCDD Total TCDD	5.8 30.0		0.36 0.36	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	62 70 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.7 76.0	2.3 	0.56 PJ 0.12 J 0.34	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	62 73 73 68
1,2,3,7,8-PeCDD Total PeCDD	3.4 56.0		0.36 J 0.36	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	57 44 42
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	9.3 19.0 7.8		0.25 0.17 0.20	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	56 36 R
1,2,3,7,8,9-HxCDF Total HxCDF	2.6 150.0		0.15 J 0.19	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	8.1 67.0 23.0 500.0		0.51 0.40 0.46 0.46	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	560.0 14.0 1800.0		0.56 0.25 0.40	Total 2,3,7,8-TCDD Equivalence: 55 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	1600.0 3300.0		1.10 1.10			
OCDF OCDD	900.0 25000.0		0.60 0.76 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-002-0.0-0.15

 Lab Sample ID
 10365390004

 Filename
 F161020B_10

 Injected By
 SMT

Total Amount Extracted 15.1 g Matrix Solid % Moisture 42.9 Dilution NA

10/05/2016 15:10 Dry Weight Extracted Collected 8.62 g ICÁL ID Received F161011 10/07/2016 19:35 CCal Filename(s) F161020A_12 & F161020B_17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/20/2016 22:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.80 5.40		0.290 0.290	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 94 78
2,3,7,8-TCDD Total TCDD	0.42 5.50		0.330 J 0.330	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 79 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.46 0.66 10.00		0.270 J 0.140 J 0.200	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	79 89 87 84
1,2,3,7,8-PeCDD Total PeCDD	0.52 10.00		0.220 J 0.220	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 58 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.00 3.60 1.20		0.098 J 0.110 J 0.098 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 55
1,2,3,7,8,9-HxCDF Total HxCDF	0.59 81.00		0.130 J 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.55 4.50 1.50 34.00		0.061 J 0.097 J 0.078 J 0.079	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	110.00 1.60 240.00		0.160 0.310 J 0.230	Total 2,3,7,8-TCDD Equivalence: 5.1 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	81.00 180.00		0.190 0.190			
OCDF OCDD	91.00 1100.00		0.310 0.290			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-002-0.30-0.55

Lab Sample ID 10365390005 Filename F161020B_11 **SMT**

Injected By

13.5 g **Total Amount Extracted** Matrix Solid % Moisture 54.1 Dilution NA

6.20 g Dry Weight Extracted Collected 10/05/2016 15:15 ICAL ID Received F161011 10/07/2016 19:35 CCal Filename(s) F161020A 12 & F161020B 17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/20/2016 23:27

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	40 86		0.98 0.98	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 91 76
2,3,7,8-TCDD Total TCDD	19 160		0.55 0.55	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 73 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	47 880	84 	0.75 P 0.45 0.60	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	70 79 81 75
1,2,3,7,8-PeCDD Total PeCDD	71 490		1.00 1.00	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	55 47 34 R
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	310 1100 200		4.60 0.77 1.40	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	55 29 R
1,2,3,7,8,9-HxCDF Total HxCDF	96 14000		1.30 2.00 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	40 330 170 2600		1.30 1.30 1.30 1.30	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	28000 200 55000		0.27 E 0.52 0.39 E	Total 2,3,7,8-TCDD Equivalence: 680 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	3900 9000		0.27 0.27			
OCDF OCDD	15000 47000		2.00 0.80 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-003-0.0-0.15

 Lab Sample ID
 10365390006

 Filename
 F161020B_12

 Injected By
 SMT

Injected By SMT

Total Amount Extracted 13.7 g Matrix Solid % Moisture 39.9 Dilution NA

10/05/2016 15:30 Dry Weight Extracted Collected 8.23 g ICAL ID F161011 Received 10/07/2016 19:35 CCal Filename(s) F161020A 12 & F161020B 17 Extracted 10/17/2016 17:00 Method Blank ID 10/21/2016 00:16 **BLANK-52398** Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.70 4.60		0.40 0.40	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 94 77
2,3,7,8-TCDD Total TCDD	7.50	0.47	0.27 JJ 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	69 77 88
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.74 1.10 15.00		0.13 J 0.27 J 0.20	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 87 86
1,2,3,7,8-PeCDD Total PeCDD	0.92 14.00		0.29 J 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 64 54 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.60 8.70 2.20		0.23 J 0.19 0.23 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	63 47
1,2,3,7,8,9-HxCDF Total HxCDF	1.20 170.00		0.23 J 0.22	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.79 7.60 3.20 61.00	 	0.17 J 0.13 0.11 J 0.14	2,3,7,8-TCDD-37Cl4	0.20	91
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	240.00 2.40 480.00		0.17 0.27 J 0.22	Total 2,3,7,8-TCDD Equivalence: 9.3 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	170.00 370.00		0.50 0.50			
OCDF OCDD	110.00 1300.00		0.39 0.36			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-003-0.27-0.52

 Lab Sample ID
 10365390007

 Filename
 F161020B_13

 Injected By
 SMT

Injected By SMT

Total Amount Extracted 13.5 g Matrix Solid % Moisture 40.0 Dilution NA

10/05/2016 15:35 Dry Weight Extracted Collected 8.10 g ICAL ID Received F161011 10/07/2016 19:35 CCal Filename(s) F161020A 12 & F161020B 17 Extracted 10/17/2016 17:00 Method Blank ID **BLANK-52398** Analyzed 10/21/2016 01:05

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.00 6.00		0.31 0.31	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 88 73
2,3,7,8-TCDD Total TCDD	0.68 9.90		0.16 J 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	66 72 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.81 1.40 19.00		0.35 J 0.20 J 0.27	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 82 80 76
1,2,3,7,8-PeCDD Total PeCDD	1.20 14.00		0.32 J 0.32	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	62 49 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.00 8.80 2.60		0.19 J 0.19 0.17 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	59 44
1,2,3,7,8,9-HxCDF Total HxCDF	0.98 200.00		0.18 J 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	9.60 3.90 75.00	0.78 	0.30 JJ 0.44 0.18 J 0.31	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	280.00 2.40 550.00		0.40 0.42 J 0.41	Total 2,3,7,8-TCDD Equivalence: 9.8 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	90.00 210.00		0.32 0.32			
OCDF OCDD	130.00 1300.00		0.51 0.23			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52398 F161019A_10 20.6 g F161011

F161019A_03 & F161020A_02

Matrix Solid
Dilution NA

Extracted 10/17/2016 17:00 Analyzed 10/19/2016 21:29

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.049 0.049	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 81 64
2,3,7,8-TCDD Total TCDD	ND ND		0.060 0.060	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	58 64 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.036	0.027 0.026 JJ 0.027	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 79 76 68
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.032 0.032	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 52 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND 0.041 ND	0.047 	0.030 J 0.039 0.036 J 0.046	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	58 43 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.041 ND ND ND ND		0.038 J 0.042 0.037 0.048 0.042	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.058 ND 0.058		0.049 J 0.066 0.057 J	Total 2,3,7,8-TCDD Equivalence: 0.020 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.053 0.053			
OCDF OCDD	ND 0.210		0.120 0.160 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)
Method Blank ID

LCS-52399 F161019A_05 20.2 g

F161011 F161019A_03 & F161020A_02 BLANK-52398 Matrix Dilution Extracted Solid NA

Extracted 10/17/2016 17:00 Analyzed 10/19/2016 17:26 Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	124	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	74 87 71
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	63 71 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.3	118 128	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	85 83 79 75
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.99	99	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	67 58 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.3 1.2 1.2	130 117 118	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	64 45
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.2	118	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.1	123 119 112	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.94	94			
OCDF OCDD	2.0 2.0	2.3 2.2	114 108			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample İD Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

BW16TR-002-0.30-0.55-MS

10365390005-MS

Y161022A_04 13.5 g

Y160816A

Y161022A_02 & Y161022A_15 BLANK-52398 Matrix Solid Dilution 10

Extracted 10/17/2016 17:00 Analyzed 10/22/2016 13:23

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.38	188 D	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 D 91 D 63 D
2,3,7,8-TCDD	0.20	0.33	165 D	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	54 D 70 D 65 D
1,2,3,7,8-PeCDF	1.00	1.56	156 D	1,2,3,6,7,8-HxCDF-13C	2.00	74 D
2,3,4,7,8-PeCDF	1.00	1.55	155 D	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00	67 D 74 D 76 D
1,2,3,7,8-PeCDD	1.00	1.56	156 D	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	66 D 81 D 76 D
1,2,3,4,7,8-HxCDF	1.00	2.88	288 D	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00	97 D
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00	6.84 2.30	684 D 230 D	OCDD-13C	4.00	84 D
1,2,3,7,8,9-HxCDF	1.00	1.50	150 D	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD	1.00	1.27	127 D	2,3,7,8-TCDD-37Cl4	0.20	86 D
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00	3.27 2.26	327 D 226 D			
1,2,3,4,6,7,8-HpCDF	1.00	150.01	15001 D			
1,2,3,4,7,8,9-HpCDF	1.00	2.41	241 D			
1,2,3,4,6,7,8-HpCDD	1.00	29.13	2913 D			
OCDF OCDD	2.00 2.00	71.10 282.99	3555 D 14150 D			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. D = Result obtained from analysis of diluted sample

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample İD Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

BW16TR-002-0.30-0.55-MSD

10365390005-MSD

Y161022A_05 13.5 g Y160816A

Y161022A_02 & Y161022A_15 BLANK-52398 Matrix Solid Dilution 10

Extracted 10/17/2016 17:00 Analyzed 10/22/2016 14:04

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.46	232 D	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 D 82 D 54 D
2,3,7,8-TCDD	0.20	0.27	136 D	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	49 D 60 D 73 D
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	1.59 1.53	159 D 153 D	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00	64 D 66 D
,-, , ,-				1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	69 D 72 D
1,2,3,7,8-PeCDD	1.00	1.56	156 D	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	59 D 70 D
1,2,3,4,7,8-HxCDF	1.00	2.85	285 D	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	73 D 84 D
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00	7.58 2.38	758 D 238 D	OCDD-13C	4.00	79 D
1,2,3,7,8,9-HxCDF	1.00	1.57	157 D	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.00 1.00	1.40 3.27	140 D 327 D	2,3,7,8-TCDD-37Cl4	0.20	80 D
1,2,3,7,8,9-HxCDD	1.00	2.39	239 D			
1,2,3,4,6,7,8-HpCDF	1.00	187.07	18707 D			
1,2,3,4,7,8,9-HpCDF	1.00	2.51	251 D			
1,2,3,4,6,7,8-HpCDD	1.00	27.96	2796 D			
OCDF OCDD	2.00 2.00	84.77 255.65	4239 D 12783 D			
טטטט	2.00	200.00	12103 D			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. D = Result obtained from analysis of diluted sample

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - Bay West, Inc.

Client Sample ID
Lab Sample ID

MS ID

MSD ID

BW16TR-002-0.30-0.55

10365390005 10365390005-MS 10365390005-MSD Sample Filename MS Filename MSD Filename F161020B_11 Y161022A_04 Y161022A_05 Dry Weights

Sample Amount 6.20 g MS Amount 6.2 g MSD Amount 6.2 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	39.853	0.20	0.38	0.46	21.1	64	109	51.2
2,3,7,8-TCDD	18.918	0.20	0.33	0.27	19.5	106	77	31.9
1,2,3,7,8-PeCDF	0.000	1.00	1.56	1.59	1.5	104	107	2.2
2,3,4,7,8-PeCDF	46.984	1.00	1.55	1.53	1.6	126	124	2.0
1,2,3,7,8-PeCDD	71.014	1.00	1.56	1.56	0.1	112	112	0.2
1,2,3,4,7,8-HxCDF	311.337	1.00	2.88	2.85	1.0	95	92	3.2
1,2,3,6,7,8-HxCDF	1060.957	1.00	6.84	7.58	10.4	26	101	117.4
2,3,4,6,7,8-HxCDF	200.199	1.00	2.30	2.38	3.4	106	114	7.3
1,2,3,7,8,9-HxCDF	96.088	1.00	1.50	1.57	4.2	90	97	6.9
1,2,3,4,7,8-HxCDD	40.310	1.00	1.27	1.40	9.6	102	115	11.8
1,2,3,6,7,8-HxCDD	334.656	1.00	3.27	3.27	0.0	119	119	0.1
1,2,3,7,8,9-HxCDD	172.069	1.00	2.26	2.39	5.4	119	132	10.0
1,2,3,4,6,7,8-HpCDF	28403.836	1.00	150.01	187.07	22.0	0	1107	200.0
1,2,3,4,7,8,9-HpCDF	197.194	1.00	2.41	2.51	4.2	119	129	8.4
1,2,3,4,6,7,8-HpCDD	3927.122	1.00	29.13	27.96	4.1	480	362	27.9
OCDF	15071.536	2.00	71.10	84.77	17.5	0	0	0.0
OCDD	46570.371	2.00	282.99	255.65	10.2	0	0	0.0

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable

NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra
Pe = Penta
Hx = Hexa
Hp = Hepta
O = Octa

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16113. Also see the MPCA Laboratory Quality Control (QC) and Data Policy: http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

roje	ct nan	ne: _	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365385
/ork	order	numl	per: 3000017136		Repo	rt date	(mm/dd/yyyy): 10/24/2016
	Pres	serv	ation				
			th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environn				
_	Ques	tions	;	Yes	No	N/A	Comments
_	a.	Is th	ere a chain of custody (COC) with the report?				
_	b.	Is there a sample condition form with the report?					
_	C.	Wer	e there samples requiring preservation?		\boxtimes		
_		i.	If so, were they properly preserved?			\boxtimes	
_		ii.	Were they received on ice?	\boxtimes			
	d.	Were samples received in the correct containers?					
		i.	Was there enough sample volume/weight to complete all requested analyses?				
_		ii.	Was there enough extra sample collected to complete method required batch QC?				
_	e.		re samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
_	f.		there notes about sample condition or holding sissues on the COC? Explain impact.		\boxtimes		
	g.	repo	nere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				
•	Cali	brat	ion				
_	Ques	tion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate pration problems for any analyses? If yes, ain the data impact.				The response obtained for the native OCDF in calibration standard analysis U161017A_08 was outside the target

							range. As specified in Pace procedures, the average of the daily response factors for this compound was used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables. No data were qualified.
3.	Blar	nks					
	Ques	tion		Yes	No	N/A	Comments
	a.		any of the analyses contain samples for field ip blanks?		\boxtimes		
		i.	If yes, are there target analytes present above the reporting limit?				
		ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
	b.		method blanks for any analyses contain target ytes above the reporting limit?		\boxtimes		Low-level concentrations of 1,2,3,4,6,7,8-HpCDF, Total HpCDF, 1,2,3,4,6,7,8-HpCDDF,Total HpCDD, and OCDD were detected in the method blank 52337.
		i.	If yes, are the same compounds present in the samples?			\boxtimes	
		ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.		\boxtimes		All sample results were > 10x the blank concentrations.
4.	Surr	roga	tes				
4.	Surr		tes	Yes	No	N/A	Comments
4.		stion Are	there organic analyses that contain surrogate pounds?	Yes	No	N/A	Comments Dioxins/furans have internal standards instead of surrogates.
4.	Ques	Are com	there organic analyses that contain surrogate		No	N/A	Dioxins/furans have internal standards instead
4.	Ques a.	Are com	there organic analyses that contain surrogate pounds?	\boxtimes	No 🗆		Dioxins/furans have internal standards instead
4.	Ques a.	Are com	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in		No □		Dioxins/furans have internal standards instead
4.	a.	Are com	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These				Dioxins/furans have internal standards instead
4.	a.	Are i.	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These ald have a data qualifier) If yes, are the surrogates above the lab				Dioxins/furans have internal standards instead
4.	a.	Are com Are i. Are shou	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These all have a data qualifier) If yes, are the surrogates above the lab limits?				Dioxins/furans have internal standards instead
 4. 5. 	a. b.	Are com Are i. Are shou ii.	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These ald have a data qualifier) If yes, are the surrogates above the lab limits? Below the lab limits? Explain what this could mean for the				Dioxins/furans have internal standards instead of surrogates.
	a. b.	Are com Are i. Are should ii. iii.	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These lid have a data qualifier) If yes, are the surrogates above the lab limits? Below the lab limits? Explain what this could mean for the affected samples.				Dioxins/furans have internal standards instead of surrogates.
	a. b. c.	Are com Are i. Are should ii. iii. orat stion Are report there	there organic analyses that contain surrogate pounds? the lab recovery limits specified on the report? Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? there surrogates outside lab limits? (These lid have a data qualifier) If yes, are the surrogates above the lab limits? Below the lab limits? Explain what this could mean for the affected samples.	⊠ ⊠ □ □ □ □	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Dioxins/furans have internal standards instead of surrogates. Duplicate (LCS/LCSD)

	b.			CS/LCSD compounds outside lab	П		П	
		i.		, are the analytes above the lab limits?				
		ii.	Belov	v the lab limits?			\boxtimes	
		iii.		Il samples in the preparation batch also ed for the same analyte(s)?				
		iv.		in what this could mean for the ed samples.				
6.	Mati	rix S	Spike	/Matrix Spike Duplicate/Sam	ple D	uplic	ate ((MS/MSD/Dup)
	Ques	tion			Yes	No	N/A	Comments
	а.			lytical methods used require an MS)? If no, skip to 6.b.				
		i.	Have prepa	the required matrix spikes been ared and reported?				MS/MSD analysis was performed on sample BW16TR-006-0.0-0.15.
		ii.	If no, as to	is there and explanation in the report why?				
		iii.		ne lab process an alternate spiked le (such as LCSD) instead?				
		iv.	Are th	ne lab limits specified on the report?				
		V.	comp	e limits seem reasonable when ared to the suggested guidelines in the A QC Policy?			\boxtimes	
		vi.	Are th	nere compounds outside the lab limits?				
			1.	If yes, are the analytes above the lab limits?				Background-subtracted recoveries for 1,2,3,4,6,7,8-HpCDF and OCDD in the matrix spike and/or matrix spike duplicate were above the 70-130% target range.
			2.	Below the lab limits?				
			3.	Is the source sample also flagged for compounds outside lab limits?				
	b.			e duplicate reported for the analytical If no, skip to 6.c.			\boxtimes	MS/MSD RPDs were reviewed for precision.
		i.	Is the	RPD for the duplicate pair within the nits?				The RPD for 1,2,3,4,6,7,8-HpCDF was above the 20% target upper limit.
		ii.		has the associated source sample flagged?		\boxtimes		
	C.	Wha	at is the	impact of failed QC on this project?				Results for 1,2,3,4,6,7,8-HpCDF and OCDD were qualified "J" as estimated in sample BW16TR-006-0.0-0.15.
7.	Met	hod	Dete	ction Limits/Report Limits				
	Ques	tion			Yes	No	N/A	Comments
	a.	clea	rly liste	ng and/or method detection limits d on the report for all analyses? (may led quantitation limits)				

Additional comments on report:

(1) Samples BW16TR-005-0.23-0.48 and BW16TR-105-0.23-0.48 were collected as blind field duplicates. All RPDs were within the QC guideline of ≤ 50% except for the following. RPDs for 2,3,7,8-TCDF (95.6%), Total TCDF (69.5%), 2,3,7,8-TCDD (79.1%), 2,3,4,7,8-PeCDF (61.8%), 1,2,3,7,8-PeCDD (69.3%), 1,2,3,4,7,8-HxCDF (53.2%), 1,2,3,6,7,8-HxCDF (54.8%), 2,3,4,6,7,8-HxCDF (64.3%), 1,2,3,7,8,9-HxCDF (76.4%), Total HxCDF (84.4%), 1,2,3,4,7,8-HxCDD (75.9%), 1,2,3,6,7,8-HxCDD (74.0%), 1,2,3,7,8,9-HxCDD (56.2%), Total HxCDD (77.2%), 1,2,3,4,6,7,8-HpCDF (95.6%), 1,2,3,4,7,8,9-HpCDF (90.9%), Total HpCDF (88.0%), 1,2,3,4,6,7,8-HpCDD (104%), Total HpCDD (107%), OCDF (101%), and OCDD (123%) were high and were > 50%. Results for 2,3,7,8-TCDF, Total TCDF, 2,3,7,8-TCDD, 2,3,4,7,8-PeCDF, 1,2,3,7,8-PeCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HxCDF, Total HxCDF, 1,2,3,4,7,8-HxCDF, Total HxCDF, 1,2,3,4,6,7,8-HxCDD, 1,2,3,4,6,7,8-HyCDF, Total HxCDF, Total HyCDF, 1,2,3,4,6,7,8-HpCDD, Total HpCDD, OCDF, and OCDD were qualified "J" as estimated in samples BW16TR-005-0.23-0.48 and BW16TR-105-0.23-0.48.

Sample BW16TR-007-0.26-0.51 and BW16TR-107-0.26-0.51 were collected as blind field duplicates. All RPDs were within the QC guideline of \leq 50% except for the following. RPDs for 1,2,3,7,8-PeCDF (61.3%), 1,2,3,6,7,8-HxCDF (75.9%), 1,2,3,4,6,7,8-HpCDF (57.6%),OCDF (58.1%), and OCDD (108%). Results for 1,2,3,7,8-PeCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, OCDF, and OCDD were qualified "J" as estimated in samples BW16TR-007-0.26-0.51 and BW16TR-107-0.26-0.51.

- (2) Interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained. All results flagged "I" were qualified "J" as estimated by the reviewer. Concentrations below the calibration range were flagged "J" as estimated by the laboratory.
- (3) Level II reports were reviewed, so calibrations and raw data were not reviewed.

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats <u>p-eao2-11b</u> • 10/20/11 • 10/20/11

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10365385

Sample Receipt Date: 10/07/2016

Client Project #: J160139 SLR Sediment AOC

Client Sub PO #: 108002 State Cert #: 027-053-137

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

This report has been reviewed by:

you haut October 24, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 24, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on twelve samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 47-96%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batch using clean reference matrix or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 76-127% with relative percent differences (RPDs) generally from 0.1-8.0%. The background-subtracted recovery values obtained for 1,2,3,4,6,7,8-HpCDF and OCDD in the matrix spike and/or matrix spike duplicate were above the 70-130% target range. Also, the RPD value obtained for 1,2,3,4,6,7,8-HpCDF was above the 20% target upper limit. These deviations may be due to the levels of the affected congeners in the sample material and/or sample inhomogeneity.

The response obtained for the native OCDF in calibration standard analysis U161017A_08 was outside the target range. As specified in our procedures, the average of the daily response factors for this compound was used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10365385

Appendix A

Sample Management

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

<u>ہ</u>	Section A Required Client Informatio		Section B Required Proj	ect Inform	nation:					ction		ation:							ection QuiS In		ion:		•							10	36	538	ر ک
pol	Company: Bay West, L Address: 5 Empire Dr		Report To:		ncy McE	Donald				ntion			Ac	coun					acility_f		St Lou	s River	Sedime	nt Areas	of Conce	em	Page	e		1	of		1
	St. Paul, MN 55103		Copy To: Pa	ul Rayn	naker		ļ		_		y Nar	ne:		Bay					acility_0		St Lo	ris Riv	er Sec	!						'			'
0 I	and To: nmcdonaid@	5ha	Purchase Orde	r No :	4000	20	<u></u>		_	ress:			5	Emp				丄	acility_I		54702	23					coc	. #			SLR-	TR-2	
		651-291-3483	Project Name:		10800				L		Refer				0000			SL	ubfacilil	ty_code	e: 						L. Intal			istorio de 17 al 17			
ᇊ	Requested Due Date/TAT		Project Numbe	_		ent AOCs	ļ		Lab	riojoc	at Midai			Oye	yem	i Od	tujole	-					············						-Site L	Locatio	7	MN	V
85L				· J16	0139				Ц,								85158E8A	Carlo CO	w/2200v	etrev aleska	5.579.525.79	2 – 1892.		Market en	Streete Side	taawaan			ALASSA PER IN	STATE			
385		ection E Client Information	Valid Matrix Codes MATRIX CO	DE			Collection	on .				Pres	erva	tives			6. 21					requ	Jestec	Апалу	sis :								
8290	Sample Location ID (sys_loc_code)	Sample ID (sys_sample_code)	Drinking Water DW Waste Water Worduct Soil/Soild Oil Soil Soil Wipe OL Air WP Tissue AR Other TS OT	MATRIX CODE	SAMPLE TYPE (G=GRAB G=COMP)	DATE		Time	# OF CONTAINERS	Unpreserved	H₂SO₄	HNO ₃	HCI	Na ₂ S ₂ O ₃	Methanol	Other	Dioxins and furans (SW-846 8290A)	,	Mercury (EPA 7471B)	% Moisture									į,		Cor	ments	s
	Ex. BW15MLW-005	BW14MLW-005-0-	0.15	so	G	3/12/15		1204				\top	1		П		6							1	\top		T	\top		T	4	·	**************************************
	1 BW16TR-004	BW16TR-004-0.0-0	0.15	so	G	10/7/16		1040	э	3	T					7	1		1	1										T	à	C	ا ن
Γ	2 BW16TR-004	BW16TR-004-0.21	-0.46	so	G	10/7/16		1045	3								1	T	1	1						\top		\top		T	3		02
	3 BW16TR-005	BW16TR-005-0.0-0	0.15	so	G	10/7/16		1100	э	3							1	1	1	1				1	†	<u> </u>	1	1			4		<u>v3</u>
Ī	4 BW16TR-005	BW16TR-005-0.23	J-0.48	so		10/7/16		1105	3	П						5000000			1	1 .					1	1	\dagger	+	-	T	5		<u> المحادر</u>
Ī	5 BW16TR-005	BW16TR-105-0.23		so		10/7/16		1110	3	\Box		+	_	\top		in Juliania	(i) (i) (ii)		5.	1			 		t	\dagger	+	+		\vdash	E		25
	6 BW16TR-006	BW16TR-006-0.0-0	•	so	—	10/7/16		1130	6			\dagger	+				2.5		2.5	1					<u> </u>	+	T	†	1	MS/MS	-	_	(V)
	7 BW16TR-006	BW16TR-006-0.15		so		10/7/16		1135	3	3		1	+	1	Н		2.0		1	1				\vdash		 	+	+	+	IVIONVIC		-0	00 <u>6</u> 007
	8 BW16TR-007	BW16TR-007-0.0-0		so		10/7/16		1150		3		+	\dagger		H	-		_					 	1	+		+	+	+	\vdash			iub
t	9 BW16TR-007	BW16TR-007-0.26							3			+	+	+	H	—	1	1	1	1			ļ 	 	+	-	+	+	+	\vdash		to i	
- I	10 BW16TR-007	BW16TR-107-0.26	•	so	1	10/7/16	İ	1155	3		-	+	+	+		_		T	1	1					+-		+	+	-	 			CNO
- 1				so		10/7/16		1200	3					+	\dashv		a 1		1	1			 	 	+	 	+	+	+	├─			0(1
h	11 BW16TR-009 12 BW16TR-010	BW16TR-009-0.0-0		so		10/7/16		1225	3		\dashv	+	+	+	+		1	Ť	1	1				-	\vdash	\vdash	+-	+	+	⊢		<u> </u>	
╁		BW16TR-010-0.0-0		SO RELINGI		10/7/16 Y / AFFILIATIO	DN .	1240 DATE		3 TIME		Vision Co.	inie.	28000		CCE	1 PTED E		1 FFILIA	1 TION	10 CO 10	Gradi		DATE	Entra att	14200	TIME	e Carriery		SAN	PLE COI		
age			hris	Mex	San /	Boule	lect	10/1/16	_	, ,	<u> </u>			۷.	υc	_ F	26/	الما	o h				Į0	1-111		١	55	5	4	.9	ન	H	7
	teference Pace Subcontrac /16/16	ctor Order Form signed by F				olson		white	1	D	6		2	$\overline{}$				_						7/1			700			,પૂં	1		
50			a	$\overline{}$				101716	1	f 31	, T	1/	1	-7	N	-	H	7	CE				10.	/7/	6		135				Î	Te le	1
of 25									1			7		D	\mathbb{Z}	16	1		-				10	7-1	6		13		7	•	celved on Ice (Y/N)	g Coc	umples Intact (Y/N)
QI-					-	124	750 400	IAME AND SIG	NAT	URE	Î		//			Š4		Wer at			776 S			Jenij	A STATE	學達		a ren		ლენე ″	Mg gw	Sealed (Y/N)	s Inta
						PRI	NT Name	of SAMPLER:	_,	-	ng	įį	<u> </u>	H	2	<u>5</u> 5	0	1				/		***					_		Receive	ustody	Sample

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

Courier:	Sample Condition Client Name: Upon Receipt	1	Pr	oject	* WO#: 10365385
Contraction Color	<u> </u>	 -			
Contraction Color	□160 EX □1013	_	Clier	nt	
Custody Seal on Cooler/Box Present? Yes		Other:		_	
Pecking Material: Bubble Wrap Albubble Blag None Other: Temp Blank? Albubble Blag None Other: Temp Blank? Albubble Blag None Other: Temp Blank? Albubble Blag Basancias 310098 None Samples on lee, cooling process has begunded for the process of the proces	iracking number:				
Thermometer Used: 151401155	Custody Seal on Cooler/Box Present? Yes No	Sea	als Intact	? · [X	Yes No Optional: Proj. Due Date: Proj. Name:
Used:	Packing Material: Bubble Wrap Bubble Bags	□None	□Oth	er:	Temp Blank? ☑ Yes ☐ No
Temp should be above freezing to 6°C Correction Factor: Or Date and Initials of Person Examining Contents: \\ \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Used: \$\infty\$ 151401164 \$\infty\$ B88A014331009	98 TAPE 0		•	
USDA Regulated Soil M/A, water sample) Did samples originate in a quarratine zone within the United States: AL, AR, AZ, CA, FL, GA, ID, LA. Side samples originate from a foreign source (internationally, MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? Yes No NM					
Did samples originate in a quarantine zone within the United States: Al, AR, AZ, CA, E, CA, ID, LA. NS, NC, NM, NY, OK, OR, SC, NT, NY OX (check maps)? If Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. Chain of Custody Present? Chain of Custody Present? Chain of Custody Relinquished? Chain of Custody Relinquished? Chain of Custody Relinquished? Sampler Name and/or Signature on COC? Sampler Name and/or Signature on COC? Sampler Name and/or Signature on COC? Syres No N/A Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hpl? Pres Containers Used? Correct Containers Used? Correct Containers Used? Correct Containers Used? Correct Containers Used? Correct Containers Used? Containers Intact? Includes Date/Time/IO/Analysis Matrix: All containers needing and/base preservation have been checked? All containers needing and/base preservation have been checked? All containers needing and/base preservation are found to be in compliance with PA recommendation? (HNOs, N.Y. OK OK) PS Suifide, NaOH>12 Cyanide) Pres Containers (NGC): Initial when Lot # of added completed: Preservative: Initial when Lot # of added completed:		Dr:		vat	e and initials of Person Examining Contents: $\frac{\sqrt{yy}-\sqrt{6-7-1}}{2}$
Chain of Custody Present?	Did samples originate in a quarantine zone within the United S MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			Yes	No including Hawaii and Puerto Rico)?
Chain of Custody Filled Out? Chain of Custody Relinquished? Sampler Name and/or Signature on COC? Samples Arrived within Hold Time? Sives No Ni/A 4. Samples Arrived within Hold Time? Sives No Ni/A 5. Short Hold Time Analysis (+72 hr)? Sufficient Volume? Correct Containers Used? Pace Containers Used? Pace Containers Used? Containers Intact? Sample Labels Match COC? Includes Date/Time/ID/Analysis Matrix: 5 All containers needing acid/base preservation have been checked? All containers needing acid/base preservation have been compeliance with EPA recommendation? All containers needing preservation are found to be in compilance with EPA recommendation? All containers needing preservation are found to be in compilance with EPA recommendation? All containers needing preservation are found to be in compilance with EPA recommendation? Press No Ni/A Sample # Lot # of added Date: 10/24/116					COMMENTS:
Chain of Custody Relinquished? Sampler Name and/or Signature on COC? Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr)? Short Hold Time Analysis (<72 hr)? Sufficient Volume? ceived for Dissolved Tests?	Chain of Custody Present?	Yes	No []N/A	1.
Sampler Name and/or Signature on COC? Syes No N/A 4. Samples Arrived within Hold Time? Syes No N/A 5. Short Hold Time Analysis (<72 hr)? Pyes SNO N/A 6. Rush Turn Around Time Requested? Syes No N/A 7. Sufflicient Volume? Correct Containers Used? Syes No N/A 8. Correct Containers Used? Syes No N/A 9. Space Containers Used? Containers Intact? Syes No N/A 10. Filtered Volume Received for Dissolved Tests? Syes No N/A 11. Note if sediment is visible in the dissolved container Sample Labels Match COC? Syes No N/A 12. Includes Date/Time/ID/Analysis Matrix: 1. All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (IHNO3, HSO3, HCIC2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC Headspace in VOA Vials (>6mm)? Yes No SyN/A 14. Trip Blank Present? Project Manager Review: Wes No SyN/A 15. Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Date/Time: Date: 10/24/16	Chain of Custody Filled Out?	∑ Yes [No []N/A	2,
Samples Arrived within Hold Time? Sives No Ni/A 5. Short Hold Time Analysis (<72 hr)? Yes SiNo Ni/A 6. Rush Turn Around Time Requested? Yes SiNo Ni/A 7. Sufficient Volume? Sives No Ni/A 8. Correct Containers Used? Sives No Ni/A 9. -Pace Containers Used? Yes No Ni/A 10. Filtered Volume Received for Dissolved Tests? Yes No Ni/A 11. Note if sediment is visible in the dissolved container Yes No Ni/A 12. Filtered Volume Received for Dissolved Tests? Yes No Ni/A 12. All containers needing acid/base preservation have been checked? Yes No Ni/A 13. HNO3 H2504 NaOH HCl Chain of Custody Relinquished?	Yes [No []N/A	3.	
Short Hold Time Analysis [<72 hr]?	Sampler Name and/or Signature on COC?	∑ V/es [No 🗆	N/A	4.
Rush Turn Around Time Requested? Sufficient Volume? Sufficient Volume? Sufficient Volume? Sufficient Volume? Sufficient Volume Received for Dissolved Tests? Sample Labels Match COC? Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time/ID/Analysis Matrix: Includes Date/Time: Includes Date/Time: Includes Date/Time: Includes Date/Time: Includes Date/Ine/ID/Analysis Matrix: Includes Date/Ine/ID/Analysis Inter/Ine/ID/Analysis Matrix: Includes Date/Ine/Ine/Ine/Ine/Ine/Ine/Ine/Ine/Ine/In	Samples Arrived within Hold Time?	Yes [No []Ņ/A	5.
Sufficient Volume? Sives No N/A 8.	Short Hold Time Analysis (<72 hr)?	Yes	No []N/A	6.
Correct Containers Used? -Pace Containers Used? -Pace Containers Intact?	Rush Turn Around Time Requested?	Yes	No []N/A	7.
-Pace Containers Used? Yes No N/A 10.	Sufficient Volume?	_XiYes [No []N/A	8.
Containers Intact?	Correct Containers Used?	∑ Yes □	No 🗆]N/A	9.
Filtered Volume Received for Dissolved Tests? Yes	-Pace Containers Used?	Z Yes]No []N/A	
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H,SO4, HCk2; NaOH >> Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC Headspace in VOA Vials (>6mm)? Trip Blank Present? Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Project Manager Review: All containers needing acid/base preservation have been checked? No M/A 13.	Containers Intact?	∑aYes	No .	N/A	10.
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H.SO4, HCl<2; NaOH >> Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC Headspace in VOA Vials (>6mm)? Trip Blank Present? Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Project Manager Review: All containers needing acid/base preservation have been checked? Yes	Filtered Volume Received for Dissolved Tests?	Yes	No 🔽	łn/a	11. Note if sediment is visible in the dissolved container
All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, HCIC2; NaOH >9 Sulfide, NaOH>12 Cyanide)	Sample Labels Match COC?	ZZÎŶes ☐			
All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, HCI<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC Headspace in VOA Vials (>6mm)? Trip Blank Present? Trip Blank Custody Seals Present? Project Manager Review: Project Manager Review: All containers needing preservation are found to be in completed: Sample # Sample #	-Includes Date/Time/ID/Analysis Matrix: 54	, –			
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	All containers needing acid/base preservation have been				13 DHNO DH.SO DN2OH DUG
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)		Yes]No [2]	ĬN/A	
Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC	compliance with EPA recommendation?				Sample #
DRO/8015 (water) DOC	(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	☐ Yes ☐]N∘ [Z̄	N/A	1911
Headspace in VOA Vials (>6mm)? Yes	DRO/8015 (water) DOC	□Yes □	No M	ÍN/A	
Trip Blank Present? Yes	Headspace in VOA Vials (>6mm)?				
Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Project Manager Review: Date: 10/24/16	Trip Blank Present?	☐Yes ☐	. (-		15.
Pace Trip Blank Lot # (if purchased):	Trip Blank Custody Seals Present?	☐Yes ☐]No [∑	N/A	
Person Contacted:	Pace Trip Blank Lot # (if purchased):				
Project Manager Review: Carolisme Tout Date: 10/24/16					
Project Manager Review: Carolyme Tout Date: 10/24/16	——————————————————————————————————————				Date/ (Ime:
	Comments/Resolution:	, <u>.</u>			
	^	-			· · · · · · · · · · · · · · · · · · ·
	Project Manager Roviews	7114	1		10/24/16
		mpliance samp	√ les, a copy	of this	

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-004-0.0-0.15

 Lab Sample ID
 10365385001

 Filename
 U161013A_11

 Injected By
 BAL

Total Amount Extracted 14.9 g Matrix Solid % Moisture 36.5 Dilution NA

9.46 g Dry Weight Extracted Collected 10/07/2016 10:40 U161011 ICAL ID Received 10/07/2016 19:35 U161013A_03 & U161013A_14 CCal Filename(s) Extracted 10/11/2016 17:25 Method Blank ID **BLANK-52337** 10/13/2016 18:04 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.61 1.60		0.200 J 0.360	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 88 73
2,3,7,8-TCDD Total TCDD	ND 2.00	_	0.190 0.420	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 89 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.54 6.60	0.26 	0.190 J 0.140 J 0.220	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	63 67 60 77
1,2,3,7,8-PeCDD Total PeCDD	0.26 5.90		0.190 J 0.300	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 64 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.40 3.00 0.96 67.00	0.40	0.130 J 0.220 J 0.120 J 0.130 J 0.200	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4-6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	83 56 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.42 2.10 0.90 21.00	 	0.150 J 0.180 J 0.190 J 0.210	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	100.00 190.00	0.85	0.220 0.280 JJ 0.320	Total 2,3,7,8-TCDD Equivalence: 3.0 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	38.00 82.00		0.086 0.230			
OCDF OCDD	39.00 450.00		0.250 0.310			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-004-0.21-0.46

 Lab Sample ID
 10365385002

 Filename
 U161013A_12

 Injected By
 BAL

Total Amount Extracted 14.7 g Matrix Solid % Moisture 39.8 Dilution NA

Dry Weight Extracted 8.85 g Collected 10/07/2016 10:45 ICÁL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A 03 & U161013A 14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 18:51

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.60 18.00		0.17 0.17	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 91 75
2,3,7,8-TCDD Total TCDD	1.20 7.90		0.16 0.16	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	65 92 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.54 11.00	0.85 	0.31 J 0.16 J 0.23	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	56 65 63 76
1,2,3,7,8-PeCDD Total PeCDD	0.62 12.00		0.19 J 0.19	1,2,3,4,7,6-11XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 62 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.60 3.20 1.70		0.21 J 0.17 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 58
1,2,3,7,8,9-HxCDF Total HxCDF	0.74 96.00		0.22 J 0.19	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 13.00 3.30 88.00		0.11 J 0.11 0.14 J 0.12	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	110.00 3.90 350.00		0.22 0.29 J 0.26	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	370.00 740.00		0.53 0.53			
OCDF OCDD	200.00 4400.00		0.26 0.21			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-005-0.0-0.15

 Lab Sample ID
 10365385003

 Filename
 U161013B_02

 Injected By
 BAL

Total Amount Extracted 15.6 g Matrix Solid % Moisture 51.3 Dilution NA

Dry Weight Extracted 7.60 g Collected 10/07/2016 11:00 ICAL ID U161011 Received 10/07/2016 19:35 CCal Filename(s) U161013A 14 & U161013B 14 Extracted 10/11/2016 17:25

CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 21:59

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.10 9.80		0.10 0.10	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 87 72
2,3,7,8-TCDD Total TCDD	0.56 8.40		0.11 J 0.11	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	67 91 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.86 1.60 22.00	 	0.11 J 0.13 J 0.12	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	62 67 60 77
1,2,3,7,8-PeCDD Total PeCDD	16.00	0.90	0.11 IJ 0.11	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 63 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.00 11.00 2.90		0.16 J 0.15 0.14 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 54
1,2,3,7,8,9-HxCDF Total HxCDF	1.50 270.00		0.14 J 0.15	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.87 9.10 3.70 79.00	 	0.15 J 0.22 0.25 J 0.21	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	470.00 3.60 890.00		0.59 0.48 J 0.53	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	150.00 310.00		0.19 0.19			
OCDF OCDD	170.00 1600.00		0.29 0.34			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-005-0.23-0.48

 Lab Sample ID
 10365385004

 Filename
 U161013B_03

 Injected By
 BAL

Total Amount Extracted 15.8 g Matrix Solid % Moisture 44.1 Dilution NA

8.83 g Dry Weight Extracted Collected 10/07/2016 11:05 ICAL ID U161011 Received 10/07/2016 19:35 U161013A 14 & U161013B 14 CCal Filename(s) Extracted 10/11/2016 17:25 Method Blank ID **BLANK-52337** Analyzed 10/13/2016 22:46

Native Conc **EMPC EDL** Internal ng's Percent **Standards Isomers** ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 1.80 0.160 2.00 62 **Total TCDF** 9.20 0.160 2,3,7,8-TCDD-13C 2.00 84 1,2,3,7,8-PeCDF-13C 2.00 69 2.00 2,3,7,8-TCDD 0.52 0.110 J 2,3,4,7,8-PeCDF-13C 64 8.30 1,2,3,7,8-PeCDD-13C 87 Total TCDD 0.110 2.00 1,2,3,4,7,8-HxCDF-13C 2.00 68 1,2,3,7,8-PeCDF 0.67 1,2,3,6,7,8-HxCDF-13C 63 0.150 2.00 64 2,3,4,7,8-PeCDF 0.95 0.075 2,3,4,6,7,8-HxCDF-13C 2.00 J 59 Total PeCDF 16.00 0.110 1,2,3,7,8,9-HxCDF-13C 2.00 75 1,2,3,4,7,8-HxCDD-13C 2.00 57 1,2,3,7,8-PeCDD 0.77 0.110 2.00 1,2,3,6,7,8-HxCDD-13C Total PeCDD 15.00 0.110 1,2,3,4,6,7,8-HpCDF-13C 2.00 61 1,2,3,4,7,8,9-HpCDF-13C 2.00 61 2.90 2.00 1,2,3,4,7,8-HxCDF 0.140 1,2,3,4,6,7,8-HpCDD-13C 77 5.70 0.170 51 1,2,3,6,7,8-HxCDF OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 1.90 0.110 1,2,3,7,8,9-HxCDF 0.85 0.150 1,2,3,4-TCDD-13C 2.00 NA J Total HxCDF 130.00 0.140 1,2,3,7,8,9-HxCDD-13C 2.00 NA 0.63 1,2,3,4,7,8-HxCDD 0.130 2,3,7,8-TCDD-37Cl4 0.20 78 6.90 0.150 1,2,3,6,7,8-HxCDD 3.20 1,2,3,7,8,9-HxCDD 0.170 J Total HxCDD 62.00 0.150 1,2,3,4,6,7,8-HpCDF 180.00 0.210 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF 2.10 0.340 J Equivalence: 7.3 ng/Kg (Using 2005 WHO Factors) Total HpCDF 360.00 0.280 1,2,3,4,6,7,8-HpCDD 110.00 0.160 Total HpCDD 230.00 0.160

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

0.310

0.260

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

76.00

1100.00

OCDF

OCDD

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-105-0.23-0.48

 Lab Sample ID
 10365385005

 Filename
 U161013B_04

 Injected By
 BAL

Total Amount Extracted 15.3 g Matrix Solid % Moisture 42.1 Dilution NA

Dry Weight Extracted 8.86 g Collected 10/07/2016 11:10 ICÁL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 23:32

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.1 19.0		0.12 0.12	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 85 67
2,3,7,8-TCDD Total TCDD	1.2 12.0		0.12 0.12	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 84 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.1 1.8 24.0		0.29 J 0.14 J 0.22	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	63 66 57 71
1,2,3,7,8-PeCDD Total PeCDD	1.5 21.0		0.14 J 0.14	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 58 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.0 10.0 3.7		0.24 J 0.16 0.16 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 50
1,2,3,7,8,9-HxCDF Total HxCDF	1.9 320.0		0.15 J 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.4 15.0 5.7 140.0	 	0.26 J 0.13 0.20 0.20	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	510.0 5.6 1100.0		0.38 0.51 J 0.45	Total 2,3,7,8-TCDD Equivalence: 18 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	350.0 760.0		0.17 0.17			
OCDF OCDD	330.0 4600.0		0.36 0.32			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-006-0.0-0.15

 Lab Sample ID
 10365385006

 Filename
 U161013B_05

 Injected By
 BAL

Total Amount Extracted 15.1 g Matrix Solid % Moisture 39.2 Dilution NA

10/07/2016 11:30 Dry Weight Extracted Collected 9.18 g ICÁL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/14/2016 00:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.10 6.00		0.098 0.098	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 88 73
2,3,7,8-TCDD Total TCDD	0.47 6.50		0.100 J 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	67 90 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.44 0.77 12.00		0.090 J 0.100 J 0.095	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	65 67 61
1,2,3,7,8-PeCDD Total PeCDD	 8.00	0.55	0.110 J 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 53 64 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.90 3.80 1.40		0.110 J 0.120 J 0.110 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	82 57
1,2,3,7,8,9-HxCDF Total HxCDF	87.00	0.53	0.110 IJ 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.72 6.30 2.70 55.00		0.170 J 0.230 0.200 J 0.200	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	130.00 2.30 280.00		0.310 0.290 J 0.300	Total 2,3,7,8-TCDD Equivalence: 6.3 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	130.00 260.00		0.160 0.160			
OCDF OCDD	100.00 1400.00		0.200 0.220			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

10/14/2016 01:06

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Analyzed

Client's Sample ID BW16TR-006-0.15-0.28

Lab Sample ID 10365385007 Filename U161013B 06 Injected By **BAL**

Total Amount Extracted Matrix Solid 14.9 g % Moisture 46.3 Dilution NA

BLANK-52337

8.00 g Dry Weight Extracted Collected 10/07/2016 11:35 ICAL ID U161011 Received 10/07/2016 19:35 U161013A 14 & U161013B 14 CCal Filename(s) Extracted 10/11/2016 17:25 Method Blank ID

Native Conc **EMPC EDL** Internal ng's Percent **Standards Isomers** ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 11.0 0.18 2.00 66 **Total TCDF** 2,3,7,8-TCDD-13C 2.00 91 34.0 0.18 1,2,3,7,8-PeCDF-13C 2.00 74 2.00 68 2,3,7,8-TCDD 2.2 0.19 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 93 Total TCDD 20.0 0.19 2.00 1,2,3,4,7,8-HxCDF-13C 2.00 78 1,2,3,7,8-PeCDF 1.4 0.19 J 1,2,3,6,7,8-HxCDF-13C 66 2.00 72 2,3,4,7,8-PeCDF 2.1 0.17 2,3,4,6,7,8-HxCDF-13C 2.00 61 Total PeCDF 34.0 0.18 1,2,3,7,8,9-HxCDF-13C 2.00 1,2,3,4,7,8-HxCDD-13C 2.00 81 1,2,3,7,8-PeCDD 2.1 62 0.26 2.00 1,2,3,6,7,8-HxCDD-13C **Total PeCDD** 59 31.0 0.26 1,2,3,4,6,7,8-HpCDF-13C 2.00 1,2,3,4,7,8,9-HpCDF-13C 2.00 61 2.00 1,2,3,4,7,8-HxCDF 5.5 0.18 J 1,2,3,4,6,7,8-HpCDD-13C 83 12.0 0.21 55 1,2,3,6,7,8-HxCDF OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 4.5 0.17 J 1,2,3,7,8,9-HxCDF 1.8 0.28 J 1,2,3,4-TCDD-13C 2.00 NA 0.21 Total HxCDF 270.0 1,2,3,7,8,9-HxCDD-13C 2.00 NA 2.1 0.20 1,2,3,4,7,8-HxCDD 0.14 J 2,3,7,8-TCDD-37Cl4 83 23.0 1,2,3,6,7,8-HxCDD 0.29 0.28 1,2,3,7,8,9-HxCDD 9.1 200.0 Total HxCDD 0.24 340.0 1,2,3,4,6,7,8-HpCDF 0.49 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF 6.2 0.60 J Equivalence: 22 ng/Kg 0.55 (Using 2005 WHO Factors) Total HpCDF 810.0 1,2,3,4,6,7,8-HpCDD 470.0 0.31 Total HpCDD 980.0 0.31 **OCDF** 250.0 0.32 **OCDD** 5700.0 0.26

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-007-0.0-0.15

 Lab Sample ID
 10365385008

 Filename
 U161013B_07

 Injected By
 BAL

Total Amount Extracted15.8 gMatrixSolid% Moisture50.6DilutionNA

10/07/2016 11:50 Dry Weight Extracted 7.81 g Collected ICAL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/14/2016 01:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.99 4.50		0.17 J 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	56 78 64
2,3,7,8-TCDD Total TCDD	0.26 6.40		0.19 J 0.31	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	60 80 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.36 0.64 9.00		0.26 J 0.12 J 0.23	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	59 60 54
1,2,3,7,8-PeCDD Total PeCDD	0.41 9.60		0.26 J 0.38	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 57 55 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.20 3.10 1.40		0.30 J 0.21 J 0.22 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 47
1,2,3,7,8,9-HxCDF Total HxCDF	0.95 110.00		0.17 J 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.46 3.40 1.30 33.00		0.24 J 0.25 J 0.24 J 0.25	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	190.00 360.00	1.4 	0.32 0.47 U 0.40	Total 2,3,7,8-TCDD Equivalence: 5.0 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	62.00 130.00		0.22 0.22			
OCDF OCDD	73.00 610.00		0.27 0.45			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-007-0.26-0.51

Lab Sample ID 10365385009
Filename U161013B_08
Injected By BAL

Total Amount Extracted 14.2 g Matrix Solid % Moisture 39.0 Dilution NA

8.66 g 10/07/2016 11:55 Dry Weight Extracted Collected ICAL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/14/2016 02:39

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.60 9.70		0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 87 70
2,3,7,8-TCDD Total TCDD	0.71 6.00		0.17 J 0.17	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	66 86 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.69 0.94 14.00		0.23 J 0.15 J 0.19	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	67 69 61 76
1,2,3,7,8-PeCDD Total PeCDD	1.20 17.00		0.24 J 0.24	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 60 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	2.80 6.30 2.10 0.96		0.21 J 0.18 0.16 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	76 49 NA
Total HxCDF	140.00		0.18	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.10 9.70 4.40 78.00		0.24 J 0.21 0.17 J 0.21	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	210.00 2.70 410.00		0.30 0.31 J 0.30	Total 2,3,7,8-TCDD Equivalence: 9.1 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	130.00 290.00		0.18 0.18			
OCDF OCDD	110.00 1500.00		0.23 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-107-0.26-0.51

 Lab Sample ID
 10365385010

 Filename
 U161013B_09

 Injected By
 BAL

Total Amount Extracted 14.1 g Matrix Solid % Moisture 33.2 Dilution NA

 Dry Weight Extracted
 9.42 g
 Collected
 10/07/2016 12:00

 ICAL ID
 U161011
 Received
 10/07/2016 19:35

 CCal Filename(s)
 L161013A 14 & L161013B 14
 Extracted
 10/11/2016 17:25

CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/14/2016 03:26

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	3.1 10.0		0.15 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 86 69
2,3,7,8-TCDD Total TCDD	1.0 5.5		0.13 J 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	66 87 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.3 1.2 18.0		0.16 J 0.14 J 0.19	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	60 64 58 73
1,2,3,7,8-PeCDD Total PeCDD	1.6 14.0		0.15 J 0.15	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	58 57 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4.2 14.0 3.1		0.14 J 0.15 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 53
1,2,3,7,8,9-HxCDF Total HxCDF	1.4 200.0		0.20 J 0.16	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 11.0 5.2 96.0		0.18 J 0.18 0.22 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	280.0 3.4 590.0		0.25 0.30 J 0.28	Total 2,3,7,8-TCDD Equivalence: 13 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	200.0 450.0		0.20 0.20			
OCDF OCDD	150.0 2400.0		0.22 0.20			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-009-0.0-0.15

 Lab Sample ID
 10365385011

 Filename
 U161013B_10

Injected By BAL

Total Amount Extracted 13.4 g Matrix Solid % Moisture 16.1 Dilution NA

% Moisture 16.1 Dilution NA

Dry Weight Extracted 11.2 g Collected 10/07/2016 12:25

ICAL ID U161011 Received 10/07/2016 19:35

CCal Filename(s) U161013A_14 & U161013B_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/14/2016 04:13

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.370 0.790		0.069 J 0.069 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 91 76
2,3,7,8-TCDD Total TCDD	0.087 0.190		0.063 J 0.063 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	70 95 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.430	0.052	0.061 0.045 IJ 0.053 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	67 70 63 79
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.058 0.058	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 66 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.240 ND	0.170 	0.094 J 0.094 J 0.099	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 58
1,2,3,7,8,9-HxCDF Total HxCDF	ND 5.500		0.110 0.100	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.500 0.200 4.600		0.120 0.095 J 0.091 J 0.100	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.400 ND 20.000		0.160 0.190 0.170	Total 2,3,7,8-TCDD Equivalence: 0.50 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	11.000 30.000		0.097 0.097			
OCDF OCDD	8.000 170.000		0.160 J 0.200			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-010-0.0-0.15

 Lab Sample ID
 10365385012

 Filename
 U161013B_11

 Injected By
 BAL

Total Amount Extracted 14.4 g Matrix Solid % Moisture 46.6 Dilution NA

7.69 g Dry Weight Extracted Collected 10/07/2016 13:05 U161011 ICAL ID Received 10/07/2016 19:35 U161013A_14 & U161013B_14 CCal Filename(s) Extracted 10/11/2016 17:25 Method Blank ID **BLANK-52337** 10/14/2016 04:59 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.20 6.90		0.084 J 0.084	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 93 77
2,3,7,8-TCDD Total TCDD	0.34 6.80		0.100 J 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 96 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.74 12.00	0.43 	0.180 J 0.110 J 0.150	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 67 70 61 81
1,2,3,7,8-PeCDD Total PeCDD	0.53 12.00	=	0.160 J 0.160	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 63 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	2.20 5.70 1.60 0.73 130.00		0.230 J 0.170 J 0.140 J 0.160 J 0.170	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	81 58 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.10 1.80 46.00	0.37	0.120 J 0.120 J 0.120 J 0.120 J 0.120	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	170.00 330.00	1.60	0.240 0.300 JJ 0.270	Total 2,3,7,8-TCDD Equivalence: 5.6 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	71.00 160.00		0.250 0.250			
OCDF OCDD	57.00 890.00		0.280 0.470			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID
Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52337 Y161013A_05 75.5 g

Y160816A Y161013A_01 & Y161013A_10 Matrix Dilution Extracted Analyzed Solid NA

10/11/2016 17:25 10/13/2016 14:51

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.025 0.025	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 79 63
2,3,7,8-TCDD Total TCDD	ND ND		0.030 0.030	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	56 64 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.023 0.016 0.020	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 72 67 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.027 0.027	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 54 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.026 0.028 0.029 0.046	1,2,3,4,7,6,9-HPCDF-13C 1,2,3,4,6,7,8-HPCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	60 43 NA
Total HxCDF	ND		0.032	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.031 0.038 0.037 0.035	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.120	0.081 	0.066 JJ 0.084 0.075 J	Total 2,3,7,8-TCDD Equivalence: 0.0019 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.093	0.096	0.061 J 0.061 J			
OCDF OCDD	ND ——	0.390	0.170 0.210 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-52338 U161017A_07 75.3 g

U161011 U161017A_04 & U161017A_08 BLANK-52337

Matrix Dilution Extracted Analyzed

Solid NA

10/11/2016 17:25 10/17/2016 16:47

Injected By	∕ SMT
iniecieo Bi	/ 51/11
ii ijootoa D	, 0.7.1

Native Isomers	Q s (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	97	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	63 89 67
2,3,7,8-TCDD Total TCDD	0.20	0.15	77	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	63 85 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	0.93 0.98	93 98	1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.0 2.0 2.0 2.0 2.0	70 70 62 75
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.84	84	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	74 71 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 0.97 0.91 0.92	105 97 91 92	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0 2.0	91 61 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.89 1.1 1.0	89 110 104	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	0.99 0.93	99 93			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.90	90			
OCDF OCDD	2.0 2.0	2.0 2.1	100 Y 105			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample İD
Filename
Total Amount Extractor

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID BW16TR-006-0.0-0.15-MS

10365385006-MS

U161013B_12 15.0 g U161011

U161013A_14 & U161013B_14 BLANK-52337 Matrix Solid Dilution NA

Extracted 10/11/2016 17:25 Analyzed 10/14/2016 05:46

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.21	105	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 88 74
2,3,7,8-TCDD	0.20	0.16	78	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	69 90 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.00 1.00	0.91 0.97	91 97	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00	69 69
2,3,4,7,0-1 6001	1.00	0.97	91	1,2,3,7,8,9-HxCDF-13C	2.00	62
1,2,3,7,8-PeCDD	1.00	0.84	84	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	79 63 62
1,2,3,4,7,8-HxCDF	1.00	1.05	105	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	60 77
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00	1.00 0.96	100 96	OCDD-13C	4.00	49
1,2,3,7,8,9-HxCDF	1.00	0.92	92	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	1.00 1.00	0.93 1.15	93 115	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,7,8,9-HxCDD	1.00	1.05	105			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	3.15 0.95	315 95			
1,2,3,4,6,7,8-HpCDD	1.00	2.34	234			
OCDF OCDD	2.00 2.00	2.93 18.41	146 921			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID
Lab Sample ID

Filename
Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID BW16TR-006-0.0-0.15-MSD

10365385006-MSD

U161013B_13 15.1 g U161011 U161013A_14 & U161013B_14

U161013A_14 & U161013B_ BLANK-52337 Matrix Solid Dilution NA

Extracted 10/11/2016 17:25 Analyzed 10/14/2016 06:32

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.21	106	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 89 75
2,3,7,8-TCDD	0.20	0.16	81	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	70 92 74
1,2,3,7,8-PeCDF	1.00	0.94	94	1,2,3,6,7,8-HxCDF-13C	2.00	65
2,3,4,7,8-PeCDF	1.00	1.02	102	2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00	69 61 79
1,2,3,7,8-PeCDD	1.00	0.88	88	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	65 60
1,2,3,4,7,8-HxCDF	1.00	1.08	108	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	59 76
1,2,3,6,7,8-HxCDF	1.00	1.05	105	OCDD-13C	4.00	50
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00	0.96 0.95	96 95	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD	1.00	0.99	99	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	1.00 1.00	1.11 1.05	111 105			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	1.00 1.00	2.37 0.98	237 98			
1,2,3,4,6,7,8-HpCDD	1.00	2.47	247			
OCDF OCDD	2.00 2.00	2.74 19.94	137 997			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Method 8290 Spike Sample Results

Client - Bay West, Inc.

Client Sample ID Lab Sample ID MS ID

MSD ID

BW16TR-006-0.0-0.15 10365385006

10365385006-MS 10365385006-MSD Sample Filename MS Filename MSD Filename U161013B_05 U161013B_12 U161013B_13 **Dry Weights**

Sample Amount 9.18 g MS Amount 9.1 g MSD Amount 9.2 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	2.074	0.20	0.21	0.21	1.0	96	97	1.0
2,3,7,8-TCDD	0.475	0.20	0.16	0.16	3.4	76	79	3.4
1,2,3,7,8-PeCDF	0.440	1.00	0.91	0.94	3.0	91	93	3.0
2,3,4,7,8-PeCDF	0.770	1.00	0.97	1.02	5.2	96	101	5.3
1,2,3,7,8-PeCDD	0.000	1.00	0.84	0.88	4.5	84	88	4.5
1,2,3,4,7,8-HxCDF	1.891	1.00	1.05	1.08	2.6	103	106	2.6
1,2,3,6,7,8-HxCDF	3.763	1.00	1.00	1.05	5.0	97	102	5.2
2,3,4,6,7,8-HxCDF	1.402	1.00	0.96	0.96	0.2	95	94	0.3
1,2,3,7,8,9-HxCDF	0.000	1.00	0.92	0.95	2.4	92	94	2.4
1,2,3,4,7,8-HxCDD	0.717	1.00	0.93	0.99	5.7	93	98	5.7
1,2,3,6,7,8-HxCDD	6.283	1.00	1.15	1.11	3.6	109	105	3.8
1,2,3,7,8,9-HxCDD	2.668	1.00	1.05	1.05	0.1	103	103	0.1
1,2,3,4,6,7,8-HpCDF	127.833	1.00	3.15	2.37	28.4	198	119	49.9
1,2,3,4,7,8,9-HpCDF	2.262	1.00	0.95	0.98	2.5	93	96	2.5
1,2,3,4,6,7,8-HpCDD	130.033	1.00	2.34	2.47	5.1	116	127	9.4
OCDF	100.399	2.00	2.93	2.74	6.4	101	91	9.8
OCDD	1384.672	2.00	18.41	19.94	8.0	289	361	22.2

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable

NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa

Hx = Hexa Hp = Hepta

O = Octa

Laboratory Data **Review Checklist**

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/viewdocument.html?gid=16113. Also see the MPCA Laboratory Quality Control (QC) and Data Policy: http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

⊃roje	ect nar	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365388
Vor	k ordei	r numl	per: 3000017136		Repo	rt date	(mm/dd/yyyy): 10/24/2016
۱.	Pre	serv	ation				
•			th this section on holding times, containers and	preser	vative	s refei	r to the Minnesota Department of Health's
			http://www.health.state.mn.us/divs/phl/environn				
	Ques	stions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.	Wer	e there samples requiring preservation?		\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?				
	d.	Wer	e samples received in the correct containers?				
		i.	Was there enough sample volume/weight to complete all requested analyses?	\boxtimes			
		ii.	Was there enough extra sample collected to complete method required batch QC?	\boxtimes			
	e.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.		\boxtimes		
2.	Cali	brat	ion				
	Ques	stion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate pration problems for any analyses? If yes,	\bowtie			The response obtained for the native OCDF in calibration standard analysis U161019C_ was outside the target range. As specified in the

651-296-6300 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us Page 1 of 4

						response factors for this compound was used in the calculations for the samples from this runshift. The affected values were flagged "Y" on the results tables. No data were qualified.				
Bla	anks									
Que	stion		Yes	No	N/A	Comments				
a.		any of the analyses contain samples for field ip blanks?								
	i.	If yes, are there target analytes present above the reporting limit?								
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.								
b.						Low-level concentrations of 1,2,3,4,6,7,8-HpCDF, Total HpCDF, 1,2,3,4,6,7,8-HpCDD,Total HpCDD, and OCDD were detected in the method blank 52337.				
						Low-level concentrations of 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, Total HxCDF, 1,2,3,4,6,7,8-HpCDF,Total HpCDF, and OCDD were detected in the method blan 52398.				
		method blanks for any analyses contain target ytes above the reporting limit?				Low-level concentrations of 2,3,4,7,8-PeCDF 1,2,3,4,67,8-HpCDF, Total HpCDF, 1,2,3,4,6,7,8-HpCDF,Total HpCDD, and OCDD were detected in the method blank 52363.				
	i.	If yes, are the same compounds present in the samples?								
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.				All sample results were > 10x the blank concentrations.				
	roga	tes	Yes	No	N/A	Comments				
a.		there organic analyses that contain surrogate pounds?				Dioxins/furans have internal standards instea of surrogates.				
b.	Are	the lab recovery limits specified on the report?								
	i.	Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?		П						
C.		there surrogates outside lab limits? (These ald have a data qualifier)								
	i.	If yes, are the surrogates above the lab limits?								
	ii.	Below the lab limits?				Except for one low value, which was flagged "R" on the results table, labeled standard recoveries obtained for this project were with the 40-135% target range specified in Method				
		Explain what this could mean for the				8290. Since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically				

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats $\frac{10}{20}$

								corrected for variation in recovery and accurate values were obtained. No data were qualified.
5.	Lab	orat	ory C	ontrol Sample/Laboratory Co	ontro	I San	nple	
	Ques	tion			Yes	No	N/A	Comments
	a. 	Are there LCS/LCSD samples present for the reported analyses? (An LCS alone is acceptable i there is a Matrix Spike/Matrix Spike Duplicate [MS/MSD] or sample/sample dup for precision.)						
		i.	comp	do the lab limits seem reasonable ared to the suggested guidelines in the A QC Policy?	\boxtimes			
	b.			CS/LCSD compounds outside lab ese should have a data qualifier.)				
		i.	If yes	, are the analytes above the lab limits?			\boxtimes	
		ii.	_	v the lab limits?			\boxtimes	
		iii.		Il samples in the preparation batch also ed for the same analyte(s)?			\boxtimes	
		iv.		in what this could mean for the ed samples.			\boxtimes	
6.	Mati	rix S	pike	/Matrix Spike Duplicate/Samp	ple D	uplic	ate ((MS/MSD/Dup)
	Ques	tion			Yes	No	N/A	Comments
	а.	Do the analytical methods used require an MS and/or MSD? If no, skip to 6.b.						
		i.		the required matrix spikes been red and reported?				MS/MSD analysis was performed on sample BW16TR-014-0.0-0.15.
		ii.	If no, as to	is there and explanation in the report why?				
		iii.		ne lab process an alternate spiked le (such as LCSD) instead?				
		iv.	Are th	ne lab limits specified on the report?				
		V.	comp	e limits seem reasonable when ared to the suggested guidelines in the A QC Policy?				
		vi.	Are th	nere compounds outside the lab limits?				
			1.	If yes, are the analytes above the lab limits?				Background-subtracted recoveries were obtained for 1,2,3,4,6,7,8-HpCDF, OCDF, and OCDD in the matrix spike and/or matrix spike duplicate were above the 70-130%
			2.	Below the lab limits?			\boxtimes	
			3.	Is the source sample also flagged for compounds outside lab limits?		\boxtimes		
	b.			e duplicate reported for the analytical If no, skip to 6.c.				MS/MSD RPDs were reviewed for precision.
		i.	Is the	RPD for the duplicate pair within the nits?				The RPDs for 1,2,3,4,6,7,8-HpCDF and OCDF were above the 20% target upper limit.
		ii.		has the associated source sample flagged?				

C.	What is the impact of failed QC on this project?				Results for 1,2,3,4,6,7,8-HpCDF, OCDF, and OCDD were qualified "J" as estimated in sample BW16TR-014-0.0-0.15.
Met	hod Detection Limits/Report Limits				
Met	'	Yes	No	N/A	Comments

Additional comments on report:

7.

- (1) No blind field duplicates were included with the samples in this SDG.
- (2) Interfering substances impacted the determinations of PCDD and PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained. All results flagged "I" were qualified "J" as estimated by the reviewer. Results flagged "E" exceeded the calibration range and were qualified "J" as estimated. Concentrations below the calibration range were flagged "J" as estimated by the laboratory.
- (3) Level II reports were reviewed, so calibrations and raw data were not reviewed.

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats <u>p-eao2-11b</u> • 10/20/11 • 10/20/11

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10365388

Sample Receipt Date: 10/07/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: 108002 State Cert #: 027-053-137

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

This report has been reviewed by:

you haut October 24, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 21, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 42-92%. Except for one low value, which was flagged "R" on the results table, labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determinations of PCDD or PCDF congeners; the affected values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory and matrix spike samples were also prepared with the sample batches using clean reference matrix or sample matrix that had been fortified with native standard materials. The results show that the spiked native compounds were generally recovered at 77-130% with relative percent differences (RPDs) generally from 0.5-18.2%. The background-subtracted recovery values obtained for 1,2,3,4,6,7,8-HpCDF, OCDF, and OCDD in the matrix spike and/or matrix spike duplicate were above the 70-130% target range. Also, the RPD values obtained for 1,2,3,4,6,7,8-HpCDF and OCDF were above the 20% target upper limit. These deviations may be due to sample inhomogeneity. Matrix spikes were prepared with the 10/11/2016 and 10/17/2016 extraction batches using sample materials from separate projects; results from these analyses will be provided upon request.

The responses obtained for selected congeners in calibration standard analyses Y161019C_19 and U161017A_08 were outside the target ranges. As specified in our procedures, the averages of the daily response factors for these compounds were used in the calculations for the samples from these runshifts. The affected values were flagged "Y" on the results tables.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

გ° ი_*	ection A equired Client Information		Section B Required Project	Inform	ation:					tion (C ormat	ion;			-			Section EQuiS In		ion:			10	36	53	38	8						
욹┝	Company: Bay West, LLC Address: 5 Empire Drive			Report To: Nancy McDonald Copy To: Paul Raymaker					Attention: Accounts Payable Company Name: Bay West, LLC								Facility_Name: St. Louis River Sediment Areas of Concern Facility_Code: St Louis River Sed							'n	Page		1	,	of	,	1		
귉	St. Paul, MN 55103 Email To: nmcdonald@baywest.com								Address: 5 Empire Drive							Facility_ID: 547023								COC#		—	—	—		—	_		
ĭ	Email To: nmcdonald@baywest.com			Purchase Order No.: 108002					Lab Quote Reference: 3000017136							Subfacility_code:								1			\$	SLR-TR	≀-3				
→	Phone: 651-291-3483			SLR	ent AOCs			Lab Project Manager; Oyeyemi Odujole						ole										SI	te Loc	ation			_	_			
)365	Requested Due Date/TAT; Standard			Project Number: J160139																						ST	ATE:		MN				
55 ~		Valid Matrix	Valid Matrix											- Requested Analysis								T T						M					
388		tion E lent information	Codes MATRIX CODE				Collection		Prese			rvatives &																M	Ŋ				
8290	Sample Location ID (sys_loc_code)	Sample iD (sys_sample_code)	Drinking Water DW Waste Water W Product WW Soil/Solid P Oil SO Wipe OL Air WP Tissue AR Other TS OT	MATRIX CODE	SAMPLE TYPE (G=GRAB G=COMP)	DATE		Time	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	HCI .	NaOH	Na ₂ S ₂ O ₃	Methanol		Dioxins and furans (SW-846 8290A)	Mercury (EPA 7471B)	% Maisture											Сотп	nents		
	x. BW15MLW-005	BW14MLW-005-0-0	0.15	so	G	3/12/15		1204		1	1	T		П		C. 200												T					
Ī	1 BW16TR-010 BW16TR-010-0.15-0.		-0.38	SO G 10/7/1		10/7/16		1245	3		3 3					1	1	1 1									001						
Ī	2 BW16TR-011 BW16TR-011-0.0-0.1).15	so	G	10/7/16		1305	3							4000	1	1	1										0Ó				
Γ	3 BW16TR-011	BW16TR-011-0.60-	-0.85	50	G	10/7/16		1310	3	3						Sec.	1	1	1									Ш	60	3			
ľ	4 BW16TR-012	BW16TR-012-0.0-0).15	50	G	10/7/16		1320	3	3				П		90,454.00	1	1	1										ÓÓ)4			
<u>.</u>	5 BW16TR-014	BW16TR-014-0.0-0),15	so	G	10/7/16		1330	3	3				П		300	1	1	1										ÔÔ	5			
Ī	6 BW16TR-014	BW16TR-014-0.15	-0.38	so	G	10/7/16		1335	3	3							1	1	1										60	ع)ز			
	7 BW16TR-015	BW16TR-015-0.0-0).15	so	Ģ	10/7/16		1350	3	3						15.00 A	1	1	1		T"								00	1			
	8 BW16TR-015	BW16TR-015-0.15	-0.36	so	G	10/7/16		1355	3	3						405,088	1	1	1										00	<u>,8</u>			
Ī	9			1				·						П		2557.49																	
	10													П		52,037,68																	
ľ	11			1	1									П		2000										Τ .			· .				
ľ	12		••	1									-	П		2000												\prod					
1-		NAL COMMENTS	a trace to the state of the sta	Jany S. C. San	in the section of	BY AFEILIATIO	n in which the best of the	many and the least of the	100	Stars.	20,00	2.00	2.00	A	of the second	Transa ^P	C. Carrier	NO STATE	ATION		数源集	(Participant	A 200 A	Anna San San San San San	51£X	TIME	-307			LE CON	DITIONS		_
Page			Chris	Μı	1550	n/Bay						X.	لمبه	tr	W.	Po.	LA	bh					ilie		155			4.	9	4	Ŋ	1	-
6 2	elerence Pace Subcontrac /16/16	tor Order Form signed by P	de on de	tu	a Pe	tson		10 4 (W.	٦	ſα	2	_(4	2	_	۲	_	71	-			191	7/16	211	170			<u> </u>	\dashv			<u> </u>	
오		•	5					10/7/6	ĺŶ	3)	1		K	7	<u>Jy</u>	$\stackrel{\sim}{\rightarrow}$	H	N	<u>u</u>	e		10/	<u> </u>	<u>/ 1 b</u>		136		l		(XIN)	Cooler	λ.	
25				12					NA P						-						0-7-16 19			er area are decide	35		<u>(</u>)	on Ice	r Sealed ((Y/N)	Infact (That I		
						79.45	MPLER NAI	c. orgent court an	arnen 1:		, a	iS		М	US	50	1	SAFER T			indisevie)		~57155 <u>2</u> 0	4-010213		F1 36 1 318	grante in 1966	5,		eceived on Ice (Y/N)	ustody Sk (Y	Samples Infact (Y/N)	Sallips Sallips

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Client Name:			Project	# 1104 . 4 0005000
Upon Receipt Bay West	116		•	WO#:10365388
Courier: Fed Ex TUPS	TUSPS	——— По	lient	II A I
Commercial Pace SpeeDee	_	П,	-ii-citr	
Tracking Number:				10365388
Custody Seal on Cooler/Box Present?	No	Seals Int	act?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: □Bubble Wrap 뗃Bubble B	L	e 🔲	Other:	Temp Blank?
Thermometer ☐ 151401163 ☐ B88A9123 Used: ☑ 151401164 ☐ B88A0143		e of Ice:	ĮΝίνε	et Blue None Samples on ice, cooling process has begun
	Corrected (°C): <u>4</u>	9	Biological Tissue Frozen? Yes No No
Temp should be above freezing to 6°C Correction	Factor:^	u	Dat	te and Initials of Person Examining Contents: 300 1047-16
USDA Regulated Soil (☐Yes	
Chain of Cuctody Brocont?			<u> </u>	COMMENTS:
Chain of Custody Present? Chain of Custody Filled Out?	X Yes	□No	□N/A	1.
	<u></u> ✓ Yes	□No	□N/A	2.
Chain of Custody Relinquished? Sampler Name and/or Signature on COC?	∑ <u>X</u> Yes_	□No	N/A	3.
Samples Arrived within Hold Time?	Yes	No	□N/A	4.
Short Hold Time Analysis (<72 hr)?	∑XIYes	No	□N/A	5.
Rush Turn Around Time Requested?	Yes	ΣίΝο	□N/A	6.
Sufficient Volume?	☐Yes	No	□N/A	7.
Correct Containers Used?	∑ (Ýes	□No	□N/A	8.
-Pace Containers Used?	∑XYes ∑XYes	□No	□n/A	9.
Containers Intact?	<u> </u>	_ □No	□N/A	10
Filtered Volume Received for Dissolved Tests?	Ves	□No	□N/A	10. 11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	∐Yes ▼Yes	∏No		
-Includes Date/Time/ID/Analysis Matrix: 5L	ŊYes	□No	□n/a	12.
All containers needing acid/base preservation have bee checked?	n □Yes	Пма	Ť¥λ:/∧	13. HNO ₃ H ₂ SO ₄ NaOH HCI
All containers needing preservation are found to be in	∐ res	∐No	A/N	Sample #
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyani	do) 🗆 🗆	П.	C7	
Exceptions: VOA, Coliform, TOC, Oil and Grease,	de) 🗌 Yes	□No	⊠ N/A	Initial when Lot # of added
DRO/8015 (water) DOC	Yes	□No	ĎN/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	□Yes	∏No	Z N/A	14.
Trip Blank Present?	☐Yes	□No	D⁄N/A	15.
Trip Blank Custody Seals Present?	□Yes	□No	Ď I N/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? ☐ Yes ☐ No
Person Contacted:				Date/Time:
Comments/Resolution:	•			
A				
Project Manager Review: (awlyme	hous			Date: 10/10/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-010-0.15-0.38

Lab Sample ID 10365388001 Filename U161013A_08 Injected By

SMT 14.6 g **Total Amount Extracted**

Matrix Solid % Moisture 32.9 Dilution NA 9.80 g Dry Weight Extracted Collected

10/07/2016 12:45 ICAL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A 03 & U161013A 14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 15:44

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.10 5.20		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 87 71
2,3,7,8-TCDD Total TCDD	0.32 6.00		0.160 J 0.160	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	67 90 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.38 0.62 8.80		0.140 J 0.087 J 0.110	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	63 65 58 75
1,2,3,7,8-PeCDD Total PeCDD	0.54 11.00		0.150 J 0.150	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 64 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.80 2.80 1.20		0.120 J 0.120 J 0.100 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	82 59
1,2,3,7,8,9-HxCDF Total HxCDF	72.00	0.46 	0.110 JJ 0.110	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.30 2.00 37.00	0.36 	0.160 J 0.160 J 0.180 J 0.170	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	120.00 1.30 230.00		0.340 0.280 J 0.310	Total 2,3,7,8-TCDD Equivalence: 4.4 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	57.00 120.00		0.160 0.160			
OCDF OCDD	49.00 550.00		0.110 0.270			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-011-0.0-0.15

Lab Sample ID 10365388002 Filename U161013A_09 Injected By SMT

16.2 g **Total Amount Extracted**

Matrix Solid % Moisture 55.9 Dilution NA Dry Weight Extracted Collected 7.14 g

10/07/2016 13:05 ICAL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A_03 & U161013A_14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 16:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 7.00		0.13 J 0.13	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 90 74
2,3,7,8-TCDD Total TCDD	0.32 5.30		0.17 J 0.17	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	68 92 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.70 8.50	0.35 	0.21 J 0.14 J 0.18	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	68 71 63 79
1,2,3,7,8-PeCDD Total PeCDD	0.42 7.50		0.16 J 0.16	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	67 69 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.50 2.90 1.00		0.22 J 0.17 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	88 59
1,2,3,7,8,9-HxCDF Total HxCDF	0.49 73.00		0.19 J 0.18	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.56 3.60 1.80 32.00	 	0.18 J 0.15 J 0.23 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	80
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	160.00 1.30 280.00		0.36 0.29 J 0.33	Total 2,3,7,8-TCDD Equivalence: 4.6 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	54.00 120.00		0.13 0.13			
OCDF OCDD	69.00 610.00		0.29 0.35			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-011-0.60-0.85

 Lab Sample ID
 10365388003

 Filename
 U161013A_10

Injected By SMT
Total Amount Extracted 15.7

Total Amount Extracted 15.7 g Matrix Solid % Moisture 53.2 Dilution NA

7.35 g Dry Weight Extracted Collected 10/07/2016 13:10 ICÁL ID Received U161011 10/07/2016 19:35 CCal Filename(s) U161013A 03 & U161013A 14 Extracted 10/11/2016 17:25 Method Blank ID BLANK-52337 Analyzed 10/13/2016 17:17

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	36.0 99.0		0.39 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 86 63
2,3,7,8-TCDD Total TCDD	8.6 54.0		0.35 0.35	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	50 76 63
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	20.0 19.0 270.0		0.32 0.22 0.27	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	58 51 58
1,2,3,7,8-PeCDD Total PeCDD	15.0 130.0		0.29 0.29	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 56 55 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	75.0 220.0 57.0		0.52 0.40 0.53	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 51
1,2,3,7,8,9-HxCDF Total HxCDF	17.0 3200.0		0.71 0.54	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	9.6 100.0 39.0 1000.0	 	0.74 0.59 0.61 0.65	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4400.0 59.0 9500.0		0.83 0.98 0.90 E	Total 2,3,7,8-TCDD Equivalence: 160 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	2100.0 5300.0		0.29 0.29			
OCDF OCDD	2500.0 32000.0		0.70 0.90 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-012-0.0-0.15

 Lab Sample ID
 10365388004

 Filename
 Y161019B_10

 Injected By
 SMT

Total Amount Extracted 17.4 g Matrix Solid % Moisture 50.1 Dilution NA

8.68 g Dry Weight Extracted Collected 10/07/2016 13:20 **ICAL ID** Y160816A Received 10/07/2016 19:35 Y161019B 01 & Y161019B 12 CCal Filename(s) Extracted 10/13/2016 15:45 Method Blank ID **BLANK-52363** Analyzed 10/19/2016 18:32

Native Conc **EMPC EDL** Internal ng's Percent **Standards** Added **Isomers** ng/Kg ng/Kg ng/Kg Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 30.0 0.43 2.00 75 **Total TCDF** 130.0 2,3,7,8-TCDD-13C 2.00 86 0.43 1,2,3,7,8-PeCDF-13C 2.00 71 2.00 2,3,7,8-TCDD 9.0 0.32 2,3,4,7,8-PeCDF-13C 68 1,2,3,7,8-PeCDD-13C 76 Total TCDD 0.32 2.00 42.0 1,2,3,4,7,8-HxCDF-13C 2.00 75 1,2,3,7,8-PeCDF 14.0 0.36 1,2,3,6,7,8-HxCDF-13C 66 2.00 67 2,3,4,7,8-PeCDF 22.0 0.16 2,3,4,6,7,8-HxCDF-13C 2.00 68 Total PeCDF 280.0 0.26 1,2,3,7,8,9-HxCDF-13C 2.00 68 1,2,3,4,7,8-HxCDD-13C 2.00 1,2,3,7,8-PeCDD 0.69 60 10.0 2.00 1,2,3,6,7,8-HxCDD-13C 53 Total PeCDD 110.0 0.69 1,2,3,4,6,7,8-HpCDF-13C 2.00 1,2,3,4,7,8,9-HpCDF-13C 54 2.00 60 2.00 1,2,3,4,7,8-HxCDF 96.0 0.41 1,2,3,4,6,7,8-HpCDD-13C 200.0 0.27 1,2,3,6,7,8-HxCDF OCDD-13C 4.00 48 2,3,4,6,7,8-HxCDF 52.0 0.50 1,2,3,7,8,9-HxCDF 14.0 0.99 1,2,3,4-TCDD-13C 2.00 NA 2600.0 Total HxCDF 0.54 1,2,3,7,8,9-HxCDD-13C 2.00 NA 0.20 1,2,3,4,7,8-HxCDD 8.3 1.80 2,3,7,8-TCDD-37Cl4 84 1,2,3,6,7,8-HxCDD 68.0 0.36 33.0 1,2,3,7,8,9-HxCDD 0.27 Total HxCDD 700.0 0.82 0.36 1,2,3,4,6,7,8-HpCDF 4500.0 Ε Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF 38.0 0.33 Equivalence: 140 ng/Kg 0.35 Ε (Using 2005 WHO Factors) Total HpCDF 8700.0 1,2,3,4,6,7,8-HpCDD 1200.0 0.22 Total HpCDD 3000.0 0.22 **OCDF** 2100.0 0.69 OCDD 18000.0 0.35 Ε

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-014-0.0-0.15

 Lab Sample ID
 10365388005

 Filename
 Y161019B_07

 Injected By
 SMT

Total Amount Extracted 15.0 g Matrix Solid % Moisture 45.6 Dilution NA

8.16 g Dry Weight Extracted Collected 10/07/2016 13:30 ICAL ID Y160816A Received 10/07/2016 19:35 CCal Filename(s) Y161019B 01 & Y161019B 12 Extracted 10/13/2016 15:45 Method Blank ID BLANK-52363 Analyzed 10/19/2016 16:26

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.67 4.20		0.230 J 0.230	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 86 71
2,3,7,8-TCDD Total TCDD	ND 6.10		0.260 0.260	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	76 81 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.55 6.80	0.27 	0.089 IJ 0.051 J 0.070	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	80 80 82 70
1,2,3,7,8-PeCDD Total PeCDD	0.31 8.40		0.250 J 0.250	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 64 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.40 2.20 0.85		0.270 J 0.250 J 0.066 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 52
1,2,3,7,8,9-HxCDF Total HxCDF	0.46 50.00		0.260 J 0.210	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.54 2.80 1.50 27.00		0.170 J 0.140 J 0.069 J 0.130	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	97.00 1.10 190.00		0.200 0.330 J 0.260	Total 2,3,7,8-TCDD Equivalence: 3.0 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	40.00 89.00	=	0.340 0.340			
OCDF OCDD	51.00 430.00		0.210 0.210			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-014-0.15-0.38

 Lab Sample ID
 10365388006

 Filename
 Y161019B_08

 Injected By
 SMT

Total Amount Extracted 14.7 g Matrix Solid % Moisture 38.8 Dilution NA

9.00 g 10/07/2016 13:35 Dry Weight Extracted Collected ICAL ID Y160816A Received 10/07/2016 19:35 CCal Filename(s) Y161019B 01 & Y161019B 12 Extracted 10/13/2016 15:45 Method Blank ID BLANK-52363 Analyzed 10/19/2016 17:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.20 6.80		0.240 0.240	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 87 74
2,3,7,8-TCDD Total TCDD	0.35 9.80		0.320 J 0.320	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 81 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.56 1.00 13.00		0.190 J 0.100 J 0.140	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 77 76
1,2,3,7,8-PeCDD Total PeCDD	0.73 16.00		0.130 J 0.130	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 66 63 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	7.20 2.00	4.3	1.400 PJ 0.180 0.042 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 50
1,2,3,7,8,9-HxCDF Total HxCDF	0.95 180.00		0.220 J 0.470	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.66 4.30 2.00 48.00	 	0.470 J 0.110 J 0.045 J 0.210	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	400.00 3.60 770.00		0.170 0.200 J 0.180	Total 2,3,7,8-TCDD Equivalence: 8.8 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	79.00 180.00		0.430 0.430			
OCDF OCDD	160.00 900.00		0.930 0.250			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-015-0.0-0.15

 Lab Sample ID
 10365388007

 Filename
 Y161019B_09

 Injected By
 SMT

Total Amount Extracted 14.8 g Matrix Solid % Moisture 40.8 Dilution NA

8.76 g Dry Weight Extracted Collected 10/07/2016 13:50 ICAL ID Y160816A Received 10/07/2016 19:35 CCal Filename(s) Y161019B 01 & Y161019B 12 Extracted 10/13/2016 15:45 Method Blank ID BLANK-52363 Analyzed 10/19/2016 17:50

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.89 6.00		0.31 J 0.31	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 85 72
2,3,7,8-TCDD Total TCDD	ND 8.10		0.29 0.29	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	75 80 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.70	0.50 0.74 	0.19 IJ 0.12 IJ 0.15	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	80 78 79 73
1,2,3,7,8-PeCDD Total PeCDD	0.56 16.00		0.23 J 0.23	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	63 61 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.10 3.60 1.30		0.16 J 0.13 J 0.14 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	60 42
1,2,3,7,8,9-HxCDF Total HxCDF	0.81 75.00		0.24 J 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.80 1.90 40.00	0.74 	0.20 J 0.14 J 0.15 J 0.16	2,3,7,8-TCDD-37Cl4	0.20	85
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	130.00 1.30 250.00		0.24 0.29 J 0.27	Total 2,3,7,8-TCDD Equivalence: 4.4 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	56.00 140.00		0.65 0.65			
OCDF OCDD	69.00 660.00		0.86 0.31			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

10/20/2016 00:10

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Analyzed

Client's Sample ID BW16TR-015-0.15-0.36

Lab Sample ID 10365388008 Filename Y161019C 06 Injected By **SMT**

Total Amount Extracted Matrix Solid 13.0 g % Moisture 34.9 Dilution NA

BLANK-52398

8.46 g Dry Weight Extracted 10/07/2016 13:55 Collected **ICAL ID** Y160816A Received 10/07/2016 19:35 Y161019B 12 & Y161019C 19 CCal Filename(s) Extracted 10/17/2016 17:00

Native Conc **EMPC EDL** Internal ng's Percent **Standards Isomers** ng/Kg ng/Kg ng/Kg Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 13.0 0.35 2.00 81 **Total TCDF** 2,3,7,8-TCDD-13C 2.00 89 41.0 0.35 1,2,3,7,8-PeCDF-13C 2.00 80 75 2.4 2.00 2,3,7,8-TCDD 0.24 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 81 Total TCDD 14.0 0.24 2.00 1,2,3,4,7,8-HxCDF-13C 2.00 76 1,2,3,7,8-PeCDF 1.2 0.22 J 1,2,3,6,7,8-HxCDF-13C 73 2.00 69 2,3,4,7,8-PeCDF 0.13 J 2,3,4,6,7,8-HxCDF-13C 2.00 1.8 69 Total PeCDF 20.0 0.18 1,2,3,7,8,9-HxCDF-13C 2.00 62 1,2,3,4,7,8-HxCDD-13C 2.00 0.25 1,2,3,7,8-PeCDD 2.0 68 2.00 1,2,3,6,7,8-HxCDD-13C 55 Total PeCDD 23.0 0.25 1,2,3,4,6,7,8-HpCDF-13C 2.00 1,2,3,4,7,8,9-HpCDF-13C 2.00 58 4.0 0.20 PJ 1,2,3,4,6,7,8-HpCDD-13C 2.00 1,2,3,4,7,8-HxCDF 61 81 Y 6.0 0.27 1,2,3,6,7,8-HxCDF OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 1.80 J 3.3 1.4 1,2,3,7,8,9-HxCDF 0.18 J 1,2,3,4-TCDD-13C 2.00 NA 140.0 Total HxCDF 0.61 1,2,3,7,8,9-HxCDD-13C 2.00 NA 2.2 0.20 88 1,2,3,4,7,8-HxCDD 0.68 2,3,7,8-TCDD-37Cl4 1,2,3,6,7,8-HxCDD 19.0 0.55 0.95 1,2,3,7,8,9-HxCDD 4.4 J Total HxCDD 170.0 0.72 1,2,3,4,6,7,8-HpCDF 170.0 0.42 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF 6.6 0.56 Equivalence: 21 ng/Kg 180.0 0.49 (Using 2005 WHO Factors) Total HpCDF 1,2,3,4,6,7,8-HpCDD 610.0 1.30 Total HpCDD 1300.0 1.30 **OCDF** 320.0 1.20 OCDD 7400.0 0.42

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Y = Calculated using average of daily RFs

Method 8290 Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52337 Y161013A_05 75.5 g

Y160816A Y161013A_01 & Y161013A_10 Matrix Solid Dilution NA

Extracted 10/11/2016 17:25 Analyzed 10/13/2016 14:51

Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.025 0.025	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 79 63
2,3,7,8-TCDD Total TCDD	ND ND		0.030 0.030	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	56 64 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.023 0.016 0.020	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 72 67 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.027 0.027	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 54 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	 	0.026 0.028 0.029	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00	60 43
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.046 0.032	1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.031 0.038 0.037 0.035	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.120	0.081	0.066 IJ 0.084 0.075 J	Total 2,3,7,8-TCDD Equivalence: 0.0019 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.093	0.096	0.061 J 0.061 J			
OCDF OCDD	ND 	0.390	0.170 0.210 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52398 F161019A_10 20.6 g F161011

F161019A_03 & F161020A_02

Matrix Solid Dilution NA

Extracted 10/17/2016 17:00 Analyzed 10/19/2016 21:29

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.049 0.049	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 81 64
2,3,7,8-TCDD Total TCDD	ND ND		0.060 0.060	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	58 64 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.036	0.027 0.026 JJ 0.027	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 79 76 68
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.032 0.032	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 52 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND 0.041 ND	0.047 	0.030 J 0.039 0.036 J 0.046	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	58 43 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.041 ND ND ND ND		0.038 J 0.042 0.037 0.048 0.042	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.058 ND 0.058		0.049 J 0.066 0.057 J	Total 2,3,7,8-TCDD Equivalence: 0.020 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.053 0.053			
OCDF OCDD	ND 0.210		0.120 0.160 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52363 F161020A_10 10.0 g F161011

F161020A_02 & F161020A_12

Matrix Solid Dilution NA

Extracted 10/13/2016 15:45 Analyzed 10/20/2016 12:25 Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.100 0.100	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	84 95 86
2,3,7,8-TCDD Total TCDD	ND ND		0.100 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	79 87 90
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.050	0.063 0.045 IJ 0.054	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	87 91 92 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.060 0.060	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 65 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.120 0.100 0.087 0.110	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	74 60 NA
Total HxCDF	ND		0.110	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.110 0.120 0.120 0.120	2,3,7,8-TCDD-37Cl4	0.20	91
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.17 ND 0.17		0.087 J 0.110 0.099 J	Total 2,3,7,8-TCDD Equivalence: 0.018 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.17 0.17		0.069 J 0.069 J			
OCDF OCDD	ND 0.59		0.150 0.170 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID
CCal Filename(s)
Method Blank ID

LCS-52338 U161017A_07 75.3 g U161011

U161017A_04 & U161017A_08 BLANK-52337 Matrix Dilution Extracted

Analyzed

Solid NA

10/11/2016 17:25 10/17/2016 16:47

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	97	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	63 89 67
2,3,7,8-TCDD Total TCDD	0.20	0.15	77	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	63 85 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	0.93 0.98	93 98	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	70 70 62 75
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.84	84	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	74 74 71 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.0 0.97 0.91 0.92	105 97 91 92	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	91 61 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	0.89 1.1 1.0	89 110 104	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	0.99 0.93	99 93			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.90	90			
OCDF OCDD	2.0 2.0	2.0 2.1	100 Y 105			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s) Method Blank ID

LCS-52364 Y161019B_02 10.2 g

Y160816A Y161019B_01 & Y161019B_12 BLANK-52363

Matrix Dilution Extracted Analyzed

Solid NA

10/13/2016 15:45 10/19/2016 12:46

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.22	110	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	81 92 80
2,3,7,8-TCDD Total TCDD	0.20	0.19	93	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	75 85 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.1 1.2	111 117	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	75 76 74 67
1,2,3,7,8-PeCDD Total PeCDD	1.0	1.0	100	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0 2.0	68 59 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.0 1.0 1.0 1.0	1.2 1.1 1.1 1.1	117 112 111 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.0 4.0 2.0	59 43 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.3	120 117 130	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.0 0.20	NA 88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.2 1.1	116 108			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	1.0	105			
OCDF OCDD	2.0 2.0	2.4 2.5	118 123			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCS-52399 F161019A_05 20.2 g

F161011 F161019A_03 & F161020A_02 BLANK-52398 Matrix Dilution Extracted Solid NA

Extracted 10/17/2016 17:00 Analyzed 10/19/2016 17:26

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.25	124	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	74 87 71
2,3,7,8-TCDD Total TCDD	0.20	0.18	89	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0 2.0	63 71 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	1.2 1.3	118 128	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	85 83 79 75
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.99	99	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	67 58 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	1.0 1.0 1.0 1.0	1.3 1.2 1.2 1.2	130 117 118 118	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 4.0 2.0 2.0	64 45 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.2 1.2 1.1	123 119 112	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.0	106 104			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.94	94			
OCDF OCDD	2.0 2.0	2.3 2.2	114 108			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)
R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable
* = See Discussion

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)
Method Blank ID

BW16TR-014-0.0-0.15-MS

10365388005-MS

Y161019B_03 15.1 g

Y160816A Y161019B_01 & Y161019B_12 BLANK-52363 Matrix Solid Dilution NA

Extracted 10/13/2016 15:45 Analyzed 10/19/2016 13:37

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.22	111	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 81 66
2,3,7,8-TCDD	0.20	0.18	91	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	61 68 61
1,2,3,7,8-PeCDF	1.00	1.09	109	1,2,3,6,7,8-HxCDF-13C	2.00	72
2,3,4,7,8-PeCDF	1.00	1.20	120	2,3,4,6,7,8-HxCDF-13C	2.00	71
				1,2,3,7,8,9-HxCDF-13C	2.00	75
				1,2,3,4,7,8-HxCDD-13C	2.00	67
1,2,3,7,8-PeCDD	1.00	1.01	101	1,2,3,6,7,8-HxCDD-13C	2.00	58
				1,2,3,4,6,7,8-HpCDF-13C	2.00	54
40047011:005	4.00	4 47	447	1,2,3,4,7,8,9-HpCDF-13C	2.00	56
1,2,3,4,7,8-HxCDF	1.00	1.17	117	1,2,3,4,6,7,8-HpCDD-13C		56
1,2,3,6,7,8-HxCDF	1.00 1.00	1.14 1.08	114 108	OCDD-13C	4.00	38 R
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00	1.06	100	1,2,3,4-TCDD-13C	2.00	NA
1,2,3,7,0,9-11,001	1.00	1.01	101	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
				1,2,0,7,0,0-110000-100	2.00	INA
1,2,3,4,7,8-HxCDD	1.00	0.99	99	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,6,7,8-HxCDD	1.00	1.32	132	, , ,		
1,2,3,7,8,9-HxCDD	1.00	1.22	122			
1,2,3,4,6,7,8-HpCDF	1.00	2.01	201			
1,2,3,4,7,8,9-HpCDF	1.00	0.99	99			
1,2,0,4,7,0,0110001	1.00	0.00	33			
1,2,3,4,6,7,8-HpCDD	1.00	1.51	151			
1,2,0,4,0, <i>1</i> ,0-11pGDD	1.00	1.01	131			
OCDF	2.00	2.78	139			
OCDD	2.00	6.64	332			
	2.00	0.04	002			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

Method 8290 Spiked Sample Report

Client - Bay West, Inc.

Client's Sample ID

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID BW16TR-014-0.0-0.15-MSD

10365388005-MSD Y161019B_04

15.0 g Y160816A V161019B 01 & V161019B 12

Y161019B_01 & Y161019B_12 BLANK-52363 Matrix Solid Dilution NA

Extracted 10/13/2016 15:45 Analyzed 10/19/2016 14:19

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20	0.21	106	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 92 80
2,3,7,8-TCDD	0.20	0.17	85	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	82 85 68
1,2,3,7,8-PeCDF	1.00	1.05	105	1,2,3,6,7,8-HxCDF-13C	2.00	78
2,3,4,7,8-PeCDF	1.00	1.11	111	2,3,4,6,7,8-HxCDF-13C	2.00	76
				1,2,3,7,8,9-HxCDF-13C	2.00	81
				1,2,3,4,7,8-HxCDD-13C	2.00	<u>63</u>
1,2,3,7,8-PeCDD	1.00	0.96	96	1,2,3,6,7,8-HxCDD-13C	2.00	71
				1,2,3,4,6,7,8-HpCDF-13C	2.00	62 65
1,2,3,4,7,8-HxCDF	1.00	1.15	115	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C	2.00 2.00	65 64
1,2,3,6,7,8-HxCDF	1.00	1.13	110	OCDD-13C	4.00	46
2,3,4,6,7,8-HxCDF	1.00	1.07	107	00BB-100	4.00	40
1,2,3,7,8,9-HxCDF	1.00	1.01	101	1,2,3,4-TCDD-13C	2.00	NA
, ,-, ,-,-		-		1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	1.00	1.13	113	2,3,7,8-TCDD-37Cl4	0.20	89
1,2,3,6,7,8-HxCDD	1.00	1.10	110	,-, ,-		
1,2,3,7,8,9-HxCDD	1.00	1.19	119			
1,2,3,4,6,7,8-HpCDF	1.00	6.65	665			
1,2,3,4,7,8,9-HpCDF	1.00	1.03	103			
1,2,3,4,6,7,8-HpCDD	1.00	1.38	138			
-						
OCDF	2.00	4.12	206			
OCDD	2.00	6.10	305			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Spike Sample Results

Client - Bay West, Inc.

Client Sample ID Lab Sample ID MS ID

MSD ID

BW16TR-014-0.0-0.15 10365388005

10365388005-MS 10365388005-MSD Sample Filename MS Filename MSD Filename Y161019B_07 Y161019B_03 Y161019B_04 **Dry Weights**

Sample Amount 8.16 g MS Amount 8.2 g MSD Amount 8.2 g

	Sample Conc.	MS/MSD Qs	MS Qm	MSD Qm		Backgrou	und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.670	0.20	0.22	0.21	4.8	108	103	4.9
2,3,7,8-TCDD	0.000	0.20	0.18	0.17	7.5	91	85	7.5
1,2,3,7,8-PeCDF	0.000	1.00	1.09	1.05	4.2	109	104	4.2
2,3,4,7,8-PeCDF	0.554	1.00	1.20	1.11	7.0	119	111	7.0
1,2,3,7,8-PeCDD	0.307	1.00	1.01	0.96	4.8	101	96	4.8
1,2,3,4,7,8-HxCDF	1.402	1.00	1.17	1.15	2.1	116	114	2.1
1,2,3,6,7,8-HxCDF	2.225	1.00	1.14	1.10	3.5	112	108	3.6
2,3,4,6,7,8-HxCDF	0.851	1.00	1.08	1.07	1.3	107	106	1.3
1,2,3,7,8,9-HxCDF	0.459	1.00	1.01	1.01	0.5	100	101	0.5
1,2,3,4,7,8-HxCDD	0.544	1.00	0.99	1.13	13.0	99	113	13.1
1,2,3,6,7,8-HxCDD	2.806	1.00	1.32	1.10	18.2	129	107	18.6
1,2,3,7,8,9-HxCDD	1.456	1.00	1.22	1.19	2.5	121	118	2.5
1,2,3,4,6,7,8-HpCDF	96.745	1.00	2.01	6.65	107.2	121	586	131.4
1,2,3,4,7,8,9-HpCDF	1.070	1.00	0.99	1.03	4.2	98	103	4.3
1,2,3,4,6,7,8-HpCDD	40.419	1.00	1.51	1.38	8.8	118	105	11.2
OCDF	50.977	2.00	2.78	4.12	39.0	118	185	44.4
OCDD	425.181	2.00	6.64	6.10	8.6	157	131	18.1

Definitions

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qm = Quantity Measured Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable

NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin

CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa

Hp = Hepta O = Octa

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nar	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365389
Wor	k order	r numl	per: 3000017136		Repoi	rt date	(mm/dd/yyyy): 10/17/2016
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr				
	Ques	stions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.		e there samples requiring preservation?		\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?				
	е.		e samples received with adequate holding for sample prep for all requested analyses?				
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				
2.	Cali	brat					
	Ques	stion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate oration problems for any analyses? If yes, ain the data impact.				

ues	tion		Yes	No	N/A	Comments
a.		any of the analyses contain samples for field rip blanks?				
	i.	If yes, are there target analytes present above the reporting limit?				
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
b.		method blanks for any analyses contain target lytes above the reporting limit?		\boxtimes		
	i.	If yes, are the same compounds present in the samples?				
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.			\boxtimes	

Surrogates Question No Yes N/A Comments Are there organic analyses that contain surrogate compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes Below the lab limits? ii. \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
а.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)				
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)		\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

Matrix Spike/Matrix Spike Duplicate/Sam Question a. Do the analytical methods used require an MS and/or MSD? If no, skip to 6.b.		Yes	No	N/A	Comments		
a.							
	i.		the required matrix spikes been ared and reported?				The MS/MSD was performed on mercury sample BW16TR-002-0.30-0.55.
	ii.	If no, as to	is there and explanation in the report why?				
	iii.		ne lab process an alternate spiked ole (such as LCSD) instead?				
	iv.	Are th	ne lab limits specified on the report?	\boxtimes			
	V.	comp	ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?				
	vi.	Are th	nere compounds outside the lab limits?		\boxtimes		
		1.	If yes, are the analytes above the lab limits?				The MSD recovery for mercury (128%) was biased high and outside QC limits.
		2.	Below the lab limits?				The MS recovery for mercury (59%) was biased low and outside QC limits.
		3.	Is the source sample also flagged for compounds outside lab limits?				
b.			e duplicate reported for the analytical ? If no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	e RPD for the duplicate pair within the mits?				The mercury RPD of 34% exceeded the QC criterion of ≤ 20%.
	ii.		has the associated source sample flagged?				
C.	Wha	it is the	impact of failed QC on this project?	\boxtimes			The mercury result in sample BW16TR-002 0.30-0.55 was qualified "J" as estimated.
Met	hod	Dete	ection Limits/Report Limits				
Ques	tion		-	Yes	No	N/A	Comments
a.	clea	Are reporting and/or method detection limits clearly listed on the report for all analyses? (may also be called quantitation limits)					

Ad

- of 66.7%. exceeded the QC guideline of ≤ 50%. Mercury results were qualified "J" as estimated in samples BW16TR-001-0.15-0.35 and BW16TR-101-0.15-0.35.
- (2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats n-ean2-11h • 10/20/11 Page 3 of 3

October 17, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

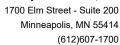
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabor Xiong for Lori Castille

Lori Castille
lori.castille@pacelabs.com

Kalon Xiona


Project Manager

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680

California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256

EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

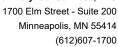
Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700


North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365389001	BW16TR-001-0.0-0.15	Solid	10/05/16 14:15	10/07/16 19:35
10365389002	BW16TR-001-0.15-0.35	Solid	10/05/16 14:21	10/07/16 19:35
10365389003	BW16TR-101-0.15-0.35	Solid	10/05/16 14:26	10/07/16 19:35
10365389004	BW16TR-002-0.0-0.15	Solid	10/05/16 15:10	10/07/16 19:35
10365389005	BW16TR-002-0.30-0.55	Solid	10/05/16 15:15	10/07/16 19:35
10365389006	BW16TR-003-0.0-0.15	Solid	10/05/16 15:30	10/07/16 19:35
10365389007	BW16TR-003-0.27-0.52	Solid	10/05/16 15:35	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10365389001	BW16TR-001-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389002	BW16TR-001-0.15-0.35	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389003	BW16TR-101-0.15-0.35	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389004	BW16TR-002-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389005	BW16TR-002-0.30-0.55	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389006	BW16TR-003-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365389007	BW16TR-003-0.27-0.52	EPA 7471B	LMW	1
		ASTM D2974	JDL	1

700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Method: EPA 7471B
Description: 7471B Mercury
Client: Bay West, Inc.
Date: October 17, 2016

General Information:

7 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

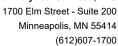
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 440058

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365389005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.


- MS (Lab ID: 2393000)
 - Mercury
- MSD (Lab ID: 2393001)
 - Mercury

R1: RPD value was outside control limits.

- MSD (Lab ID: 2393001)
 - Mercury

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

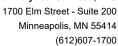
Percent Moisture

Date: 10/17/2016 03:13 PM

Sample: BW16TR-001-0.0-0.15 Lab ID: 10365389001 Collected: 10/05/16 14:15 Received: 10/07/16 19:35 Matrix: Solid

0.10

%


49.9

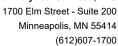
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.13 0.040 0.010 10/14/16 07:37 10/16/16 16:24 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight**

0.10

1

10/13/16 12:54

Project: J160139 SLR Sediment AOCs


Pace Project No.: 10365389

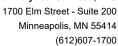
Date: 10/17/2016 03:13 PM

Sample: BW16TR-001-0.15-0.35 Lab ID: 10365389002 Collected: 10/05/16 14:21 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

results reported on a dry in	oigne baoic and ai	o dajaotoa it	Report	notaro, our	.,6.0 0.	izo ana any anati	01101		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	A 7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.65	mg/kg	0.038	0.0099	1	10/14/16 07:37	10/16/16 16:26	7439-97-6	
Dry Weight	Analytical	Method: AS7	ΓM D2974						
Percent Moisture	51.0	%	0.10	0.10	1		10/13/16 12:55		

Project: J160139 SLR Sediment AOCs


Pace Project No.: 10365389

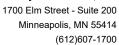
Date: 10/17/2016 03:13 PM

Sample: BW16TR-101-0.15-0.35 Lab ID: 10365389003 Collected: 10/05/16 14:26 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 1.3 0.034 0.0088 10/14/16 07:37 10/16/16 16:29 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** 10/13/16 13:38 Percent Moisture 49.1 % 0.10 0.10 1

Project: J160139 SLR Sediment AOCs

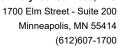

Pace Project No.: 10365389

Date: 10/17/2016 03:13 PM

Sample: BW16TR-002-0.0-0.15 Lab ID: 10365389004 Collected: 10/05/16 15:10 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.096 mg/kg 0.041 0.011 10/14/16 07:37 10/16/16 16:31 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 50.8 % 0.10 0.10 1 10/13/16 13:38


Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Date: 10/17/2016 03:13 PM

 Sample:
 BW16TR-002-0.30-0.55
 Lab ID:
 10365389005
 Collected:
 10/05/16 15:15
 Received:
 10/07/16 19:35
 Matrix:
 Solid

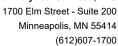
Results reported on a "dry we	ight" basis and are	adjusted fo	or percent mo	isture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	7471B Prepa	aration Met	hod: Ef	PA 7471B	-		
Mercury	1.1	mg/kg	0.040	0.010	1	10/14/16 07:37	10/16/16 16:33	7439-97-6	M1,R1
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	53.3	%	0.10	0.10	1		10/13/16 13:39		

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Date: 10/17/2016 03:13 PM

Sample: BW16TR-003-0.0-0.15 Lab ID: 10365389006 Collected: 10/05/16 15:30 Received: 10/07/16 19:35 Matrix: Solid


Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	A7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.072	mg/kg	0.029	0.0076	1	10/14/16 07:37	10/16/16 16:43	7439-97-6	
Dry Weight	Analytical	Method: AST	TM D2974						
Percent Moisture	37.5	%	0.10	0.10	1		10/13/16 13:39		

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Parameters

7471B Mercury

Date: 10/17/2016 03:13 PM

Report

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units

Limit MDL DF Prepared

Mercury 0.13 mg/kg 0.030 0.0079 1 10/14/16 07:37 10/16/16 16:46 7439-97-6

Analytical Method: EPA 7471B Preparation Method: EPA 7471B

Dry Weight Analytical Method: ASTM D2974

Results

Percent Moisture 39.9 % 0.10 0.10 1 10/13/16 13:40

QUALITY CONTROL DATA

J160139 SLR Sediment AOCs Project:

Pace Project No.: 10365389

Date: 10/17/2016 03:13 PM

QC Batch: 440058 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471B Mercury Solids

Associated Lab Samples: 10365389001, 10365389002, 10365389003, 10365389004, 10365389005, 10365389006, 10365389007

2392998 METHOD BLANK: Matrix: Solid

Associated Lab Samples: 10365389001, 10365389002, 10365389003, 10365389004, 10365389005, 10365389006, 10365389007

> Blank Reporting

Parameter Limit MDL Units Result Analyzed Qualifiers ND 0.018 0.0046 10/16/16 16:20

Mercury mg/kg

LABORATORY CONTROL SAMPLE: 2392999

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/kg .48 0.50 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2393001 2393000

MS MSD 10365389005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 1 1.7 2.4 75-125 20 M1,R1 Mercury 1.1 1 59 128 34 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

QC Batch: 440926 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10365389001, 10365389002

SAMPLE DUPLICATE: 2398805

10362391018 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers % 12.1 2 30 Percent Moisture 12.4

SAMPLE DUPLICATE: 2398806

Date: 10/17/2016 03:13 PM

10365389002 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 51.0 50.5 1 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

QC Batch: 440928 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10365389003, 10365389004, 10365389005, 10365389006, 10365389007

SAMPLE DUPLICATE: 2398813

 Parameter
 Units
 10365389005 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 53.3
 52.5
 1
 30

SAMPLE DUPLICATE: 2398814

Date: 10/17/2016 03:13 PM

		10365497001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	23.0	22.9	1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/17/2016 03:13 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365389

Date: 10/17/2016 03:13 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365389001	BW16TR-001-0.0-0.15	EPA 7471B	440058	EPA 7471B	441399
10365389002	BW16TR-001-0.15-0.35	EPA 7471B	440058	EPA 7471B	441399
10365389003	BW16TR-101-0.15-0.35	EPA 7471B	440058	EPA 7471B	441399
10365389004	BW16TR-002-0.0-0.15	EPA 7471B	440058	EPA 7471B	441399
10365389005	BW16TR-002-0.30-0.55	EPA 7471B	440058	EPA 7471B	441399
10365389006	BW16TR-003-0.0-0.15	EPA 7471B	440058	EPA 7471B	441399
10365389007	BW16TR-003-0.27-0.52	EPA 7471B	440058	EPA 7471B	441399
10365389001	BW16TR-001-0.0-0.15	ASTM D2974	440926		
10365389002	BW16TR-001-0.15-0.35	ASTM D2974	440926		
10365389003	BW16TR-101-0.15-0.35	ASTM D2974	440928		
10365389004	BW16TR-002-0.0-0.15	ASTM D2974	440928		
10365389005	BW16TR-002-0.30-0.55	ASTM D2974	440928		
10365389006	BW16TR-003-0.0-0.15	ASTM D2974	440928		
10365389007	BW16TR-003-0.27-0.52	ASTM D2974	440928		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

7 Samples Intact (Y/N) Z 000 SAMPLE CONDITIONS Custody Sealed Cooler (Y/V) 500 asinish Comments S SLR-TR-1 200 200 S Received on Ice (Y/N) ŏ STATE Site Location [°]qmpT (Э°) عراء ہے 16365389 #505 Page 193 1555 Š EQuiS Information: Facility_Name: St. Louis River Sediment Areas of Concern. 110/11/C Requested Analysis acility_Code: St Louis River Sed 547023 DATE Signed (MM/DD/YY): Subfacility code % Moisture 0 Section D acility_ID: Krittere Po Worn 2.5 Mercury (EPA 7471B) 2.5 (A0928 848-WZ) ansut bns anixolo Oyeyemi Odujale Bay West, LLC 3000017136 Accounts Payable 5 Empire Drive Other Methanol [€]O[₹]S[₹]EN Preservatives ЮН nvoice Information. ab Quote Reference. ab Project Manager: [€]ONH Зотрапу Мате: ⁵OS^zH 000 Section C 2521**2011101** (G \$ 1 10KD) SAMPLER NAME AND SIGNATURE Unpreserved ო ო m က 6 ç # OF CONTAINERS 2 9 e ماالها PRINT Name of SAMPLER: SIGNATURE OF SAMPLER: 1204 1415 1423 1426 1510 1515 1530 1535 əmiT Collection 10/5/16 3/12/15 10/5/16 10/5/16 10/5/18 10/5/16 10/5/16 10/5/16 **BATE** SLR Sediment AOCs Kristand Pol Nancy McDonald 108002 hrisMusson SAMPLE TYPE G=GRAB C=COMP) Ø ø O O Ø ø Ø J160139 30py To: Paul Raymaker Required Project Information: စ္တ ၀ွ S ၀ွ ၀ S ၀ွ S MATRIX CODE urchase Order No.: CODE roject Number. Orinking Water DW
Waste Water W
Product WW
Soul/Soild P
Oil SO
Air WP
Air WP
Tissue AR
Other TS roject Name: Valid Matrix Codes MATRIX CO Section B BW16TR-001-0.15-0.35 BW16TR-101-0.15-0.35 BW16TR-002-0.30-0.55 BW16TR-003-0,27-0.52 ্বত্ত Reference Pace Subcontractor Order Form signed by Pace on BW14MLW-005-0-0.15 BW16TR-002-0.0-0.15 BW16TR-001-0.0-0.15 BW16TR-003-0.0-0.15 Sample ID (sys_sample_code) ADDITIONAL COMMENTS mail To: nmcdonald@baywest.com 651-291-3483 Section E Required Client Information Standard Company: Bay West, LLC dress: 5 Empire Drive equested Due Date/TAT: Section A Required Client Information: Location ID (sys_loc_code) St. Paul, MN 55103 BW15MLW-005 Sample BW16TR-002 BW16TR-003 BW16TR-001 BW16TR-002 BW16TR-003 BW16TR-001 BW16TR-001 Page 18 of 19 Ä 60 2 12 # MBTI N

Pace Analytical*

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt O			Project	:*:「WO#∶10365389
Bay West LLC	-			MOTE - A COCCO
Courier: Fed Ex UPS	USPS		Client	
Commercial Pace SpeeDee	Other:			10365389
Tracking Number:				
Custody Seal on Cooler/Box Present? ☐Yes ☐No		Seals Int	act?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□Non	ne 🔲	Other:	Temp Blank? Yes No
Thermometer	98 191	e of Ice:	✓We	
Cooler Temp Read (°C):	rected (°C): 🔼 🤄	9.2,	Biological Tissue Frozen? Yes No NA
Temp should be above freezing to 6°C B (Correction Factor)	or: <u>+c</u>),7	Dat	te and Initials of Person Examining Contents: _ <u>りて しノ > / (と</u>
USDA Regulated Soil (N/A, water sample) 10/7/16	tates: Al	AD A7 C	A EI GA	ID, LA Did samples originate from a foreign source (internationally,
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	itales. AL, I	AR, AZ, C	A, rt, GA, ☐Yes	No including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Regu	ulated Soi	l Checkli	st (F-MN	-Q=338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Z Yes	□No	□N/A	1.
Chain of Custody Filled Out?	✓Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	□N/A	4.
Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	□Yes	⊠Ño	□N/A	6.
Rush Turn Around Time Requested?	∐Yes		N/A	7.
Sufficient Volume?	□Yes	□No	□N/A	8.
Correct Containers Used?	Yes	□No		9.
-Pace Containers Used?	Yes	□No	□N/A	
Containers Intact?	Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	ØN/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?		□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix: SL	دے اولار		□ 11/10	
All containers needing acid/base preservation have been	******			Duna Duna Duna Duna
checked?	□Yes	□No	⊠ N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation?				Sample #
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	ØN7A	
Exceptions: VOA, Coliform, TOC, Oil and Grease,	—	r=1	,	Initial when Lot # of added
DRO/8015 (water) DOC	☐Yes	□No		completed: preservative:
Headspace in VOA Vials (>6mm)? Trip Blank Present?	☐Yes	□No	<u>D</u> AN/A	14.
Trip Blank Custody Seals Present?	□Yes □Yes	□No □No	DN/A DN/A	15.
Pace Trip Blank Lot # (if purchased):	∟res	Ш№	N/A LIN/A	
CLIENT NOTIFICATION/RESOLUTION				Field Date Beauting 22 - Date
A				Field Data Required? ☐Yes ☐No Date/Time:
Comments/Resolution:				Date/lime:
Commency resolution.			•••	
Project Manager Paviews J O O 17				Date: 10/10/16
Project Manager Review:	impitative s	amples, a	copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nar	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365387
Wor	k order	r numl	per: 3000017136		Repoi	rt date	(mm/dd/yyyy): 10/17/2016
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr				
	Ques	stions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.		e there samples requiring preservation?		\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?				
	е.		e samples received with adequate holding for sample prep for all requested analyses?				
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g.						
2.	Cali	brat					
	Ques	stion		Yes	No	N/A	Comments
	a.						

ues	tion		Yes	No	N/A	Comments	
a.	Do any of the analyses contain samples for field or trip blanks?						
	i.	If yes, are there target analytes present above the reporting limit?					
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.					
b.		method blanks for any analyses contain target lytes above the reporting limit?		\boxtimes			
	i.			П			
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.			\boxtimes		

Surrogates Question No Yes N/A Comments Are there organic analyses that contain surrogate compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes Below the lab limits? ii. \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
а.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)	\boxtimes			
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)		\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	ii. Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

Ques	stion			Yes	No	N/A	Comments
a.			nlytical methods used require an MS D? If no, skip to 6.b.				
	i.		the required matrix spikes been ared and reported?				The MS/MSD was performed on mercury sample BW16TR-006-0.0-0.15.
	ii.		is there and explanation in the report why?				
	iii.		ne lab process an alternate spiked ble (such as LCSD) instead?				
	iv.	Are tl	he lab limits specified on the report?	\boxtimes			
	V.	comp	ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?	\boxtimes			
	vi. Are there compounds outside the		here compounds outside the lab limits?		\boxtimes		
1. If yes, are limits?		1.	If yes, are the analytes above the lab limits?				
		2.	Below the lab limits?			\boxtimes	
		3.	Is the source sample also flagged for compounds outside lab limits?				
b.		Is a sample duplicate reported for the analytical method(s)? If no, skip to 6.c.					RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the mits?	\boxtimes			
	ii.		has the associated source sample flagged?				
C.	Wha	t is the	e impact of failed QC on this project?			\boxtimes	
Met	hod	Dete	ection Limits/Report Limits		T.	1	
Ques	stion			Yes	No	N/A	Comments
a. Are reporting and/or method detection limits clearly listed on the report for all analyses? (may also be called quantitation limits)							
			, ,				,

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats <u>p-eap2-11b</u> • 10/20/11 • 10/20/11

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

October 17, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

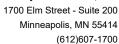
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 Alaska Certification UST-107 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L

Florida/NELAP Certification #: 81MS-L

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382

Wisconsin Certification #: 999407970

West Virginia DHHR #:9952C

Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365387001	BW16TR-004-0.0-0.15	Solid	10/07/16 10:40	10/07/16 19:35
10365387002	BW16TR-004-0.21-0.46	Solid	10/07/16 10:45	10/07/16 19:35
10365387003	BW16TR-005-0.0-0.15	Solid	10/07/16 11:00	10/07/16 19:35
10365387004	BW16TR-005-0.23-0.48	Solid	10/07/16 11:05	10/07/16 19:35
10365387005	BW16TR-105-0.23-0.48	Solid	10/07/16 11:10	10/07/16 19:35
10365387006	BW16TR-006-0.0-0.15	Solid	10/07/16 11:35	10/07/16 19:35
10365387007	BW16TR-006-0.15-0.28	Solid	10/07/16 11:35	10/07/16 19:35
10365387008	BW16TR-007-0.0-0.15	Solid	10/07/16 11:50	10/07/16 19:35
10365387009	BW16TR-007-0.26-0.51	Solid	10/07/16 11:55	10/07/16 19:35
10365387010	BW16TR-107-0.26-0.51	Solid	10/07/16 12:00	10/07/16 19:35
10365387011	BW16TR-009-0.0-0.15	Solid	10/07/16 12:25	10/07/16 19:35
10365387012	BW16TR-010-0.0-0.15	Solid	10/07/16 12:40	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10365387001	BW16TR-004-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387002	BW16TR-004-0.21-0.46	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387003	BW16TR-005-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387004	BW16TR-005-0.23-0.48	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387005	BW16TR-105-0.23-0.48	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387006	BW16TR-006-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387007	BW16TR-006-0.15-0.28	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387008	BW16TR-007-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387009	BW16TR-007-0.26-0.51	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387010	BW16TR-107-0.26-0.51	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387011	BW16TR-009-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1
10365387012	BW16TR-010-0.0-0.15	EPA 7471B	LMW	1
		ASTM D2974	JDL	1

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Method: EPA 7471B
Description: 7471B Mercury
Client: Bay West, Inc.
Date: October 17, 2016

General Information:

12 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

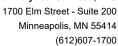
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

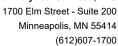
Percent Moisture

Date: 10/17/2016 08:16 AM

Sample: BW16TR-004-0.0-0.15 Lab ID: 10365387001 Collected: 10/07/16 10:40 Received: 10/07/16 19:35 Matrix: Solid

0.10

%


37.2

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.054 mg/kg 0.031 0.0080 10/14/16 07:19 10/16/16 19:03 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight**

0.10

1

10/13/16 11:32

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

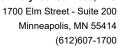
Percent Moisture

Date: 10/17/2016 08:16 AM

Sample: BW16TR-004-0.21-0.46 Lab ID: 10365387002 Collected: 10/07/16 10:45 Received: 10/07/16 19:35 Matrix: Solid

0.10

%


38.6

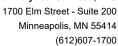
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.50 0.033 0.0085 10/14/16 07:19 10/16/16 19:06 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight**

0.10

1

10/13/16 11:33

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365387

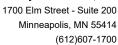
Date: 10/17/2016 08:16 AM

Sample: BW16TR-005-0.0-0.15 Lab ID: 10365387003 Collected: 10/07/16 11:00 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

		•	Report		•	•				
Parameters Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
7471B Mercury	Analytical	Method: EPA	7471B Prepa	aration Met	hod: El	PA 7471B				
Mercury	0.13	mg/kg	0.042	0.011	1	10/14/16 07:19	10/16/16 19:08	7439-97-6		
Dry Weight	Analytical	Analytical Method: ASTM D2974								
Percent Moisture	54.2	%	0.10	0.10	1		10/13/16 11:33			

Project: J160139 SLR Sediment AOC

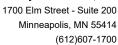

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Sample: BW16TR-005-0.23-0.48 Lab ID: 10365387004 Collected: 10/07/16 11:05 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.10 0.030 0.0077 10/14/16 07:19 10/16/16 19:10 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 40.3 % 0.10 0.10 1 10/13/16 11:33


Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Sample: BW16TR-105-0.23-0.48 Lab ID: 10365387005 Collected: 10/07/16 11:10 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.074 mg/kg 0.029 0.0074 10/14/16 07:19 10/16/16 19:12 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 38.2 % 0.10 0.10 10/13/16 11:33

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Percent Moisture

Date: 10/17/2016 08:16 AM

Sample: BW16TR-006-0.0-0.15 Lab ID: 10365387006 Collected: 10/07/16 11:35 Received: 10/07/16 19:35 Matrix: Solid

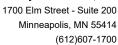
0.10

%

41.2

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.098 mg/kg 0.033 0.0086 10/14/16 07:19 10/16/16 19:22 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight**

0.10


1

10/13/16 11:34

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Parameters

7471B Mercury

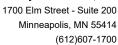
Date: 10/17/2016 08:16 AM

Sample: BW16TR-006-0.15-0.28 Lab ID: 10365387007 Collected: 10/07/16 11:35 Received: 10/07/16 19:35 Matrix: Solid

Report

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units


Limit MDL DF Prepared Analytical Method: EPA 7471B Preparation Method: EPA 7471B

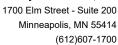
0.39 0.035 0.0091 10/14/16 07:19 10/16/16 19:28 7439-97-6 Mercury mg/kg

Analytical Method: ASTM D2974 **Dry Weight**

Results

Percent Moisture 50.8 % 0.10 0.10 1 10/13/16 11:34

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Sample: BW16TR-007-0.0-0.15 Lab ID: 10365387008 Collected: 10/07/16 11:50 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.050 mg/kg 0.031 0.0081 10/14/16 07:19 10/16/16 19:31 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 43.3 % 0.10 0.10 10/13/16 11:34

10/13/16 11:35

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOC

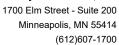
Pace Project No.: 10365387

Percent Moisture

Date: 10/17/2016 08:16 AM

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

%


37.9

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.38 0.028 0.0074 10/14/16 07:19 10/16/16 19:33 7439-97-6 mg/kg Analytical Method: ASTM D2974 **Dry Weight**

0.10

1

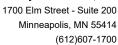
0.10

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Sample: BW16TR-107-0.26-0.51 Lab ID: 10365387010 Collected: 10/07/16 12:00 Received: 10/07/16 19:35 Matrix: Solid


Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	– – – – A 7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.53	mg/kg	0.028	0.0074	1	10/14/16 07:19	10/16/16 19:35	7439-97-6	
Dry Weight	Analytical	Method: AS	ΓM D2974						
Percent Moisture	35.8	%	0.10	0.10	1		10/13/16 11:35		

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Parameters

7471B Mercury

Date: 10/17/2016 08:16 AM

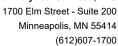
Sample: BW16TR-009-0.0-0.15 Lab ID: 10365387011 Collected: 10/07/16 12:25 Received: 10/07/16 19:35 Matrix: Solid

Report

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units

Limit MDL DF Prepared


Mercury 0.055 mg/kg 0.023 0.0061 1 10/14/16 07:19 10/16/16 19:37 7439-97-6

Analytical Method: EPA 7471B Preparation Method: EPA 7471B

Dry Weight Analytical Method: ASTM D2974

Results

Percent Moisture 19.6 % 0.10 0.10 1 10/13/16 12:54

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Sample: BW16TR-010-0.0-0.15 Lab ID: 10365387012 Collected: 10/07/16 12:40 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

,		•	Report	,	•	•			
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	A 7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.068	mg/kg	0.026	0.0068	1	10/14/16 07:19	10/16/16 19:39	7439-97-6	
Dry Weight	Analytical	Method: AS	ΓM D2974						
Percent Moisture	30.9	%	0.10	0.10	1		10/13/16 12:54		

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

QC Batch: 440057 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471B Mercury Solids

Associated Lab Samples: 10365387001, 10365387002, 10365387003, 10365387004, 10365387005, 10365387006, 10365387007,

10365387008, 10365387009, 10365387010, 10365387011, 10365387012

METHOD BLANK: 2392994 Matrix: Solid

Associated Lab Samples: 10365387001, 10365387002, 10365387003, 10365387004, 10365387005, 10365387006, 10365387007,

10365387008, 10365387009, 10365387010, 10365387011, 10365387012

Blank Reporting
Result Limit MDL Analyzed Qualifiers

Mercury mg/kg ND 0.020 0.0052 10/16/16 18:38

LABORATORY CONTROL SAMPLE: 2392995

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 104 80-120 Mercury .45 0.47 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2392996 2392997

MS MSD 10365387006 Spike Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Result % Rec % Rec Limits Conc. Result Qual Mercury 0.098 .75 .77 0.85 0.88 100 101 75-125 4 20 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

QC Batch: 440863 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10365387001, 10365387002, 10365387003, 10365387004, 10365387005, 10365387006, 10365387007,

10365387008, 10365387009, 10365387010

SAMPLE DUPLICATE: 2398400

10365153005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 12.2 % 30 Percent Moisture 10.8 12

SAMPLE DUPLICATE: 2398401

Date: 10/17/2016 08:16 AM

		10365387006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	41.2	42.9	4	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

QC Batch: 440926 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10365387011, 10365387012

SAMPLE DUPLICATE: 2398805

10362391018 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers % 12.1 2 30 Percent Moisture 12.4

SAMPLE DUPLICATE: 2398806

Date: 10/17/2016 08:16 AM

10365389002 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 51.0 50.5 1 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/17/2016 08:16 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365387

Date: 10/17/2016 08:16 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365387001	BW16TR-004-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387002	BW16TR-004-0.21-0.46	EPA 7471B	440057	EPA 7471B	441398
10365387003	BW16TR-005-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387004	BW16TR-005-0.23-0.48	EPA 7471B	440057	EPA 7471B	441398
10365387005	BW16TR-105-0.23-0.48	EPA 7471B	440057	EPA 7471B	441398
10365387006	BW16TR-006-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387007	BW16TR-006-0.15-0.28	EPA 7471B	440057	EPA 7471B	441398
10365387008	BW16TR-007-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387009	BW16TR-007-0.26-0.51	EPA 7471B	440057	EPA 7471B	441398
10365387010	BW16TR-107-0.26-0.51	EPA 7471B	440057	EPA 7471B	441398
10365387011	BW16TR-009-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387012	BW16TR-010-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365387001	BW16TR-004-0.0-0.15	ASTM D2974	440863		
10365387002	BW16TR-004-0.21-0.46	ASTM D2974	440863		
10365387003	BW16TR-005-0.0-0.15	ASTM D2974	440863		
10365387004	BW16TR-005-0.23-0.48	ASTM D2974	440863		
10365387005	BW16TR-105-0.23-0.48	ASTM D2974	440863		
10365387006	BW16TR-006-0.0-0.15	ASTM D2974	440863		
10365387007	BW16TR-006-0.15-0.28	ASTM D2974	440863		
10365387008	BW16TR-007-0.0-0.15	ASTM D2974	440863		
10365387009	BW16TR-007-0.26-0.51	ASTM D2974	440863		
10365387010	BW16TR-107-0.26-0.51	ASTM D2974	440863		
10365387011	BW16TR-009-0.0-0.15	ASTM D2974	440926		
10365387012	BW16TR-010-0.0-0.15	ASTM D2974	440926		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A		Section B					Section C				Section D	0 10			72172	7 7 7	7	
Required Client Information:		mject Ir	nformat	tion:			Invoice Information:	- 1			EQUIX	EQutS Information:				ה מ	S	
		Report To:	Nanc	Nancy McDonald	maid		Attention:		Accounts Payable	able	Facilit	v_Name: St. Louis Riv∢	Facility_Name: St. Louis River Sediment Areas of Concern	Page	•	ð	•	
Address: 5 Empire Drive		Сору То: Paul Raymaker	ауша	ıker			Сотрапу Name:		Bay West, LLC	TLC	Facilit	Facility_Code: St Louis River Sed	iver Sed		-		_	
St. Paul, MN 55103							Address:	5 E	Empire Drive	l e	Facility_ID:	/_ID: 547023		#500 00			!	Γ
Email To: nmcdonald@	nmcdonald@baywest.com	Purchase Order No.:		108002			Lab Quote Reference	.99	3000017136	7136	Subfa	Subfacility_code:		Γ		SLR-TR-2	7	
Phone:	651-291-3483	Project Name:	SLR	Sedime	SLR Sediment AOCs		Lab Project Manager		Oyeyemi Odujole	Odujole	_				Site Location			Τ
Requested Due Date/TAT:	T: Standard	Project Number.	1160139	139											STATE		Z S	
												Re	Requested Analysis					
S. Required	Section E Required Cleant Information MATE	Valid Matrix Codes MATRIX CODE			Colle	Collection	а,	Preservatives	se,	(∀				-				
Sample Location ID (sys_loc_code)	Sample ID	Drinking Water DW waste water W Product W Soil/Soild P W Oil Oil SO Wipe OL Air WP Tissue AR Other OT	BOOS XIRTAM	SAMPLE TYPE (G=GRAB C=COMP)	ataq ,	əmiT	HNO ³ H ⁵ 2O [†] # OE CONTAINERS	NgOH HCI	Na ₂ S ₂ O ₃ Methanol Other	Ostas 846-W2) ananu bna anixoid	Mercury (EPA 7471B)	елизіоМ %				Comments	ents	
Ex. BW15MLW-005	BW14MLW-005-0-0.15	5	ပ္တ	9	3/12/15	1204				0 1. 3 <u>1</u> 8. 3	Н -					+'		
1 BW16TR-004	BW16TR-004-0.0-0.15		ક્ષ	U	10/7/16	1040	3 3			-	-	1				to a	3	
2 BW16TR-004	BW16TR-004-0.21-0.46	9	S	v	10/7/16	1045	8			-	-	-		· · ·		4	(3)	
3 BW16TR-005	BW16TR-005-0.0-0.15		S	ŋ	10/7/16	1100	3 3			500	-	1		:	_	+	40 W3	
4 BW16TR-005	BW16TR-005-0.23-0.48	82	S	o	10/7/16	1105	en en		_	776		-				Ar.	F 124	
5 BW16TR-005	BW16TR-105-0.23-0.48	<u>&</u>	8	U	10/7/18	1110	. w	-		3.34	-	-				·\$	ક ω δ	
6 BW16TR-006	BW16TR-006-0.0-0.15		င္တ	ŋ	10/7/18	1130	9			2.5	2.5	-			MS/MSD	13	3	
7 BW16TR-006	BW16TR-006-0.15-0.28	8;	8	9	10/7/16	1135	6				-	-			_	0	10	
8 BW16TR-007	BW16TR-007-0.0-0.15	,_	္တ	Ű	10/7/16	1150	8		_	-	-	-			,	3	(C)	
9 BW16TR-007	BW16TR-007-0.26-0.51	14	S	ŋ	10/7/16	1155	8			-	-	-		-		0	િ	
10_BW16TR-007	BW16TR-107-0.26-0.51	и	တ္တ	Ø	10/7/16	1200	en en				-			-			<i>ا</i> اد	
11 BW16TR-009	BW16TR-009-0.0-0.15		S	Ø	10/7/16	1225	ю 6			7) V	-	•					11	
12 BW16TR-010	BW16TR-010-0.0-0.15		ଌ	U	SO G 107718	1240	3				-	-					ήlγ	
ADDITIC	ADDITIONAL COMMENTS	REL	INO	SHED BY	/ / AFFILIATION	DATE	TIME		Ϋ́	ACCEPTED BY / AFFILIATION	Y / AFFI	IATION	DATE	TIME	SAM	SAMPLE CONDITIONS	LIONS	П
P. C. C. C. Proper O. Specialist)	hris	Š	¥	Bayliket	7		Kustane	Lane	Q	Laer	ی	0111401	1555	٦ 4	プ	ノユ	ナ
Kererence Pace Subcontra 9/16/16	Kelerence Pace Succontractor Order Form signed by Pace on 9/16/16	र्डे इ	37	Cè	lson	ph11/01	(S)	9					1017/16	1700	40 26			
Pa		9				19716	16.3.	2	Ż	Ĭ	X	ابد	9)/1/01	1935				(N
ge 2).	۱ (´				N		\parallel	ار		10-7-16	1939	d			(人) (大)
<u>'</u> 3 of					SAMPLE	SAMPLER NAME AND SIGNATUR	WATURE		<u>}</u>		34 34 84				ImaT (O°)			etul st
f 24					PRINT N	PRINT Name of SAMPLER:	The state of the s	20	3/2	USSON	,	ı	י ו			Seceive	(poteu	ojdweg
					SIGNATU	SIGNATURE of SAMPLER:	1	<u>へ</u>	12		Signed:	DATE Signed (MM/DD/YY): 10,	9// 1/0/			_	_	

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.:

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: F-MN-L-213-rev.17 Pace Minnesota Quality Office

Upon Receipt Bay West	LLC		Proje	** WO#:10365387
Courier: Fed Ex UPS	USPS		- Client	
Commercial Pace SpeeDee		_	Joneth	
Tracking Number:				
Custody Seal on Cooler/Box Present?]No	Seals In	tact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap XBubble B	ags 🔲 No	ne []Other:_	Temp Blank? ∑Yes ☐ No
Thermometer ☐ 151401163 ☐ B88A91216 ☐ Used: ☐ 151401164 ☐ B88A01433	110098 'Y	pe of Ice:	7	
Cooler Temp Read (°C): 6.0 2.5 3.0 Cooler Temp Femp should be above freezing to 6°C Correction (SDA Regulated Soil (N/A, water sample)	Factor:	011	′ Da	te and Initials of Person Examining Contents: 100 10-7-
)id samples originate in a quarantine zone within the Unit AS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			Yes	ID, LA. Did samples originate from a foreign source (internationall IX) No including Hawaii and Puerto Rico)? ☐ Yes ☐ Y
				COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	¥Yes	□No	□N/A	2.
Chain of Custody Relinquished?	¥Yes	No	□N/A	3.
Sampler Name and/or Signature on COC?		□No	□N/A	4.
Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	∐Yes	No	□N/A	6.
Rush Turn Around Time Requested?	Yes	□ZNo	□N/A	7.
Sufficient Volume?	∑¥es	□No	□N/A	8.
Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	ZŽYes	□No	□N/A	
Containers Intact?	Yes	□No	□N/A	10.
iltered Volume Received for Dissolved Tests?	∐Yes	□No	□2n/a	11. Note if sediment is visible in the dissolved container
ample Labels Match COC?	[∑ kýes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix: 54				
NI containers needing acid/base preservation have been hecked?	_			13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
Il containers needing preservation are found to be in	∐Yes	□№	₩ N/A	13.
ompliance with EPA recommendation?				Sample #
100_3 , 1000_4 , 1000 ; NaOH >9 Sulfide, NaOH>12 Cyanide exceptions: VOA, Coliform, TOC, Oil and Grease,	e) 🔲 Yes	□No	₹ IN/A	hart i
RO/8015 (water) DOC	Yes	∏No	☑ N/A	Initial when Lot # of added completed: preservative:
eadspace in VOA Vials (>6mm)?	□Yes	□No	∑N/A	14.
ip Blank Present?	∐Yes	□No	₩N/A	15.
ip Blank Custody Seals Present?	☐Yes	□No	ŊŊ/A	
ace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
erson Contacted:				Date/Time:
omments/Resolution:	<u>,</u>			
	······			

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

	-		rmation				
Proj	ect nar	ne: _	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365384
Wor	k order	r numl	per:3000017136		Repor	t date	(mm/dd/yyyy): 10/17/2016
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environn				
	Ques	stions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.	Wer	e there samples requiring preservation?				
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?				
	е.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				
2.	Cali	brat	ion				
	Ques	stion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate pration problems for any analyses? If yes, ain the data impact.		\boxtimes		

ues	tion		Yes	No	N/A	Comments
a.		any of the analyses contain samples for field ip blanks?		\boxtimes		
	i.	If yes, are there target analytes present above the reporting limit?				
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
b.		method blanks for any analyses contain target lytes above the reporting limit?		\boxtimes		
	i.	If yes, are the same compounds present in the samples?				
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.			\boxtimes	

Surrogates Question No Yes N/A Comments Are there organic analyses that contain surrogate compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes Below the lab limits? ii. \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
а.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)	\boxtimes			
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)		\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

	stion		/Matrix Spike Duplicate/Samp	Yes	No	N/A	Comments
а.	Do t	he ana or MSI	lytical methods used require an MS D? If no, skip to 6.b.		П		
	i.	Have	the required matrix spikes been ared and reported?				The MS/MSD was performed as batch QC from SDG 10365387.
	ii.	If no,	is there and explanation in the report why?			\boxtimes	
	iii.		ne lab process an alternate spiked lle (such as LCSD) instead?				
	iv.	Are th	ne lab limits specified on the report?	\boxtimes			
	V.	comp	e limits seem reasonable when pared to the suggested guidelines in the A QC Policy?				
	vi.	Are th	nere compounds outside the lab limits?		\boxtimes		
		1.	If yes, are the analytes above the lab limits?			\boxtimes	
		2.	Below the lab limits?			\boxtimes	
		3.	Is the source sample also flagged for compounds outside lab limits?				
b.	ls a metl	sample nod(s)?	e duplicate reported for the analytical Plf no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the mits?	\boxtimes			
	ii.		has the associated source sample flagged?				
C.	Wha	at is the	e impact of failed QC on this project?			\boxtimes	
Met	hod	Dete	ction Limits/Report Limits				
Ques	stion			Yes	No	N/A	Comments
a.	clea	rly liste	ng and/or method detection limits d on the report for all analyses? (may led quantitation limits)				

Α

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

651-296-6300 • 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • n-ean2-11h • 10/20/11 Page 3 of 3

October 17, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager

Low Carre

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 Alaska Certification UST-107 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256

EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700


North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365384001	BW16TR-010-0.15-0.38	Solid	10/07/16 12:45	10/07/16 19:35
10365384002	BW16TR-011-0.0-0.15	Solid	10/07/16 13:05	10/07/16 19:35
10365384003	BW16TR-011-0.60-0.85	Solid	10/07/16 13:10	10/07/16 19:35
10365384004	BW16TR-012-0.0-0.15	Solid	10/07/16 13:20	10/07/16 19:35
10365384005	BW16TR-014-0.0-0.15	Solid	10/07/16 13:30	10/07/16 19:35
10365384006	BW16TR-014-0.15-0.38	Solid	10/07/16 13:35	10/07/16 19:35
10365384007	BW16TR-015-0.0-0.15	Solid	10/07/16 13:50	10/07/16 19:35
10365384008	BW16TR-015-0.15-0.36	Solid	10/07/16 13:55	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
10365384001	BW16TR-010-0.15-0.38	EPA 7471B	LMW	1	
		ASTM D2974	JDL	1	
10365384002	BW16TR-011-0.0-0.15	EPA 7471B	LMW	1	
		ASTM D2974	JDL	1	
10365384003	BW16TR-011-0.60-0.85	EPA 7471B	LMW	•	
		ASTM D2974	JDL	•	
10365384004	BW16TR-012-0.0-0.15	EPA 7471B	LMW	1	
		ASTM D2974	JDL	•	
10365384005	BW16TR-014-0.0-0.15	EPA 7471B	LMW	•	
		ASTM D2974	JDL	,	
10365384006	BW16TR-014-0.15-0.38	EPA 7471B	LMW	•	
		ASTM D2974	JDL	•	
10365384007	BW16TR-015-0.0-0.15	EPA 7471B	LMW	•	
		ASTM D2974	JDL	•	
10365384008	BW16TR-015-0.15-0.36	EPA 7471B	LMW		
		ASTM D2974	JDL	,	

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Method: EPA 7471B
Description: 7471B Mercury
Client: Bay West, Inc.
Date: October 17, 2016

General Information:

8 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

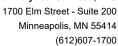
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

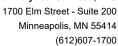
This data package has been reviewed for quality and completeness and is approved for release.

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

Sample: BW16TR-010-0.15-0.38 Lab ID: 10365384001 Collected: 10/07/16 12:45 Received: 10/07/16 19:35 Matrix: Solid


Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B Mercury 0.075 mg/kg 0.030 0.0078 10/14/16 07:19 10/16/16 18:42 7439-97-6 Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 37.4 % 0.10 0.10 1 10/13/16 11:30

CAS No.

Qual

Analyzed

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Parameters

7471B Mercury

Date: 10/17/2016 08:16 AM

Sample: BW16TR-011-0.0-0.15 Lab ID: 10365384002 Collected: 10/07/16 13:05 Received: 10/07/16 19:35 Matrix: Solid

Report

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units

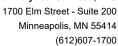
Limit MDL DF Prepared

Mercury 0.12 mg/kg 0.039 0.010 1 10/14/16 07:19 10/16/16 18:44 7439-97-6

Analytical Method: EPA 7471B Preparation Method: EPA 7471B

Dry Weight Analytical Method: ASTM D2974

Results


Percent Moisture **50.1** % 0.10 0.10 1 10/13/16 11:30

CAS No.

Qual

Analyzed

10/13/16 11:31

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Parameters

Percent Moisture

Date: 10/17/2016 08:16 AM

Sample: BW16TR-011-0.60-0.85 Lab ID: 10365384003 Collected: 10/07/16 13:10 Received: 10/07/16 19:35 Matrix: Solid

Report

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Units

%

Results

54.7

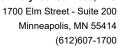
Limit MDL DF Prepared

0.10

1

7471B Mercury

Analytical Method: EPA 7471B Preparation Method: EPA 7471B

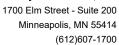

Mercury

2.2 mg/kg 0.076 0.020 2 10/14/16 07:19 10/16/16 19:16 7439-97-6

Dry Weight

Analytical Method: ASTM D2974

0.10

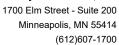

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

Sample: BW16TR-012-0.0-0.15 Lab ID: 10365384004 Collected: 10/07/16 13:20 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry w	eight" basis and ar	e adjusted fo	or percent mo	isture, sar	nple s	ize and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	.7471B Prepa	aration Met	hod: E	PA 7471B			
Mercury	0.56	mg/kg	0.042	0.011	1	10/14/16 07:19	10/16/16 18:48	7439-97-6	
Dry Weight	Analytical	Method: AST	M D2974						
Percent Moisture	55.3	%	0.10	0.10	1		10/13/16 11:31		


Project: J160139 SLR Sediment AOCs

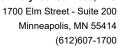
Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

Sample: BW16TR-014-0.0-0.15 Lab ID: 10365384005 Collected: 10/07/16 13:30 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry we	eight" basis and are	e adjusted fo	or percent mo Report	isture, san	nple si	ize and any diluti	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	A 7471B Prepa	aration Met	hod: El	PA 7471B			
Mercury	0.077	mg/kg	0.039	0.010	1	10/14/16 07:19	10/16/16 18:51	7439-97-6	
Dry Weight	Analytical	Method: AS7	TM D2974						
Percent Moisture	48.8	%	0.10	0.10	1		10/13/16 11:31		

Project: J160139 SLR Sediment AOCs


Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

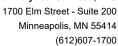
Sample: BW16TR-014-0.15-0.38 Lab ID: 10365384006 Collected: 10/07/16 13:35 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	A7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.087	mg/kg	0.031	0.0081	1	10/14/16 07:19	10/16/16 18:53	7439-97-6	
Dry Weight	Analytical	Method: AS	TM D2974						
Percent Moisture	38.2	%	0.10	0.10	1		10/13/16 11:31		

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384


Date: 10/17/2016 08:16 AM

Sample: BW16TR-015-0.0-0.15 Lab ID: 10365384007 Collected: 10/07/16 13:50 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions,

Results reported on a dry weight basis and are adjusted for percent moisture, sample size and any undutions.									
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
7471B Mercury	Analytical	Method: EPA	7471B Prep	aration Met	hod: El	PA 7471B			
Mercury	0.088	mg/kg	0.031	0.0081	1	10/14/16 07:19	10/16/16 18:59	7439-97-6	
Dry Weight	Dry Weight Analytical Method: ASTM D2974								
Percent Moisture	38.1	%	0.10	0.10	1		10/13/16 11:32		

10/13/16 11:32

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Percent Moisture

Date: 10/17/2016 08:16 AM

Sample: BW16TR-015-0.15-0.36 Lab ID: 10365384008 Collected: 10/07/16 13:55 Received: 10/07/16 19:35 Matrix: Solid

0.10

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

%

37.8

Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.15 0.030 0.0078 10/14/16 07:19 10/16/16 19:01 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight**

0.10

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

QC Batch: 440057 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471B Mercury Solids

Associated Lab Samples: 10365384001, 10365384002, 10365384003, 10365384004, 10365384005, 10365384006, 10365384007,

10365384008

METHOD BLANK: 2392994 Matrix: Solid

Associated Lab Samples: 10365384001, 10365384002, 10365384003, 10365384004, 10365384005, 10365384006, 10365384007,

10365384008

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersMercurymg/kgND0.0200.005210/16/16 18:38

LABORATORY CONTROL SAMPLE: 2392995

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 0.47 104 80-120 Mercury .45 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2392996 2392997

MS MSD

MSD MS 10365387006 Spike Spike MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Result % Rec % Rec Limits Conc. Result Qual Mercury 0.098 .75 .77 0.85 0.88 100 101 75-125 4 20 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

QC Batch: 440863 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10365384001, 10365384002, 10365384003, 10365384004, 10365384005, 10365384006, 10365384007,

10365384008

SAMPLE DUPLICATE: 2398400

10365153005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 12.2 % 30 Percent Moisture 10.8 12

SAMPLE DUPLICATE: 2398401

Date: 10/17/2016 08:16 AM

		10365387006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	41.2	42.9	4	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 10/17/2016 08:16 AM

(612)607-1700

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365384

Date: 10/17/2016 08:16 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365384001	BW16TR-010-0.15-0.38	EPA 7471B	440057	EPA 7471B	441398
10365384002	BW16TR-011-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365384003	BW16TR-011-0.60-0.85	EPA 7471B	440057	EPA 7471B	441398
10365384004	BW16TR-012-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365384005	BW16TR-014-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365384006	BW16TR-014-0.15-0.38	EPA 7471B	440057	EPA 7471B	441398
10365384007	BW16TR-015-0.0-0.15	EPA 7471B	440057	EPA 7471B	441398
10365384008	BW16TR-015-0.15-0.36	EPA 7471B	440057	EPA 7471B	441398
10365384001	BW16TR-010-0.15-0.38	ASTM D2974	440863		
10365384002	BW16TR-011-0.0-0.15	ASTM D2974	440863		
10365384003	BW16TR-011-0.60-0.85	ASTM D2974	440863		
10365384004	BW16TR-012-0.0-0.15	ASTM D2974	440863		
10365384005	BW16TR-014-0.0-0.15	ASTM D2974	440863		
10365384006	BW16TR-014-0.15-0.38	ASTM D2974	440863		
10365384007	BW16TR-015-0.0-0.15	ASTM D2974	440863		
10365384008	BW16TR-015-0.15-0.36	ASTM D2974	440863		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

8 900 Samples Intact (Y/V) 83 400 900 800 00 00 Ζ SAMPLE CONDITIONS Custady Sealed Cooler (Y/N) Comments Z SLR-TR-3 202 83 7 Received on Ice (Y/N) 00 100 <u>たゆの</u> 3-7-16 000 S ₽ 3 ঠ STATE Site Location 4 Temp (°C) 10365384 1935 #000 Page 1555 2 EQuiS Information: Facility_Name: St. Louis River Sediment Areas of Concern Requested Analysis 10/2/11 10-7-9 9/1/6/ <u> 2</u> St Louis River Sed 547023 DATE Signed (MM/DD/YY): ubfacility_code: acility Code: _ 9 Moisture Section D acility_ID: of reduce Relation Mercury (EPA 7471B) (A0958 8h8-W8) anstut bns arixoid Mosson Oyeyemi Odujole 3000017136 Bay West, LLC Accounts Payable 5 Empire Drive Other Methanol _EO_SS_SBN Preservatives HOBN HÇI ab Project Manager: HNO³ ab Quote Reference Sompany Name: [₽]OS²H 180 12/2/2/19/14 Section C 183 SAMPLER NAME AND SIGNATURE 4ddress: Unpreserved Э 9 9 6 3 e 3 3 9 ၉ ၈ 3 3 Э # OF CONTAINERS 14716 DATE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: 1245 1305 330 8 1330 1335 1350 55 1204 əmiT Collection hris Musson/Bay Wes 3/12/15 10,7,716 10/7/16 10/7/16 10,7,716 10/7/16 10/7/16 10/7/16 10/7/16 Kretter Po Leon **BATA** SLR Sediment AOCs Nancy McDonald 108002 (GRAB C=COMP) O ø ø o Ø o Ø ග Ø opy To: Paul Raymaker J160139 Required Project Information: SO S 8 S ၀ွ ၀ွ ၀ွ တ္တ 8 MATRIX CODE urchase Order No.: CODE Project Number: MATRIX CODE
Drinking Water DW
Waste water W
Product WW
Soll/Soild P
Oil SO roject Name: 『 S 의 N R S P Valid Matrix Codes Section B BW16TR-010-0.15-0.38 BW16TR-011-0.60-0.85 BW16TR-014-0.15-0.38 BW16TR-015-0.15-0.36 Reference Pace Subcontractor Order Form signed by Pace on 9/16/16 BW14MLW-005-0-0.15 BW16TR-011-0.0-0.15 BW16TR-012-0.0-0.15 BW16TR-014-0.0-0.15 BW16TR-015-0.0-0.15 Sample ID (sys_sample_code) ADDITIONAL COMMENTS mail To: nmcdonald@baywest.com 651-291-3483 Section E Required Client Information Standard Company: Bay West, LLC ddress: 5 Empire Drive Required Client Information: equested Due Date/TAT: Location ID Paul, MN 55103 (sys_loc_code) BW15MLW-005 Sample BW16TR-015 BW16TR-014 BW16TR-015 BW16TR-012 BW16TR-014 BW16TR-010 BW16TR-011 BW16TR-011 Section A Page 18 of 19 ă 9 # WBII 8

Pace Analytical*

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

Sample Condition **Client Name:** Project #: WO#: 10365384 **Upon Receipt** Courier: Fed Ex □usps Client Commercial Pace SpeeDee Other:_ **Tracking Number:** Optional: Proj. Due Date: Proj. Name: onKֱ MNo Custody Seal on Cooler/Box Present? Seals Intact? Yes **⊠**Bubble Bags Packing Material: Bubble Wrap None Other: Temp Blank? ¥Yes No Thermometer **151401163** B88A912167504 ₩et Blue None Samples on ice, cooling process has begun Type of Ice: Used: 151401164 ☐B88A0143310098 Cooler Temp Read (°C): 50 Cooler Temp Corrected (°C): **Biological Tissue Frozen?** ☐ Yes ☐ No Temp should be above freezing to 6°C Correction Factor: ~ D t | Date and Initials of Person Examining Contents: 300 10 47-16 **USDA Regulated Soil** (N/A, water sample) Did samples originate in a quarantine zone within the United States: AL, AR, AZ, CA, FL, GA, ID, LA. Did samples originate from a foreign source (internationally, ZWo Yes ΧNο MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? including Hawaii and Puerto Rico)? □Yes If Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. COMMENTS: Chain of Custody Present? YYes 1. □No □N/A Chain of Custody Filled Out? Yes □No □N/A 2. Chain of Custody Relinquished? ¥Yes □No □N/A Sampler Name and/or Signature on COC? XYes □No □N/A Samples Arrived within Hold Time? ¥Yes □No □N/A Short Hold Time Analysis (<72 hr)? ☐Yes ΊΧΙNο □N/A Rush Turn Around Time Requested? No ■Yes □N/A 7. Sufficient Volume? ¥ŷes □No □N/A Correct Containers Used? ∑Yes □No 9. □N/A -Pace Containers Used? ¥Yes □No □N/A Containers Intact? ¥Yes □No □N/A 10. Filtered Volume Received for Dissolved Tests? □Yes □No N/A Note if sediment is visible in the dissolved container Sample Labels Match COC? ∑Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been 13. ☐HNO₃ ...H₂SO₄ ■ NaOH **₽**N/A □Yes □No All containers needing preservation are found to be in Sample # compliance with EPA recommendation? (HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) **☑**N/A □Yes □No Exceptions: VOA, Coliform, TOC, Oil and Grease, initial when Lot # of added □Yes DN/A DRO/8015 (water) DOC □No completed: preservative: Headspace in VOA Vials (>6mm)? □No ☑N/A 14. □Yes Trip Blank Present? DN/A □Yes □No Trip Blank Custody Seals Present? ĎN/A ☐ Yes □No Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution:

Project Manager Review: Low Cotton Date: 10/10/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Laboratory Data **Review Checklist**

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/viewdocument.html?gid=16113. Also see the MPCA Laboratory Quality Control (QC) and Data Policy: http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nar	ne:	SLR Sediments AOCs – Thomson		Labor	atory:	Pace - 10367136
Wor	k order	r numl	ber: <u>3000017136</u>		Repo	rt date	(mm/dd/yyyy): <u>11/04/2016</u>
1.	For h	elp wi	ation ith this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environn				
	Oues	stions		Vaa	No	N/A	Comments
	a.		nere a chain of custody (COC) with the report?	Yes		N/A	COC includes samples for Scanlon Reservoir, Thomson Reservoir and Boulder Lake. This data review checklist only applies to Thomson Reservoir samples.
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.	c. Were there samples requiring preservation?			\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Were samples received in the correct containers?		\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?	\boxtimes			
	е.		re samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
			ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				
2.	Cali	brat	ion				
	Ques	stion		Yes	No	N/A	Comments
	a.	Do t	he report narrative or data qualifiers indicate			П	

		oration problems for any analyses? If yes,					
		ехрі	ain the data impact.				
3.	Blar	nks					
	Ques	tion		Yes	No	N/A	Comments
	a.		any of the analyses contain samples for field ip blanks?		\boxtimes		
		i.	If yes, are there target analytes present above the reporting limit?				
		ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
	b.		method blanks for any analyses contain target ytes above the reporting limit?		\boxtimes		Low-level concentrations of Total TCDD, 1,2,3,4,6,7,8-HpCDD, Total HpCDD, and OCDD were detected in the method blank 52558.
		i.	If yes, are the same compounds present in the samples?				
		ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.		\boxtimes		All sample results were > 10x the blank concentrations.
4.	Surr	roga	tes				
	Ques	tion		Yes	No	N/A	Comments
	а.		there organic analyses that contain surrogate pounds?				Dioxins/furans have internal standards instead of surrogates.
	b.	Are the lab recovery limits specified on the report?					
		i.	Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?				
	C.		there surrogates outside lab limits? (These uld have a data qualifier)				
		i.	If yes, are the surrogates above the lab limits?				
		ii.	Below the lab limits?				
		iii.	Explain what this could mean for the affected samples.			\boxtimes	
5.	Lab	orat	ory Control Sample/Laboratory Co	ontro	I San	nple	Duplicate (LCS/LCSD)
	Ques	tion		Yes	No	N/A	Comments
	a.	repo	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is a Matrix Spike/Matrix Spike Duplicate				
			/MSD] or sample/sample dup for precision.)	\boxtimes		Ш	
	b.	i.	/MSD] or sample/sample dup for precision.) If so, do the lab limits seem reasonable compared to the suggested guidelines in the				
	b.	i.	MSD] or sample/sample dup for precision.) If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy? there LCS/LCSD compounds outside lab				

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats <u>Page 2 of 3</u>

	iii.		Il samples in the preparation batch also ed for the same analyte(s)?			\boxtimes					
	iv.		in what this could mean for the ted samples.								
Mat	Matrix Spike/Matrix Spike Duplicate/Sample Duplicate (MS/MSD/Dup)										
Que	Question					N/A	Comments				
a.			lytical methods used require an MS ጋ? If no, skip to 6.b.		\boxtimes						
	i.		the required matrix spikes been ared and reported?								
	ii.	If no, as to	is there and explanation in the report why?								
	iii.		ne lab process an alternate spiked le (such as LCSD) instead?								
	iv.	Are th	ne lab limits specified on the report?			\boxtimes					
	V.	comp	e limits seem reasonable when ared to the suggested guidelines in the A QC Policy?								
	vi.	Are th	nere compounds outside the lab limits?			\boxtimes					
		1.	If yes, are the analytes above the lab limits?								
		2.	Below the lab limits?			\boxtimes					
		3.	Is the source sample also flagged for compounds outside lab limits?			\boxtimes					
b.			e duplicate reported for the analytical If no, skip to 6.c.								
	i.	Is the	RPD for the duplicate pair within the nits?								
	ii.		has the associated source sample flagged?								
C.	Wha	at is the	impact of failed QC on this project?			\boxtimes					
Met	thod	Dete	ction Limits/Report Limits								
Que	stion			Yes	No	N/A	Comments				
a.	clea	rly liste	ng and/or method detection limits d on the report for all analyses? (may led quantitation limits)								

Ad

- incorrect isotope ratios were obtained. All results flagged "I" were qualified "J" as estimated by the reviewer. Concentrations below the calibration range were flagged "J" as estimated by the laboratory.
- (2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

www.pca.state.mn.us • 651-296-6300 • 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats n-ean2-11h • 10/20/11 Page 3 of 3

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Nancy McDonald Bay West, Inc. 5 Empire Drive Saint Paul MN 55103

> **REPORT OF LABORATORY** ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10367136

Sample Receipt Date: 10/21/2016

Client Project #: J160139 SLR Sediment AOCs

Client Sub PO #: 108002 State Cert #: 027-053-137

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Carolynne Trout, your Pace Project Manager.

yne haut

This report has been reviewed by:

November 04, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 3, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of BayWest, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using a modified version of USEPA Method 8290. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 49-99%. All of the labeled standard recoveries obtained for this project were within the 40-135% target range specified in Method 8290. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained and "P" where diphenylethers were present at the elution times of PCDFs. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Levels above the calibration range were flagged "E" and should be regarded as estimated concentrations.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The levels reported for the affected congeners in the field samples were higher than the corresponding blank levels by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 85-114%. These values were within the target range for this method. Matrix spikes were prepared using sample material from a separate project. Results are available upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

_	Authority	Certificate #	Authority	Certificate #
	A2LA	2926.01	Mississippi	MN00064
	Alabama	40770	Montana	92
	Alaska	MN00064	Nebraska	NE-OS-18-06
	Arizona	AZ0014	Nevada	MN_00064_200
	Arkansas	88-0680	New Jersey (NE	MN002
	California	01155CA	New York (NEL	11647
	Colorado	MN00064	North Carolina	27700
	Connecticut	PH-0256	North Dakota	R-036
	EPA Region 8	8TMS-Q	Ohio	4150
	Florida (NELAP	E87605	Oklahoma	D9922
	Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
	Guam	959	Oregon (OREL	MN300001-001
	Hawaii	SLD	Pennsylvania	68-00563
	Idaho	MN00064	Puerto Rico	MN00064
	Illinois	200012	Saipan	MP0003
	Indiana	C-MN-01	South Carolina	74003001
	Indiana	C-MN-01	Tennessee	TN02818
	lowa	368	Texas	T104704192-08
	Kansas	E-10167	Utah (NELAP)	MN00064
	Kentucky	90062	Virginia	00251
	Louisiana	03086	Washington	C755
	Maine	2007029	West Virginia #	9952C
	Maryland	322	West Virginia D	382
	Michigan	9909	Wisconsin	999407970
	Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....In-House

Appendix A

Sample Management

Samples Intact (YW) Custody Sealed Coolet (Y/N) Ž SLR-TaxBio-02 720 8 38 hao S Received on Ice (Y/N) ₽ <u>ඉ</u> ර qmэТ (Э°) 1 Age 7 #202 Page S Sepura St. Louis River Sediment Areas of Concern 6.13 0.00 6.13 10/21/C 10/20/16 'acility_Code: St Louis River Sed SHIPPING: SPECIAL: HANDLING: TOTAL: 547023 Mailee Garton OC (SW-846 9060A Quad Burn) DATE Signed (MM/DD/YY): EQuIS Information Subfacility code 0.00 acility_Name actify ID: ercury (7471B) Date: 200ct16 Wgt: 5.00 LBS Svos: PRIORITY OVERNIGHT TRCK: 9802 5318 5172 (A09S8 8h8-WS) ansult bns anixold Oyeyemi Odujole 3000017136 Bay West, LLC Accounts Payable 5 Empire Drive PACKED PL Methanol 3 Preservatives Na₂S₂O₃ HOBN HCI pace.tox lab avoice Information ab Quote Reference ab Project Manager. [€]ONH сотрапу Name DS2H SAMPLER NAME AND SIGNATURE 14:00 **Пирге**зегуеd SIGNATURE OF SAMPLER: # OF CONTAINERS 3 10/20/16 PRINT Name of SAMPLER: Ref: Dep: DATE Mailee Garton - Great Lake Environmental 10:00 10:00 90.00 10:00 10:00 90.00 50.00 , 50¢ **9miT** Collection RELINGUISHED BY AFFILIATION 10/20/16 10/20/16 10/20/18 10/20/16 10/20/16 10/20/16 10/20/16 **DATE** Maitee Garton/GLEC SLR Sediment AOCs Copy To: Paul Raymaker - Bay West Nancy McDonald - Bay West 108002 SAMPLE TYPE G=GRAB C=COMP) ø O ø Ø O Ø 3160139 Required Project Information: S ŝ SO 8 ပ္တ ၀ွ 8 S, **BOOD XIRTAM** urchase Order No.: 8 Project Number mject Name; Valid Matrix Codes WW. 임식장유단 Section B Report To: Drinking Water Waste Water Product Spil/Solid reference Pare Subcontractor Order Form signed by Pace on 16/16 MATRIX BW16BLR-001-0.0-0.15 BW16SR-016-0.15-0.60 BW14MLW-005-0-0.15 BW16SR-004-0.0-0.15 BW16TR-008-0.0-0.15 BW16TR-013-0.0-0.15 BW16TR-017-0.0-0.15 BW16TR-018-0.0-0.15 (sys_sample_code) Sample ID ADDITIONAL COMMENTS 231-941-2230 nail To: mgarton@glec.com Section E Required Client Infor mpany: Bay West, LLC ddress: 5 Empire Drive Section A Required Client Information: equested Due Date/TAT: Location 1D (sys_loc_code) t. Paul, MN 55103 BWY6M_W-005 Sample BW16BLR-001 BW16TR-018 BW16SR-016 BW16TR-008 BW16TR-013 BW16TR-017 BW16SR-004 # Mati 0 0

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical*

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Client Name:	arti.		Project	# W0#:10367136
Bay West LL	C		•	MOH - TOOO1 TOO
Courier: Fed Ex UPS	USPS	С	lient	
Commercial Pace SpeeDee	Other:_			
Tracking Number: <u>0802</u> <u>5318</u> <u>5</u>				10367136
Custody Seal on Cooler/Box Present?	5112	: Seals Inta	act? 💆	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□None	e 🔲 (Other:	Temp Blank? ✓ Yes ☐ No
Thermometer 151401163		e of Ice:	₩e	t Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): (). (). () Cooler Temp Cor		. 0.5	~ Λ.'	No Diological Tissue Frozen? ☐Yes ☐No ☑N/A
emp should be above freezing to 6°C Correction Fact			Dat	e and Initials of Person Examining Contents: 7 C 10/21/19
ISDA Regulated Soil (N/A, water sample)		<u>, -</u>	<u> </u>	
id samples originate in a quarantine zone within the United S	states: AL, A	AR, AZ, CA		
15, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		Ch1-1:-	Yes	No including Hawaii and Puerto Rico)? Yes No
If Yes to either question, fill out a Reg	ulated Soil	Спеския	t (F-IVIIV-	Q-338) and include with SCUR/COC paperwork.
- Address				COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Z Yes	□No	N/A	4.
Samples Arrived within Hold Time?	¶Ÿes	No No	□N/A	6.
Short Hold Time Analysis (<72 hr)?	Yes		□N/A □N/A	7.
Rush Turn Around Time Requested?	Yes Z Yes	□No	□N/A	8.
Sufficient Volume? Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	[ZiYes		□N/A	
Containers Intact?	Z Yes	□No	□n/A	10.
Filtered Volume Received for Dissolved Tests?	□Yes	□No	☑ Ñ/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:		_		
All containers needing acid/base preservation have been	*			13. ☐HNO ₃ ☐H₂SO ₄ ☐NaOH ☐HCI
checked? All containers needing preservation are found to be in	□Yes	□No	Z N/A	Sample #
compliance with EPA recommendation?			_	Sumple II
$(HNO_3, H_2SO_4, HCl{<}2; NaOH{>}9 \: Sulfide, NaOH{>}12 \: Cyanide)$	□Yes	□No	,Z N/A	
Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC	□Yes	∏No	ZŃ/A	initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No	□M/A	14.
Trip Blank Present?	Yes	□No	□ N/A	15.
Trip Blank Custody Seals Present?	∐Yes	□No	ZN/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				
Project Manager Review: Casolyme To	. 1 .			Date: 10/24/16

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16SR-004-0.0-0.15

 Lab Sample ID
 10367136001

 Filename
 F161101B_11

Injected By SMT

Total Amount Extracted 18.6 g Matrix Solid % Moisture 58.7 Dilution NA

Dry Weight Extracted 7.68 g Collected 10/20/2016 10:00 ICÁL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B_03 & F161101B_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/01/2016 21:43

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 43.0		0.29 0.29	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 89 80
2,3,7,8-TCDD Total TCDD	3.5 22.0		0.21 0.21	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	73 79 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	3.6 58.0	1.2 	0.13 JJ 0.21 J 0.17	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 86 81 80
1,2,3,7,8-PeCDD Total PeCDD	4.2 51.0		0.22 J 0.22	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 60 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	19.0 7.9 3.8	15.0 	4.70 P 0.82 0.29 0.37 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	72 67 NA
Total HxCDF	560.0		1.60	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	7.4 55.0 16.0 350.0	 	0.37 0.72 0.44 0.51	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	870.0 15.0 1900.0		0.74 0.84 0.79	Total 2,3,7,8-TCDD Equivalence: 45 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	990.0 2000.0		2.40 2.40			
OCDF OCDD	860.0 11000.0		0.56 0.39 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16SR-016-0.15-0.60

Lab Sample ID 10367136002 Filename F161101B_12 Injected By

SMT 17.5 g **Total Amount Extracted**

Matrix Solid % Moisture 44.5 Dilution NA

9.71 g Dry Weight Extracted Collected 10/20/2016 10:00 ICAL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B 03 & F161101B 19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** 11/01/2016 22:31 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	12.0 68.0		0.70 0.70	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 86 74
2,3,7,8-TCDD Total TCDD	6.1 53.0		0.34 0.34	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 70 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	17.0 240.0	7.2 	0.24 P 0.40 0.32	1,2,3,4,7,6-1 ACDT -13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	78 85 82
1,2,3,7,8-PeCDD Total PeCDD	23.0 190.0		0.13 0.13	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 61 62 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	72.0 110.0 19.0		0.58 0.80 0.53	1,2,3,4,7,6,9-npcDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	74 61
1,2,3,7,8,9-HxCDF Total HxCDF	11.0 2500.0		0.66 0.64	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	17.0 100.0 67.0 900.0		0.82 0.84 0.71 0.79	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4300.0 34.0 8300.0		0.37 E 2.90 1.70 E	Total 2,3,7,8-TCDD Equivalence: 130 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	850.0 1700.0		1.40 1.40			
OCDF OCDD	2000.0 6700.0		0.48 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-008-0.0-0.15

 Lab Sample ID
 10367136003

 Filename
 F161101B_13

 Injected By
 SMT

Injected By SMT

Total Amount Extracted 18.2 g Matrix Solid % Moisture 42.4 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 10.5 g ICAL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B_03 & F161101B_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/01/2016 23:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.74 2.50		0.49 J 0.49	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 82 78
2,3,7,8-TCDD Total TCDD	ND 2.20		0.54 0.54	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 74 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.97 9.40		0.44 0.35 J 0.40	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	76 83 77
1,2,3,7,8-PeCDD Total PeCDD	0.35 26.00		0.31 J 0.31	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 59 58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.30 3.30 2.20		0.51 J 0.26 J 0.28 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 55
1,2,3,7,8,9-HxCDF Total HxCDF	150.00	0.82	0.25 JJ 0.32	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 75.00 26.00 520.00		0.50 0.60 0.37 0.49	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	260.00 2.00 470.00		0.33 0.31 J 0.32	Total 2,3,7,8-TCDD Equivalence: 16 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	91.00 190.00		0.39 0.39			
OCDF OCDD	87.00 320.00		0.20 0.21			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-008-0.0-0.15

Lab Sample ID 10367136003 Filename F161102A_11 Injected By **SMT**

18.2 g **Total Amount Extracted**

Matrix Solid % Moisture 42.4 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 10.5 g ICAL ID F161011 Received 10/21/2016 09:45 CCal Filename(s) F161101B_19 & F161102A_15 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 12:58

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.60	0.52	0.130 IJ 0.130	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 83 83
2,3,7,8-TCDD Total TCDD	ND 3.80		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	76 78 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.30 8.90	0.96 	0.160 J 0.079 JJ 0.120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	81 83 76
1,2,3,7,8-PeCDD Total PeCDD	ND 27.00		0.380 0.380	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 63 56 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.90 3.60 2.20		1.600 J 0.370 J 1.500 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	62 49
1,2,3,7,8,9-HxCDF Total HxCDF	1.10 150.00		0.130 J 0.900	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 72.00 29.00 530.00	 	0.720 0.710 0.700 0.710	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	260.00 470.00	1.60 	0.570 0.690 JJ 0.630	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	94.00 190.00		0.720 0.720			
OCDF OCDD	86.00 310.00		0.530 0.380			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-013-0.0-0.15

 Lab Sample ID
 10367136004

 Filename
 F161101B_14

 Injected By
 SMT

Total Amount Extracted 18.9 g Matrix Solid % Moisture 53.5 Dilution NA

 Dry Weight Extracted
 8.79 g
 Collected
 10/20/2016 10:00

 ICAL ID
 F161011
 Received
 10/21/2016 09:45

 CCal Filename(s)
 F161101B 03 & F161101B 19
 Extracted
 10/27/2016 16:25

 CCal Filename(s)
 F161101B_03 & F161101B_19
 Extracted
 10/27/2016 16:25

 Method Blank ID
 BLANK-52558
 Analyzed
 11/02/2016 00:07

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 5.60		0.42 0.42	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 83 79
2,3,7,8-TCDD Total TCDD	ND 6.40		0.31 0.31	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 74 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.78 1.20 16.00		0.32 J 0.39 J 0.35	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	79 85 78 75
1,2,3,7,8-PeCDD Total PeCDD	9.70	0.80	0.53 IJ 0.53	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4.00 8.90 2.80		0.98 J 0.36 0.36 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 57
1,2,3,7,8,9-HxCDF Total HxCDF	190.00	0.86	0.65 IJ 0.59	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.73 6.10 2.30 55.00	 	0.29 J 0.26 0.34 J 0.30	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	320.00 2.30 600.00		0.53 0.50 J 0.51	Total 2,3,7,8-TCDD Equivalence: 8.4 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	85.00 190.00		0.83 0.83			
OCDF OCDD	160.00 1100.00		0.19 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-017-0.0-0.15

 Lab Sample ID
 10367136005

 Filename
 F161101B_15

 Injected By
 SMT

Total Amount Extracted 18.8 g Matrix Solid % Moisture 58.9 Dilution NA

 Dry Weight Extracted
 7.73 g
 Collected
 10/20/2016 10:00

 ICAL ID
 F161011
 Received
 10/21/2016 09:45

 CCal Filename(s)
 F161101B_03 & F161101B_19
 Extracted
 10/27/2016 16:25

CCal Filename(s) F161101B_03 & F161101B_19 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 11/02/2016 00:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	2.10 9.70		0.30 0.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 89 85
2,3,7,8-TCDD Total TCDD	5.10	0.35	0.20 J 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	81 83 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.57 0.84 14.00		0.30 J 0.22 J 0.26	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	85 91 85 81
1,2,3,7,8-PeCDD Total PeCDD	0.65 12.00		0.37 J 0.37	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.80 4.40 1.80		0.41 J 0.35 J 0.50 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 59
1,2,3,7,8,9-HxCDF Total HxCDF	0.88 90.00		0.39 J 0.41	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.67 5.20 2.30 47.00	 	0.33 J 0.30 J 0.26 J 0.30	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140.00 1.80 280.00		0.48 0.33 J 0.40	Total 2,3,7,8-TCDD Equivalence: 6.1 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	95.00 220.00		0.66 0.66			
OCDF OCDD	100.00 1300.00		0.50 0.30			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16TR-018-0.0-0.15

Lab Sample ID 10367136006 Filename F161101B_16 Injected By SMT

18.6 g **Total Amount Extracted**

Matrix Solid % Moisture 49.9 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 9.32 g ICAL ID F161011 Received 10/21/2016 09:45 CCal Filename(s) F161101B_03 & F161101B_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 01:44

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.20 5.00		0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 83 78
2,3,7,8-TCDD Total TCDD	5.60	0.30	0.27 JJ 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 76 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.49 0.91 12.00		0.29 J 0.25 J 0.27	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 83 78 72
1,2,3,7,8-PeCDD Total PeCDD	8.70	0.62	0.26 IJ 0.26	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 55 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.60 5.60 1.70		0.42 J 0.60 0.50 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	64 53
1,2,3,7,8,9-HxCDF Total HxCDF	140.00	0.62	0.35 IJ 0.47	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.53 5.30 2.20 44.00		0.26 J 0.27 J 0.30 J 0.28	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	230.00 1.60 440.00		0.32 0.40 J 0.36	Total 2,3,7,8-TCDD Equivalence: 6.5 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	74.00 160.00		0.40 0.40			
OCDF OCDD	130.00 910.00		0.51 0.38			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Sample Analysis Results

Client - Bay West, Inc.

Client's Sample ID BW16BLR-001-0.0-0.15

Lab Sample ID 10367136007 Filename F161101B_17 Injected By SMT

Total Amount Extracted 21.4 g

Matrix Solid % Moisture 82.6 Dilution NA

Dry Weight Extracted Collected 10/20/2016 10:00 3.72 gICAL ID Received F161011 10/21/2016 09:45 CCal Filename(s) F161101B_03 & F161101B_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 02:32

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.70 14.00		0.59 J 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	87 94 91
2,3,7,8-TCDD Total TCDD	ND 0.82		0.47 0.47 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	84 89 95
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.75 9.00	0.97	0.49 J 0.34 IJ 0.41 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	93 99 92 85
1,2,3,7,8-PeCDD Total PeCDD	0.47 1.80		0.43 J 0.43 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	74 65 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.83 ND	0.69 0.68	0.41 IJ 0.42 J 0.41 IJ 0.70	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	75 59 NA
Total HxCDF	6.60		0.48 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.10 12.00	0.46 1.00 	0.45 J 0.50 J 0.42 J 0.46 J	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	3.50 ND 5.50		0.50 J 0.64 0.57 J	Total 2,3,7,8-TCDD Equivalence: 1.6 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	14.00 28.00		0.37 0.37			
OCDF OCDD	5.40 89.00		0.71 J 0.74			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52558 U161101B_15 20.4 g U161025

U161101B_03 & U161101B_19

Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 11/02/2016 01:42

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.031 0.031	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 85
2,3,7,8-TCDD Total TCDD	ND 0.042		0.033 0.033 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 99 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.039 0.023 0.031	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 78 78 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.029 0.029	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		0.027 0.023 0.021 0.026	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	90 75 NA
Total HxCDF	ND		0.024	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.036 0.035 0.037 0.036	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.036 0.038 0.037	Total 2,3,7,8-TCDD Equivalence: 0.00051 ng/Kg (Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.076	0.046	0.028 J 0.028 J			
OCDF OCDD	ND 	0.170	0.055 0.061 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Tel: 612-607-1700 Fax: 612- 607-6444

Method 8290 Laboratory Control Spike Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID CCal Filename(s) Method Blank ID

LCS-52559 U161101B_18 20.1 g U161025

U161101B_03 & U161101B_19 BLANK-52558

Matrix Dilution Extracted Analyzed

Injected By

Solid NA

10/27/2016 16:25 11/02/2016 04:01 SMT

				, ,		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	96	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.0 2.0 2.0	67 83 77
2,3,7,8-TCDD Total TCDD	0.20	0.17	85	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.0 2.0 2.0	73 90 70
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 1.0	0.97 1.0	97 104	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.0 2.0 2.0 2.0 2.0	67 75 76 80
1,2,3,7,8-PeCDD Total PeCDD	1.0	0.95	95	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.0 2.0 2.0	63 75 81
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.0 1.0 1.0	1.1 1.0 0.97	107 103 97	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.0 4.0	91 78
1,2,3,7,8,9-HxCDF Total HxCDF	1.0	1.0	101	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.0 2.0	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.0 1.0 1.0	1.1 1.1 1.1	109 114 112	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 1.0	1.1 1.00	107 100			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.0	0.97	97			
OCDF OCDD	2.0 2.0	1.9 2.1	95 106			

Qs = Quantity Spiked Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent) R = Recovery outside of target range

Y = RF averaging used in calculations Nn = Value obtained from additional analysis

NA = Not Applicable * = See Discussion

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nan	ne: _	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365380
Wor	k order	numl	per: 3000017136		Repor	t date	(mm/dd/yyyy): <u>10/27/2016</u>
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environn				
	Ques	tions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?				
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.	Wer	e there samples requiring preservation?		\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?	\boxtimes			
	е.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				Sample BW16TR-101-0.15-0.35 was listed on the COC, but was not collected. No data were qualified.
2.	Cali	brat	ion				
	Ques	tion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate oration problems for any analyses? If yes,		M		

ues	tion		Yes	No	N/A	Comments
a.	Do any of the analyses contain samples for field or trip blanks?			\boxtimes		
	i.	If yes, are there target analytes present above the reporting limit?				
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
b.		method blanks for any analyses contain target lytes above the reporting limit?		\boxtimes		
	i.	If yes, are the same compounds present in the samples?				
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.			\boxtimes	

Surrogates Question No Yes N/A Comments Are there organic analyses that contain surrogate compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes Below the lab limits? ii. \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
а.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)				
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)		\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

a. Do the a and/or M i. Ha pre ii. If r as iii. Dic sa iv. Are v. Do MF	pike	/Matrix Spike Duplicate/Sam _l	ole D	uplic	ate ((MS/MSD/Dup)		
Que	stion			Yes	No	N/A	Comments	
a.			lytical methods used require an MS D? If no, skip to 6.b.					
	i.		the required matrix spikes been ared and reported?					
	ii. If no, is there and explanation in the repas to why? iii. Did the lab process an alternate spiked sample (such as LCSD) instead?							
							MS/MSDs were performed as batch QC.	
			ne lab limits specified on the report?	\boxtimes				
	V.	comp	ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?	\boxtimes				
	vi.	Are th	nere compounds outside the lab limits?	\boxtimes				
		1.	If yes, are the analytes above the lab limits?					
		2.	Below the lab limits?				The MS recovery for TOC was biased low a outside QC limits in the batch QC from SDG 10365379.	
		3.	Is the source sample also flagged for compounds outside lab limits?				The source sample was not included with th samples in this SDG.	
b.			e duplicate reported for the analytical ? If no, skip to 6.c.				RPDs discussed apply to MS/MSDs.	
	i.	Is the	RPD for the duplicate pair within the mits?	\boxtimes				
	ii.		has the associated source sample flagged?					
C.	Wha	at is the	e impact of failed QC on this project?					
Metho	thod	Dete	ection Limits/Report Limits					
Que	stion			Yes	No	N/A	Comments	
a.	clea	rly liste	ng and/or method detection limits ed on the report for all analyses? (may led quantitation limits)					

Α

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

651-296-6300 • 800-657-3864 TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • n-ean2-11h • 10/20/11 Page 3 of 3

October 27, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

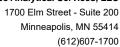
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

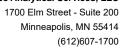
cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380


Virginia Minnesota Certification ID's

315 Chestnut Street, Virginia, MN 55792

Alaska Certification UST-107 Alaska Certification UST-107 Alaska Certification #MN01084

Arizona Department of Health Certification #AZ0785 Minnesota Dept of Health Certification #: 027-137-445 North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007 Nevada DNR #MN010842015-1

Oklahoma Department of Environmental Quality

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365380001	BW16TR-001-0.0-0.15	Solid	10/05/16 14:15	10/07/16 19:35
10365380002	BW16TR-001-0.15-0.35	Solid	10/05/16 14:21	10/07/16 19:35
10365380004	BW16TR-002-0.0-0.15	Solid	10/05/16 15:10	10/07/16 19:35
10365380005	BW16TR-002-0.30-0.55	Solid	10/05/16 15:15	10/07/16 19:35
10365380006	BW16TR-003-0.0-0.15	Solid	10/05/16 15:30	10/07/16 19:35
10365380007	BW16TR-003-0.27-052	Solid	10/05/16 15:35	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10365380001	BW16TR-001-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365380002	BW16TR-001-0.15-0.35	EPA 9060A	KRV	5	PASI-V
10365380004	BW16TR-002-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365380005	BW16TR-002-0.30-0.55	EPA 9060A	KRV	5	PASI-V
10365380006	BW16TR-003-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365380007	BW16TR-003-0.27-052	EPA 9060A	KRV	5	PASI-V

Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Method: EPA 9060A

Description: Total Organic Carbon Quad

Client: Bay West, Inc.

Date: October 27, 2016

General Information:

6 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 97885

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379003,10365945003

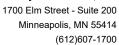
M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 387933)
 - Mean Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

Sample: BW16TR-001-0.0-0.15 Lab ID: 10365380001 Collected: 10/05/16 14:15 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

recurre reperted on a lifet met			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	15800	mg/kg	2460	394	1		10/24/16 07:09	7440-44-0	
Total Organic Carbon	55100	mg/kg	1990	319	1		10/24/16 07:18	7440-44-0	
Total Organic Carbon	15200	mg/kg	1940	311	1		10/24/16 07:25	7440-44-0	
Total Organic Carbon	14300	mg/kg	1960	314	1		10/24/16 07:32	7440-44-0	
Mean Total Organic Carbon	25100	mg/kg	2090	335	1		10/24/16 07:32	7440-44-0	

Project: J160139 SLR Sediment AOC

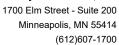
Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

Results reported on a "wet-weight" basis

results reported on a wet weig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	15200	mg/kg	2480	397	1		10/24/16 07:39	7440-44-0	
Total Organic Carbon	57200	mg/kg	1960	314	1		10/24/16 07:47	7440-44-0	
Total Organic Carbon	25400	mg/kg	1940	311	1		10/24/16 07:54	7440-44-0	
Total Organic Carbon	29600	mg/kg	1920	307	1		10/24/16 08:01	7440-44-0	
Mean Total Organic Carbon	31800	mg/kg	2080	332	1		10/24/16 08:01	7440-44-0	

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365380

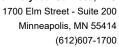
Date: 10/27/2016 04:03 PM

Sample: BW16TR-002-0.0-0.15 Lab ID: 10365380004 Collected: 10/05/16 15:10 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	25800	mg/kg	1950	313	1		10/24/16 08:09	7440-44-0	
Total Organic Carbon	29800	mg/kg	1940	311	1		10/24/16 08:16	7440-44-0	
Total Organic Carbon	20400	mg/kg	1990	318	1		10/24/16 08:23	7440-44-0	
Total Organic Carbon	28300	mg/kg	1950	312	1		10/24/16 08:30	7440-44-0	
Mean Total Organic Carbon	26100	mg/kg	1960	313	1		10/24/16 08:30	7440-44-0	

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365380

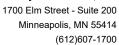
Date: 10/27/2016 04:03 PM

Sample: BW16TR-002-0.30-0.55 Lab ID: 10365380005 Collected: 10/05/16 15:15 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

results reported on a wet weig	n buolo		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	55800	mg/kg	1920	307	1		10/24/16 08:38	7440-44-0	
Total Organic Carbon	60700	mg/kg	2800	448	1		10/24/16 08:45	7440-44-0	
Total Organic Carbon	30100	mg/kg	2960	474	1		10/24/16 08:52	7440-44-0	
Total Organic Carbon	28400	mg/kg	2810	449	1		10/24/16 09:00	7440-44-0	
Mean Total Organic Carbon	43800	mg/kg	2620	420	1		10/24/16 09:00	7440-44-0	

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

Sample: BW16TR-003-0.0-0.15 Lab ID: 10365380006 Collected: 10/05/16 15:30 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	29600	mg/kg	2170	348	1		10/24/16 09:07	7440-44-0	
Total Organic Carbon	32500	mg/kg	2140	343	1		10/24/16 09:15	7440-44-0	
Total Organic Carbon	35000	mg/kg	2240	358	1		10/24/16 09:24	7440-44-0	
Total Organic Carbon	24700	mg/kg	2130	340	1		10/24/16 09:31	7440-44-0	
Mean Total Organic Carbon	30400	mg/kg	2170	347	1		10/24/16 09:31	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

Results reported on a "wet-weight" basis

recurse reperted on a lifet weig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	14400	mg/kg	2090	334	1		10/24/16 09:38	7440-44-0	
Total Organic Carbon	32600	mg/kg	1780	285	1		10/24/16 09:46	7440-44-0	
Total Organic Carbon	32000	mg/kg	1810	290	1		10/24/16 09:53	7440-44-0	
Total Organic Carbon	32500	mg/kg	1820	292	1		10/24/16 10:00	7440-44-0	
Mean Total Organic Carbon	27900	mg/kg	1880	300	1		10/24/16 10:00	7440-44-0	

QUALITY CONTROL DATA

J160139 SLR Sediment AOC Project:

Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

QC Batch: 97885 Analysis Method: EPA 9060A

mg/kg

QC Batch Method: **EPA 9060A** Analysis Description: 9060 TOC Average

Associated Lab Samples: 10365380001, 10365380002, 10365380004, 10365380005, 10365380006, 10365380007

METHOD BLANK: 387929 Matrix: Solid

Associated Lab Samples: 10365380001, 10365380002, 10365380004, 10365380005, 10365380006, 10365380007

> Blank Reporting

Limit MDL Parameter Units Result Analyzed Qualifiers Mean Total Organic Carbon <48.3 302 48.3 10/21/16 08:33

LABORATORY CONTROL SAMPLE: 387930

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon mg/kg 5820 4930 85 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387931 387932

MS MSD 10365945003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 37600 36100 65200 70-130 25 Mean Total Organic Carbon 25700 62600 105 102 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387933 387934

MS MSD 10365379003 MS MS Spike Spike MSD MSD % Rec Max Parameter Units % Rec RPD Qual Result Conc. Conc. Result Result % Rec Limits RPD Mean Total Organic Carbon 21300 21800 22500 30700 39500 43 81 70-130 25 25 M1 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

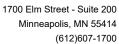
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.


LABORATORIES

PASI-V Pace Analytical Services - Virginia

ANALYTE QUALIFIERS

Date: 10/27/2016 04:03 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365380

Date: 10/27/2016 04:03 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10365380001	BW16TR-001-0.0-0.15	EPA 9060A	97885		
10365380001	BW16TR-001-0.0-0.15	EPA 9060A	97886		
10365380002	BW16TR-001-0.15-0.35	EPA 9060A	97885		
10365380002	BW16TR-001-0.15-0.35	EPA 9060A	97886		
10365380004	BW16TR-002-0.0-0.15	EPA 9060A	97885		
10365380004	BW16TR-002-0.0-0.15	EPA 9060A	97886		
10365380005	BW16TR-002-0.30-0.55	EPA 9060A	97885		
10365380005	BW16TR-002-0.30-0.55	EPA 9060A	97886		
10365380006	BW16TR-003-0.0-0.15	EPA 9060A	97885		
10365380006	BW16TR-003-0.0-0.15	EPA 9060A	97886		
10365380007	BW16TR-003-0.27-052	EPA 9060A	97885		
10365380007	BW16TR-003-0.27-052	EPA 9060A	97886		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Sect	Section A Recutred Client Information:		Section B Reculred Project Information:		iii iiii			Section C	i				Section D	Section D				-	0262360	000
Com	Company: Bay West, LLC	0.	Report To:	Nag Nag	cy Mcl	Nancy McDonald		Attention:	1	Accounts Payable	Payabl		Facility_Name:		River Sedime	St. Louis River Sediment Areas of Concern	π Page) 	5	, ,
Addr	Address: 5 Empire Drive	ē	Copy To: Paul Raymaker	Каут	aker			Company Name:	ä	Bay W	Bay West, LLC	ပ	Facility_Code;	1	St Louis River Sed	_		-	į	-
St.	St. Paul, MN 55103							Address:]	5 Empire Drive	e Drive		Facility_ID:	547023			# 303			
EE	Email To: nmcdonald@baywest.com	baywest.com	Purchase Order No.:	No.:	108002	102		Lab Quote Reference:	noe:	300	3000017136	36	Subfacility_code	√code:					SLR-TR4	
Phone		651-291-3483	Project Name:	SLR	Sedin	SLR Sediment AOCs		Lab Project Manager	jeć.	Oyey	Oyeyemi Odujole	ujole					les de	Site Location		
Redu	Requested Due Date/TAT:	Standard	Project Number:	J160139	1139													STATE		NIN
] [П				Requeste	Requested Analysis				
	Sec Required Oil	Section E Required Client Information MATR	Valid Matrix Codes MATRIX CODE	111		ŏ_	Collection		Preservatives	atives			(neterr)							
# W∃11	Sample Location ID	le ID	Drinking Water DW Waste Water W Product WW Soli/Solid P Oil SO Wipe OL Air Air Tissue AR Other TS	MATRIX CODE	SAMPLE TYPE (G=GRAB C=COMP)	BTAQ	əmiT	H ₂ SO ₄ Unpreserved # OF CONTAINERS	HCI HNO ³	HOBN [©] O _X O _X BN	Methanol Other	(SW-846 9060A Quad Bum)	Grain Size (ASTM D422 w/ hydror						Comments	ž. Š
ĒŸ	BW15MLW-005	BW14MLW-005-0-0.15	2	SO	Ó	3/12/15	1204					. , ,								
-	BW16TR-001	BW16TR-001-0.0-0.15		S	9	10/5/16	1415	2 2				-	1		·				Ŝ	
2	BW16TR-001	BW16TR-001-0.15-0.35	15	S	ŋ	10/5/16	1421	2 2				-	-						لم	~
6	BW16TR-001	BW16TR-101-0.15-0.35	Š	ß	ט	10/5/16	1426	2 2				-	F			-			` 3	m
4	BW16TR-002	BW16TR-002-0.0-0.15		ß	O	10/5/16	1510	2 2				-	-						3	J-
ιO	BW16TR-002	BW16TR-002-0.30-0.55	55	8	U	10/5/16	1515	2 2	1	\dashv		-	-						3	ا-ريا
9	BW16TR-003	BW16TR-003-0.0-0.15		ß	O	10/5/16	1530	2 2				- 1000	-		\dashv				3	؈
7	BW16TR-003	BW16TR-003-0.27-0.52	2	8	Ű	10/5/16	1535	2 2				- No. 10	-		\dashv				too	r 1
60		;			\Box					_		21.11			_	į				
69																				
19									_		•	,,								
Ξ					_					1										İ
12				_								-54/1			\dashv					
Ш	ADDITIO	ADDITIONAL COMMENTS	¥	ELINOL	IISHED	RELINQUISHED BY ! AFFILIATION	DAT			У., Д	ACCE	PTED BY	ACCEPTED BY / AFFILIATION	TION		DATE	TIME	SS	SAMPLE CONDITIONS	SNOI
Refer	ence Subcontractor G	300ds and/or Services Purcha		-\$	I 🔪 I	MrisMusson	12/Q 1.053	2551	duston	3) إليا	Poldon	4		2 3	01/1/01	1555	7	ァ	<u>ア</u> ァ
Orde	r Form signed by Bay	Order Form signed by Bay West on 9/19/16	Kultura D	\$ '	- 1	Poldon	7	300	*		小		' c	4	3	11/16	200		\top	+
Page					_		611/16	2	1		1		1	<u></u>	3	9///	32		(V/V) 60	ed Coaler
15 o						SAMI	SAMPLER NAME AND SIG	SIGNATURE	-									Temp (D°)		_
f 38						PRIN SIGNA	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	The state of the s	200	Z.	mossy	2 Pares	igned (MI	DATE Signed (MM/DD/YY):	10/2/	7//				
						}	1	3	,	2	1				⊾ I	0			-	_

Face Analytical*

Document Name:

Sample Condition Upon Receipt Form

Document No.:

Document Revised: 02Aug2016

Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

	F-R	/IN-L-21:	s-rev.17	Pace Minnesota Quality Office
Sample Condition Upon Receipt Client Name: Bay West LL	- <u>C</u>		Project	# WO#:10365380
Courier:	USPS		lient	
Commercial Pace SpeeDee [Tracking Number:	Other:_			10365380
Custody Seal on Cooler/Box Present? Yes No	!	Seals Int	act? 🔎	
Packing Material: Bubble Wrap Subble Bags	□Non	e 🔲	Other:	Temp Blank? Yes No
Thermometer	ected (°C) or: +O,	2 AR, AZ, C/	— A, FL, GA, □Yes	Biological Tissue Frozen? □Yes □No ☑N/A se and Initials of Person Examining Contents: <u>BC トムノフル</u>
The state of the s	ilateu 50ii	CI)CCIII.	, (, - 1 0 ,1 0	COMMENTS:
Chain of Custody Present?	✓Ŷes	□No	N/A	1.
Chain of Custody Field Out?	/ √Yes	□No	□N/A	2.
Chain of Custody Relinquished?	- □ √Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Z Yes	□No	N/A □N/A	4.
Samples Arrived within Hold Time?	Yes			5.
		□No	□N/A	, , , , , , , , , , , , , , , , , , ,
Short Hold Time Analysis (<72 hr)? Rush Turn Around Time Requested?	☐Yes	ZNo	□N/A	6.
	Yes ∠TYes	ZNo □N-	□N/A	7:
Sufficient Volume? Correct Containers Used?	Yes	□No	□N/A	8.
-Pace Containers Used?	∠l res □ Yes	□No	□n/a	9.
Containers Intact?	Yes	□No	□N/A	10
Filtered Volume Received for Dissolved Tests?		□No		10. 11. Note if sediment is visible in the dissolved container
	Yes	□No		
Sample Labels Match COC?	es	Į2Nο I3C	□n/a 10/7//	
-Includes Date/Time/ID/Analysis Matrix: Call containers needing acid/base preservation have been			<u> </u>	
checked? All containers needing preservation are found to be in compliance with EPA recommendation?	∐Yes	∐No	Øn/a	13. □HNO₃ □H₂SO₄ □NaOH □HCI Sample#
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	∏Yes	□No	ØÑ/A	
Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC	∐Yes	∐No	ZÎN/A	Initial when Lot # of added completed: preservative:_
Headspace in VOA Vials (>6mm)?	Yes	□No	ZN/A	14.
Trip Blank Present?	Yes		ØN/A	15.
Trip Blank Custody Seals Present?	Yes	□No	✓N/A	·
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted: Paul, Nancy, Chris	***			Date/Time:
Comments/Resolution: per client BW16	5TR-101	-0.15	-0.35	was not collected
				

Project Manager Review: Low Composition of the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Intra-Regional Chain of Custody

Pace Analytical

Workorder Name: J160139 SLR Sediment AOC Workorder: 10365380

Owner Received Date: 10/7/2016

Due Date: 10/17/2016

Proceived at: Send to Lab Date Analytical Billings MT Seption Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived By Proceived Containers Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived Analytical Billings MT Seption Proceived Analytical Billings MT Seption Proceived By Proceived Analytical Billings MT Seption Proceived By Proceived	200	straines. Toposoo	ion ion ion	stored statutes aloot of ocul		IICIIICI IICI	***************************************				01021101	200		
Proce Analytical Billings MT Proce Analytical Billings MT Preserved Containers Proce Analytical Billings MT Store	Receiv	ed at:		Send To La	p;						Rednes	ted Analysis		
Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Collect Sample Sa	Pace / 1700 I Suite ; Minner Phone	Analytical Minnesota Elm Street 200 apolis, MN 55414 : (612)607-1700		Pace Anal 150 N Nin Billings, M Phone (40	ytical Billings N th Street IT 59101 06)254-7226	Ŧ								
Sample Date/Time	Report Lori C	t To: astille					Prese	erved Containe						
PS 10/5/2016 14:15 10365380001 Solid 1		Sample ID	Sample Type	Collect Date/Time	Lab ID	Z Zeg	Other						LABUS	EONLY
PS 10/5/2016 14:21 10365380002 Solid 1	1 8	W16TR-001-0.0-0.15	PS	10/5/2016 14:15	10365380001	Solid	-		×					
PS 10/5/2016 15:10 10365380004 Solid 1		W16TR-001-0.15-0.35	PS	10/5/2016 14:21	10365380002	Solid	-		×		**********			
PS 10/5/2016 15:10 10365380004 Solid 1	8	W46TR 101-0 15-0 35	Sd	10/5/2016 14:26	10365380003	Solid	-		*	#				
PS 10/5/2016 15:15 10365380005 Solid 1	# B	W16TR-002-0.0-0.15	PS	10/5/2016 15:10	10365380004	Solid	-		×	91				
PS 10/5/2016 15:30 10365380006 Solid 1 X Comments Date/Time Received By Date/Time Received On Ice Y or (N) Samples Intact (V) or N Received on Ice Y or (N) Received on Ice Y or (N) Re		W16TR-002-0.30-0.55	PS	10/5/2016 15:15	10365380005	Solid	٢		×		*********			
Date/Time Received By Date/Time Received By Date/Time Comments		W16TR-003-0.0-0.15	PS	10/5/2016 15:30	10365380006	Solid	1		×		***********			
Pace 10/10/16 1251 Pace 10/10/16 1251 Pace 10/10/16 251 Pace 10/10/	7 B	W16TR-003-0.27-052	PS	10/5/2016 15:35	10365380007	Solid	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×			***************************************		
Pace 10/10/16 1251 Advisor Custody Seal (Y) or N Received on Ice Y or (N) Samples Intact (Y) or					•			0				Comment	S	
Pace 10/10/16 1251 Advisory Seal (Y) or N Received on Ice Y or (N) Samples Intact (Y) or	Transf	-		Date/Time	Received I	3y		Dat	e/Time					
The samples intact (V) or N Received on Ice Y or (N) Samples Intact (V) or	-	TOWAR	141		251	1.3			1 1					
W. C Custody Seal (Y) or N Received on Ice Y or (N) Samples Intact (V) or	2	\$0.0	ides	•	Men	1/12	3	01	11/1009	00				
W/A °C Custody Seal /Y) or N Received on Ice Y or (N) Samples Intact (V) or	2							•						
W/A °C Custody Seal / Y) or N Received on Ice Y or (N) Samples Intact (V) or	4							Open market						
	Coole	r Temperature on Re				or		Receive	d on Ice		N	Samples	Y or	_

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Page 1 of 1

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MT-C-184-Rev.10 Document Revised: 04Aug2016 Page 1 of 1

Issuing Authority: Pace Montana Quality Office

Sample Condition Client Name: Project #: Upon Receipt Courier: AFed Ex 10365380 **TUSPS** Client Commercial Pace Other: Custody Seal on Cooler/Box Present? Yes □No Seals Intact? ☑Yes □No Optional: Proj. Due Date: Proj. Name: Packing Material: Bubble Wrap Bubble Bags None Pino Other: Temp Blank? Yes Thermometer Used: 160285052 140279186 Type of Ice: Wet Blue None Samples on ice, cooling process has begun Cooler Temp Read: NA Date and Initials of Person Examining Contents: 10/11 Wh Cooler Temp Corrected: MA Biological Tissue Frozen? Yes Temp should be above freezing to 6°C Comments: Chain of Custody Present? Tyes No □N/A Yes Chain of Custody Filled Out? No □N/A 2. Chain of Custody Relinquished? Yes No N/A Sampler Name and Signature on COC? Yes No □N/A Samples Arrived within Hold Time? Yes No □N/A Short Hold Time Analysis (<72 hr)? Yes No 6. □N/A Rush Turn Around Time Requested? Yes No □N/A Sufficient Volume? Yes No □N/A Correct Containers Used? Yes No □N/A 9 -Pace Containers Used? Yes No N/A Containers Intact? Yes No □N/A Filtered Volume Received for Dissolved Tests? Yes No NIA Note if sediment is visible in the dissolved container. Sample Labels Match COC? Yes 12. No □N/A -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been SKV/A Yes No 13. ☐HNO₃ NaOH . HCI ☐H₂SO₄ checked? Sample # All containers needing preservation are found to be in Yes No DN/A compliance with EPA recommendation? (HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease, Yes No Lot # of added WI-DRO (water) Initial when completed: preservative: □Yes Headspace in VOA Vials (>6mm)? ₩N/A No 14. Trip Blank Present? Yes No N/A 15. Trip Blank Custody Seals Present? Yes No N/A Pace Trip Blank Lot # (if purchased):_ CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution:

Project Manager Review: __ Low Catture Date: Note: Whenever there is a discrepancy affecting inorm caronina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

10/11/16

Chain of Custody

MO#: 127678
e: 10/21/16
ace Analytical 9 of 38

Minneapolis, MN 55414 Phone (612)607-1700 Cooler Temperature on Receipt 2.5 °C item Suite 200 1700 Elm Street Pace Analytical Minnesota Transfers Lon Castille Report To Workorder: 10365380 Sample ID BW16TR-003-0.27-052 BW16TR-003-0.0-0.15 BW16TR-002-0.30-0.55 BW16TR-002-0.0-0.15 BW16TR-001-0,15-0.35 BW16TR-001-0.0-0.15 Released By Workorder Name: J160139 SLR Sediment AOC Sample Type PS PS PS Sd PS PS Collect Date/Time 10/5/2016 14:21 10/5/2016 15:35 10/5/2016 15:15 10/5/2016 15:10 10/5/2016 14:15 10/5/2016 15:30 Date/Time Subcontract To 1110 2140 Phone (218)742-1042 Virginia, MN 55792 Pace Analytical Virginia MN 315 Chestnut Street Lab ID 10365380007 10365380006 10365380005 10365380004 10365380002 10365380001 Received By Solid Solid Solid Solid Solid Solid Matrix Unpreserved Owner Received Date: Date/Time (4/11/6/78 10-12-16 9060 TOC 10/7/2016 Results Requested By: Samples Intact / Y or Comments LAB USE ONLY 10/21/2016

Ü

N

Ċ 4

Custody Seal

/or

z

Received on Ice

 $\vec{\epsilon}$ or

z

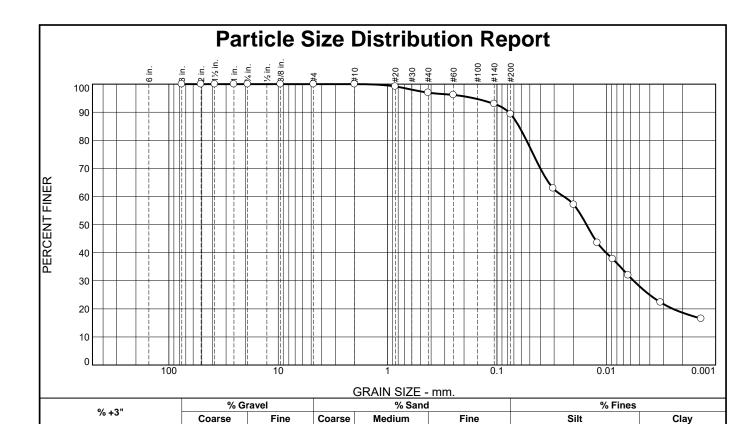
z

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical "

Document Name:

Sample Condition Upon Receipt Form


Document No.: F-VM-C-001-Rev.09 Document Revised: 23Feb2015

Page 1 of 1

Issuing Authority:

Pace Virginia, Minnesota Quality Office

Sample Condition Client Name: Upon Receipt Oale- (MIV			Project i	W0#:1276787
Courier: Fed Ex UPS Commercial MPace	USPS	_	llient	1276787
Tracking Number:				
Custody Seal on Cooler/Box Present? Yes	□No	Seals I		Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap	e Bags N	one [Other:_t	Temp Blank? Yes No
Thermometer Used: 140792808	Type of		_	Blue None Samples on ice, cooling process has begun
	p Corrected *(Factor: でう	c: 2	.3 Date and	Biological Tissue Frozen? Yes No NA I Initials of Person Examining Contents: Of 10-12-14
Chain of Custody Present?	∑ Yes	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and Signature on COC?	Yes	ØΝο	□N/A	4.
Samples Arrived within Hold Time?	Z∕Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	□Yes	ZNo	□N/A	6.
Rush Turn Around Time Requested?	□Yes	⊠N∘	□N/A	7.
Sufficient Volume?	ZŶes	□No	□N/A	8.
Correct Containers Used?	∐Yes	□No	□n/a	9.
-Pace Containers Used?	√∫Yes	□No	□n/a	
Containers Intact?	✓Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	⋰☐Yes	□No	∠ N/A	11. Note if sediment is visible in the dissolved containers.
Sample Labels Match COC?	∑ Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix: 5	- Law CA	~ ["]		
All containers needing acid/base preservation will be checked and documented in the pH logbook.	? □Yes	□No	Z ^I N/A	See pH log for results and additional preservation documentation
Headspace in Methyl Mercury Container	□Yes	□No	[Z]N/A	13.
Headspace in VOA Vials (>6mm)?	Yes	□No	ŬN/A	14.
Trip Blank Present?	□Yes	□No	Ďn/a]	15.
Trip Blank Custody Seals Present?	□Yes	□No	□ N/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				
FECAL WAIVER ON FILE Y N Project Manager Review:	Len	TEMI	PERATUF	RE WAIVER ON FILE Y N Date: 10/13/16

	TEST RESULTS	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	99		
#40	97		
#60	96		
#140	93		
#200	89		
0.0306 mm.	63		
0.0199 mm.	57		
0.0121 mm.	44		
0.0087 mm.	38		
0.0063 mm.	32		
0.0032 mm.	22		
0.0014 mm.	17		

	Material Description	
silt		
A 444	orbora Limite /ASTM D /219	
PL= NP	erberg Limits (ASTM D 4318 LL= NV PI=	
	Classification	
USCS (D 2487)=	ML AASHTO (M 145)=	A-4(0)
	Coefficients	
D₉₀= 0.0779 D₅₀= 0.0152	D ₈₅ = 0.0629 D ₆₀ = D ₃₀ = 0.0056 D ₁₅ =	0.0245
D ₁₀ =	C _u = C _c =	
	Remarks	
Date Received:	10/7/16 Date Tested:	10/20/16
Tested By:		10/20/10
_		
Спескей Ву:	Rhonda Johnson	
Title:	Lab Manager	

* (no specification provided)

Location: BW16TR-001-0.0-0.15 **Sample Number:** 10365380-1 **Date Sampled:** 10/5/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOC

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-001-0.0-0.15 Sample Number: 10365380-1 Material Description: silt Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

			Sie	ve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
626.72	571.21	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
51.73	0.00	#20	0.43	0.00	99
		#40	1.14	0.00	97
		#60	0.42	0.00	96

Hydrometer Test Data

0.00

0.00

93

89

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.73 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

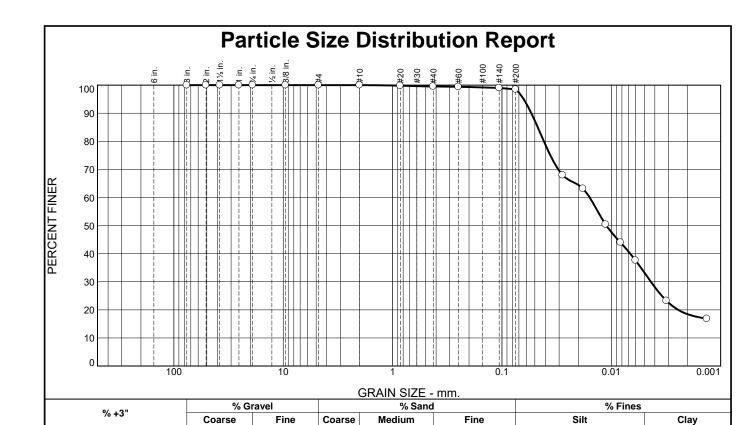
Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	41.0	32.5	0.0140	41.0	9.6	0.0306	62.9
5.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0199	57.1
15.00	18.0	31.0	22.5	0.0140	31.0	11.2	0.0121	43.6
30.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0087	37.8
60.00	18.0	25.0	16.5	0.0140	25.0	12.2	0.0063	32.0
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	22.3
1440.00	18.0	17.0	8.5	0.0140	17.0	13.5	0.0014	16.5

1.65

1.88

__ Pace Analytical Services, Inc. ___


Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	3	8	11	61	28	89

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0025	0.0056	0.0100	0.0152	0.0245	0.0537	0.0629	0.0779	0.1630

Fineness Modulus
0.11

_____ Pace Analytical Services, Inc. _____

0

	TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	100									
#4	100									
#10	100									
#20	100									
#40	100									
#60	99									
#140	99									
#200	98									
0.0279 mm.	68									
0.0182 mm.	63									
0.0113 mm.	50									
0.0082 mm.	44									
0.0060 mm.	38									
0.0031 mm.	23									
0.0013 mm.	17									
* (no spe	cification provide	d)								

0

0

Material Description								
silt								
Att	erberg Limits (AST	M D 4318)						
PL= NP	LL= NV	PI=						
USCS (D 2487)=	Classification ML AASHTO	<u>1</u>) (M 145)= A-4(0)						
	Coefficients							
D₉₀= 0.0538 D₅₀= 0.0111	D₈₅= 0.0471 D₃₀= 0.0043	D ₆₀ = 0.0158 D ₁₅ =						
D ₁₀ =	C _u =	C _c =						
	Remarks							
Date Received:	10/7/16 Date	Tested: 10/20/16						
Tested By:	Will Thomas							
Checked By:	Rhonda Johnson							
Title:	Lab Manager							

65

2

Location: BW16TR-001-0.15-0.35 Sample Number: 10365380-2 Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/5/16

33

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-001-0.15-0.35 Sample Number: 10365380-2 Material Description: silt Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

			Sie	eve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
642.31	565.45	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
62.60	0.00	#20	0.12	0.00	100
		#40	0.17	0.00	100
		#60	0.08	0.00	99
		#140	0.26	0.00	99

Hydrometer Test Data

0.00

98

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 62.6

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

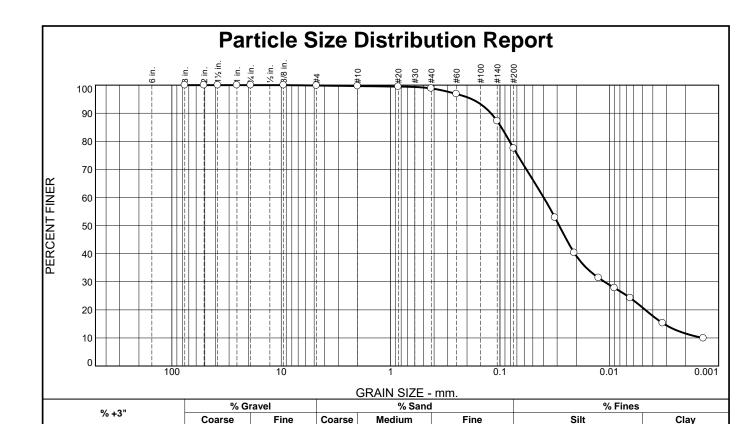
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	51.0	42.5	0.0140	51.0	7.9	0.0279	68.0
5.00	18.0	48.0	39.5	0.0140	48.0	8.4	0.0182	63.2
15.00	18.0	40.0	31.5	0.0140	40.0	9.7	0.0113	50.4
30.00	18.0	36.0	27.5	0.0140	36.0	10.4	0.0082	44.0
60.00	18.0	32.0	23.5	0.0140	32.0	11.0	0.0060	37.6
250.00	18.0	23.0	14.5	0.0140	23.0	12.5	0.0031	23.2
1440.00	18.0	19.0	10.5	0.0140	19.0	13.2	0.0013	16.8
			Pace Ar	nalytical	Service	es, Inc		

0.33

Page 25 of 38


Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	2	2	65	33	98

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0024	0.0043	0.0067	0.0111	0.0158	0.0413	0.0471	0.0538	0.0631

Fineness Modulus
0.02

Pace Analytical Services, Inc. _____

	TEST RESULTS	(ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	99		
#40	99		
#60	97		
#140	87		
#200	78		
0.0314 mm.	53		
0.0210 mm.	40		
0.0125 mm.	31		
0.0090 mm.	28		
0.0064 mm.	24		
0.0033 mm.	15		
0.0014 mm.	9.9		

Coarse

0

0

Fine

Coarse

0

	Material Des	cription		
silt with sand		•		
PL= NP	erberg Limits (LL= NV	ASTM D 4318 Pl=)	
USCS (D 2487)=	Classifica ML AAS	<u>ation</u> SHTO (M 145)=	A-4(0)	
D₉₀= 0.1209 D₅₀= 0.0287 D₁₀= 0.0014	Coefficio D ₈₅ = 0.0971 D ₃₀ = 0.0111 C _u = 28.30	Den=	0.0398 0.0032 2.19	
Remarks				
Date Received:	10/7/16	Date Tested:	10/20/16	
Tested By:	Will Thomas			
Checked By:	Rhonda Johnson			
Title:	Lab Manager			

Silt

57

Clay

21

Fine

21

Location: BW16TR-002-0.0-0.15 **Sample Number:** 10365380-4 Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: **Figure**

Date Sampled: 10/5/16

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-002-0.0-0.15 Sample Number: 10365380-4 Material Description: silt with sand

Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
658.50	580.59	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.11	0.00	100

#10

#20

#40

#60

#140

#200

Hydrometer Test Data

0.00

0.00

0.00

0.00

0.00

0.00

100

99 99

97

87

78

Hydrometer test uses material passing #10

0.00

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =55.7 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

55.70

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0314	52.9
5.00	18.0	31.0	22.5	0.0140	31.0	11.2	0.0210	40.3
15.00	18.0	26.0	17.5	0.0140	26.0	12.0	0.0125	31.4
30.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0090	27.8
60.00	18.0	22.0	13.5	0.0140	22.0	12.7	0.0064	24.2
250.00	18.0	17.0	8.5	0.0140	17.0	13.5	0.0033	15.3
1440.00	18.0	14.0	5.5	0.0140	14.0	14.0	0.0014	9.9
			Pace Ar	nalytical	Service	es, Inc		

0.14

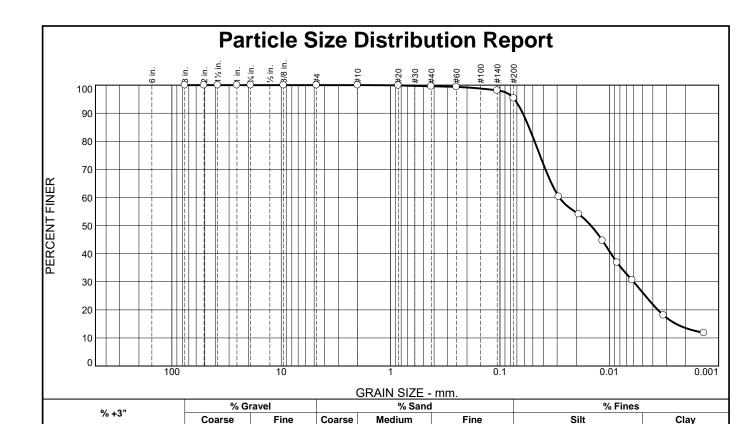
0.11

0.36

1.10

5.39

5.42


Fractional Components

Cobbles	Gravel		Sand			Fines				
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	1	21	22	57	21	78

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0014	0.0032	0.0047	0.0111	0.0207	0.0287	0.0398	0.0816	0.0971	0.1209	0.1805

Fineness Modulus	c _u	c _c	
0.11	28.30	2.19	

Pace Analytical Services, Inc.

	TEST RESULTS (ASTM D422)						
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3	100						
2	100						
1.5	100						
1	100						
.75	100						
.375	100						
#4	100						
#10	100						
#20	100						
#40	100						
#60	99						
#140	98						
#200	95						
0.0290 mm.	60						
0.0190 mm.	54						
0.0116 mm.	45						
0.0085 mm.	37						
0.0062 mm.	31						
0.0032 mm.	18						
0.0014 mm.	12						

(no specification provided)

Coarse

0

Fine

0

Coarse

0

	Material Description						
silt							
Atterberg Limits (ASTM D 4318)							
PL= NP	LL= NV PI=						
USCS (D 2487)=	ML AASHTO (M 145)= A-4(0)						
D₉₀= 0.0618 D₅₀= 0.0147 D₁₀=	$\begin{array}{c cccc} \textbf{Coefficients} & & & \\ \textbf{D_{85}} = & 0.0542 & & \textbf{D_{60}} = & 0.0286 \\ \textbf{D_{30}} = & 0.0060 & & \textbf{D_{15}} = & 0.0025 \\ \textbf{C_{u}} = & & \textbf{C_{c}} \end{array}$						
Remarks							
	10/7/16 Date Tested: 10/20/16						
Tested By:	Will Thomas						
Checked By:	Rhonda Johnson						
Title:	Lab Manager						

Silt

69

Clay

26

Fine

Location: BW16TR-002-0.30-0.55 **Sample Number:** 10365380-5 Pace Analytical Services, Inc. Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT Project No: **Figure**

Date Sampled: 10/5/16

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-002-0.30-0.55 Sample Number: 10365380-5 Material Description: silt Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas

Checked By: Rhonda Johnson

Test Date: 10/20/16

Title: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
709.44	583.49	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
63.90	0.00	#20	0.07	0.00	100
		#40	0.19	0.00	100
		#60	0.14	0.00	99

Hydrometer Test Data

0.00

0.00

98

95

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =63.9

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

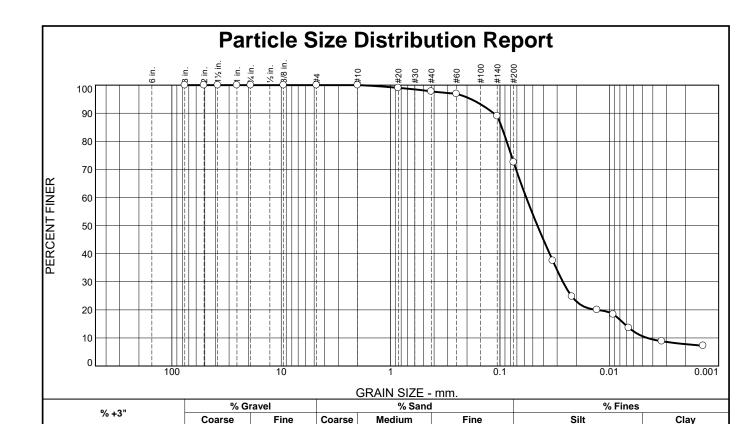
Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	47.0	38.5	0.0140	47.0	8.6	0.0290	60.3
5.00	18.0	43.0	34.5	0.0140	43.0	9.2	0.0190	54.1
15.00	18.0	37.0	28.5	0.0140	37.0	10.2	0.0116	44.7
30.00	18.0	32.0	23.5	0.0140	32.0	11.0	0.0085	36.8
60.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0062	30.6
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	18.1
1440.00	18.0	16.0	7.5	0.0140	16.0	13.7	0.0014	11.8
			Pace Ar	nalytical	Service	es, Inc		

0.80

1.77

Page 31 of 38


Fractional Components

Cobbles	Gravel			Sand					Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	5	5	69	26	95

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0025	0.0036	0.0060	0.0096	0.0147	0.0286	0.0482	0.0542	0.0618	0.0737

Fineness
Modulus
0.02

Pace Analytical Services, Inc.

	TEST RESULT	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	99		
#40	98		
#60	97		
#140	89		
#200	73		
0.0329 mm.	38		
0.0220 mm.	25		
0.0130 mm.	20		
0.0092 mm.	18		
0.0066 mm.	14		
0.0033 mm.	8.8		
0.0014 mm.	7.2		

(no specification provided)

Coarse

0

Fine

Coarse

0

	Material Descript	<u>tion</u>
silt with sand		
	erberg Limits (ASTI	
PL= NP	LL= NV	PI=
HECE (D 2407)	Classification	
USCS (D 2487)=	MIL AASHIO	(M 145)= A-4(0)
- 0.4444	Coefficients	
D ₉₀ = 0.1141	D₈₅= 0.0962 D₃₀= 0.0266	D ₆₀ = 0.0575
D₉₀= 0.1141 D₅₀= 0.0454 D₁₀= 0.0045	$C_{U} = 12.76$	D₆₀= 0.0575 D₁₅= 0.0073 C_c= 2.73
	Remarks	-
	Remarks	
Date Received:	10/7/16 Date	Tested: 10/20/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
I Itle:	Lab Manager	

Silt

62

Clay

11

Fine

25

Location: BW16TR-003-0.0-0.15 **Sample Number:** 10365380-6 Pace Analytical Services, Inc. Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT **Project No: Figure**

Date Sampled: 10/5/16

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-003-0.0-0.15 Sample Number: 10365380-6 Material Description: silt with sand

Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

			_			
Si	AV	A	IΑ	et.	I D F	गान

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
721.06	571.82	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
62.74	0.00	#20	0.61	0.00	99
		#40	0.80	0.00	98
		#60	0.53	0.00	97
		#140	4.96	0.00	89
		#200	10.31	0.00	73

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =62.74

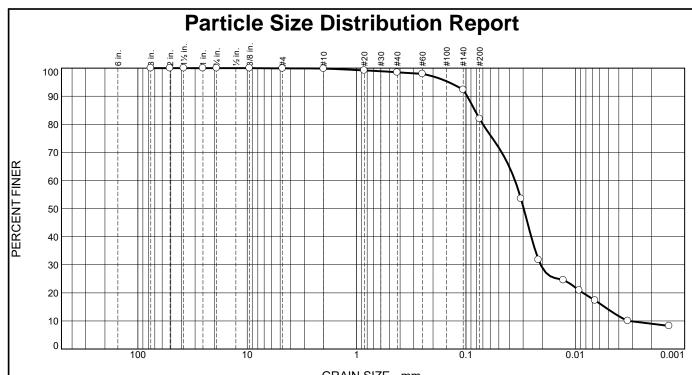
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	32.0	23.5	0.0140	32.0	11.0	0.0329	37.5
5.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0220	24.8
15.00	18.0	21.0	12.5	0.0140	21.0	12.9	0.0130	20.0
30.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0092	18.4
60.00	18.0	17.0	8.5	0.0140	17.0	13.5	0.0066	13.6
250.00	18.0	14.0	5.5	0.0140	14.0	14.0	0.0033	8.8
1440.00	18.0	13.0	4.5	0.0140	13.0	14.2	0.0014	7.2
			Pace Ar	nalytical	Service	es, Inc		


Fractional Components

Cobbles	Gravel			Sand					Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	2	25	27	62	11	73

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0045	0.0073	0.0130	0.0266	0.0351	0.0454	0.0575	0.0867	0.0962	0.1141	0.1837

Fineness Modulus	c _u	C _C
0.12	12.76	2.73

Pace Analytical Services, Inc.

	GRAIN SIZE - mm.									
9/ - 211	% Gı	ravel		% Sand		% Fines				
% +3"	Coarse	Fine	ne Coarse Medium Fine		Fine	Silt	Clay			
0	0	0	0	2	16	68	14			

	TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	100									
#4	100									
#10	100									
#20	99									
#40	98									
#60	98									
#140	92									
#200	82									
0.0314 mm.	54									
0.0217 mm.	32									
0.0129 mm.	25									
0.0092 mm.	21									
0.0066 mm.	17									
0.0033 mm.	10									
0.0014 mm.	8.2									

Material Description					
silt with sand					
	erberg Limits (ASTI	<u>/I D 4318)</u> PI=			
PL= NP	LL= NV	PI=			
USCS (D 2487)=	Classification ML AASHTO	(M 145)= A-4(0)			
	Coefficients				
D₉₀= 0.0973 D₅₀= 0.0296	D ₈₅ = 0.0829	D₆₀= 0.0356 D₁₅= 0.0054			
D₅₀= 0.0296 D₁₀= 0.0032	D₃₀ = 0.0207 C₁₁ = 11.00	D₁₅= 0.0054 C_c= 3.72			
D ₁₀ = 0.0032	ou- 11.00	GC- 3.72			
	Remarks				
Date Received:	10/7/16 Date	Tested: 10/20/16			
Tested By:	Will Thomas				
Checked by:	Rhonda Johnson				
Title:	Lab Manager				

* (no specification provided)

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-003-0.27-052 Sample Number: 10365380-7 Material Description: silt with sand

Sample Date: 10/5/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	rest	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
757.65	577.73	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.14	0.00	100
		#10	0.18	0.00	100
55.08	0.00	#20	0.35	0.00	99
		#40	0.38	0.00	98
		#60	0.30	0.00	98
		#140	3.12	0.00	92
		#200	5.71	0.00	82

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =55.08

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0314	53.5
5.00	18.0	26.0	17.5	0.0140	26.0	12.0	0.0217	31.8
15.00	18.0	22.0	13.5	0.0140	22.0	12.7	0.0129	24.5
30.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0092	20.9
60.00	18.0	18.0	9.5	0.0140	18.0	13.3	0.0066	17.3
250.00	18.0	14.0	5.5	0.0140	14.0	14.0	0.0033	10.0
1440.00	18.0	13.0	4.5	0.0140	13.0	14.2	0.0014	8.2

__ Pace Analytical Services, Inc. ___

Fractional Components

Cobbles		Gravel			Sa	nd			Fines	
Copples	Coarse	Fine	Total	Coarse	Coarse Medium Fine Total				Clay	Total
0	0	0	0	0	2	16	18	68	14	82

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0032	0.0054	0.0085	0.0207	0.0253	0.0296	0.0356	0.0699	0.0829	0.0973	0.1440

Fineness Modulus	c _u	cc
0.08	11.00	3.72

Pace Analytical Services, Inc.

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nar	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365383
Wor	k order	r numl	per: 3000017136		Repo	rt date	(mm/dd/yyyy): 10/27/2016
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr				
	Ques	tions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.		e there samples requiring preservation?				
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		Was there enough sample volume/weight to complete all requested analyses?					
		ii.	Was there enough extra sample collected to complete method required batch QC?				
	е.		e samples received with adequate holding for sample prep for all requested analyses?				
	f.		there notes about sample condition or holding issues on the COC? Explain impact.		\boxtimes		
	g. Is there narration or data qualifiers within the report about sample condition or holding time issues? Explain impact.				\boxtimes		
2.							
	Ques	stion		Yes	No	N/A	Comments
	a. Do the report narrative or data qualifiers indicate calibration problems for any analyses? If yes, explain the data impact.						

3.	B	lan	ks

	Ques	tion		Yes	No	N/A	Comments
	a.		any of the analyses contain samples for field ip blanks?				
		i.	If yes, are there target analytes present above the reporting limit?				
		ii.	If yes, are the same compounds also present in the samples? Explain possible impact.				
	b.		nethod blanks for any analyses contain target ytes above the reporting limit?		\boxtimes		A low-level concentration of TOC (88.8 mg/kg) was detected in Method Blank 386204.
		i.	If yes, are the same compounds present in the samples?				
		ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.				TOC results in all samples were > 10x the blank concentration.
4.	Surr	roga	tes				
	Ques	tion		Yes	No	N/A	Comments
	а.		there organic analyses that contain surrogate pounds?				
	b.	Are	the lab recovery limits specified on the report?			\boxtimes	
		i.	Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?			\boxtimes	
	C.		there surrogates outside lab limits? (These				
		i.	If yes, are the surrogates above the lab limits?			\boxtimes	
		ii.	Below the lab limits?			\boxtimes	
		iii.	Explain what this could mean for the affected samples.				
5.	Lab	orat	ory Control Sample/Laboratory Co	ontro	l San	nple	Duplicate (LCS/LCSD)
	Ques	tion		Yes	No	N/A	Comments
	a. 	repo	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate /MSD] or sample/sample dup for precision.)				
		i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?				
	b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)				
		i.	If yes, are the analytes above the lab limits?			\boxtimes	
		ii.	Below the lab limits?			\boxtimes	
		iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

ivia	trix s	ріке	/Matrix Spike Duplicate/Samp	ole Di	uplic	ate ((MS/MSD/Dup)
Que	stion			Yes	No	N/A	Comments
a.			nlytical methods used require an MS D? If no, skip to 6.b.	\boxtimes			
	i.		the required matrix spikes been ared and reported?				The MS/MSD was performed on TOC sam BW16TR-004-0.0-0.15.
	ii.		is there and explanation in the report why?			\boxtimes	
	iii.		ne lab process an alternate spiked ble (such as LCSD) instead?			\boxtimes	
	iv.	Are th	he lab limits specified on the report?				
	V.	comp	ne limits seem reasonable when pared to the suggested guidelines in the A QC Policy?				
	vi.	Are th	here compounds outside the lab limits?		\boxtimes		
		1.	If yes, are the analytes above the lab limits?			\boxtimes	
		2.	Below the lab limits?			\boxtimes	
		3.	Is the source sample also flagged for compounds outside lab limits?				
b.			e duplicate reported for the analytical ? If no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the mits?				
	ii.		has the associated source sample flagged?				
C.	Wha	t is the	e impact of failed QC on this project?			\boxtimes	
Method Detection Limits/Report Limits							
Que	stion			Yes	No	N/A	Comments
a.							

Α

(2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

October 27, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Virginia Minnesota Certification ID's

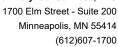
315 Chestnut Street, Virginia, MN 55792

Alaska Certification UST-107 Alaska Certification UST-107 Alaska Certification #MN01084

Arizona Department of Health Certification #AZ0785 Minnesota Dept of Health Certification #: 027-137-445 North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007 Nevada DNR #MN010842015-1

Oklahoma Department of Environmental Quality

(612)607-1700



SAMPLE SUMMARY

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365383001	BW16TR-004-0.0-0.15	Solid	10/07/16 10:40	10/07/16 19:35
10365383002	BW16TR-004-0.21-0.46	Solid	10/07/16 10:45	10/07/16 19:35
10365383003	BW16TR-005-0.0-0.15	Solid	10/07/16 11:00	10/07/16 19:35
10365383004	BW16TR-005-0.23-0.48	Solid	10/07/16 11:05	10/07/16 19:35
10365383005	BW16TR-006-0.0-0.15	Solid	10/07/16 11:30	10/07/16 19:35
10365383006	BW16TR-006-0.15-0.28	Solid	10/07/16 11:35	10/07/16 19:35
10365383007	BW16TR-007-0.0-0.15	Solid	10/07/16 11:50	10/07/16 19:35
10365383008	BW16TR-007-0.26-0.51	Solid	10/07/16 11:55	10/07/16 19:35
10365383009	BW16TR-009-0.0-0.15	Solid	10/07/16 12:25	10/07/16 19:35
10365383010	BW16TR-010-0.0-0.15	Solid	10/07/16 12:40	10/07/16 19:35
10365383011	BW16TR-010-0.15-0.38	Solid	10/07/16 12:45	10/07/16 19:35
10365383012	BW16TR-011-0.0-0.15	Solid	10/07/16 13:05	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10365383001	BW16TR-004-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383002	BW16TR-004-0.21-0.46	EPA 9060A	KRV	5	PASI-V
10365383003	BW16TR-005-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383004	BW16TR-005-0.23-0.48	EPA 9060A	KRV	5	PASI-V
10365383005	BW16TR-006-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383006	BW16TR-006-0.15-0.28	EPA 9060A	KRV	5	PASI-V
10365383007	BW16TR-007-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383008	BW16TR-007-0.26-0.51	EPA 9060A	KRV	5	PASI-V
10365383009	BW16TR-009-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383010	BW16TR-010-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365383011	BW16TR-010-0.15-0.38	EPA 9060A	KRV	5	PASI-V
10365383012	BW16TR-011-0.0-0.15	EPA 9060A	KRV	5	PASI-V

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Method: EPA 9060A

Description: Total Organic Carbon Quad

Client: Bay West, Inc.

Date: October 27, 2016

General Information:

12 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 97596

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379001,10365383012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

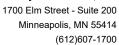
• MSD (Lab ID: 386209)

• Mean Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-004-0.0-0.15 Lab ID: 10365383001 Collected: 10/07/16 10:40 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	18300	mg/kg	2730	437	1		10/19/16 12:30	7440-44-0	
Total Organic Carbon	26600	mg/kg	3130	501	1		10/19/16 12:37	7440-44-0	
Total Organic Carbon	24800	mg/kg	3050	487	1		10/19/16 12:45	7440-44-0	
Total Organic Carbon	25800	mg/kg	3060	489	1		10/19/16 12:52	7440-44-0	
Mean Total Organic Carbon	23900	mg/kg	2990	479	1		10/19/16 12:52	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-004-0.21-0.46 Lab ID: 10365383002 Collected: 10/07/16 10:45 Received: 10/07/16 19:35 Matrix: Solid

riccanic reperiou en u met meig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	34900	mg/kg	2820	451	1		10/19/16 13:00	7440-44-0	
Total Organic Carbon	38900	mg/kg	3020	484	1		10/19/16 13:07	7440-44-0	
Total Organic Carbon	38400	mg/kg	2990	478	1		10/19/16 13:14	7440-44-0	
Total Organic Carbon	37700	mg/kg	3000	480	1		10/19/16 13:22	7440-44-0	
Mean Total Organic Carbon	37500	mg/kg	2960	473	1		10/19/16 13:22	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

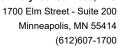
Date: 10/27/2016 04:07 PM

Sample: BW16TR-005-0.0-0.15 Lab ID: 10365383003 Collected: 10/07/16 11:00 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

results reported on a wet weig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	31100	mg/kg	3310	529	1		10/19/16 13:29	7440-44-0	
Total Organic Carbon	49700	mg/kg	3040	486	1		10/19/16 13:36	7440-44-0	
Total Organic Carbon	51000	mg/kg	2850	457	1		10/19/16 13:44	7440-44-0	
Total Organic Carbon	50800	mg/kg	2850	456	1		10/19/16 13:51	7440-44-0	
Mean Total Organic Carbon	45700	mg/kg	3010	482	1		10/19/16 13:51	7440-44-0	

Project: J160139 SLR Sediment AOC


Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-005-0.23-0.48 Lab ID: 10365383004 Collected: 10/07/16 11:05 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Results reported on a wet weig	in buois		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	23300	mg/kg	2630	421	1		10/19/16 13:58	7440-44-0	
Total Organic Carbon	28900	mg/kg	2580	412	1		10/19/16 14:07	7440-44-0	
Total Organic Carbon	29200	mg/kg	2580	413	1		10/19/16 14:14	7440-44-0	
Total Organic Carbon	24900	mg/kg	2680	428	1		10/19/16 14:21	7440-44-0	
Mean Total Organic Carbon	26600	mg/kg	2620	418	1		10/19/16 14:21	7440-44-0	

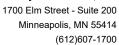
Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-006-0.0-0.15 Lab ID: 10365383005 Collected: 10/07/16 11:30 Received: 10/07/16 19:35 Matrix: Solid

results reported on a wet weig	n buolo		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	15600	mg/kg	2740	438	1		10/19/16 14:29	7440-44-0	
Total Organic Carbon	22200	mg/kg	1970	315	1		10/19/16 14:36	7440-44-0	
Total Organic Carbon	22200	mg/kg	2220	356	1		10/19/16 14:43	7440-44-0	
Total Organic Carbon	18000	mg/kg	2100	336	1		10/19/16 14:51	7440-44-0	
Mean Total Organic Carbon	19500	mg/kg	2260	361	1		10/19/16 14:51	7440-44-0	

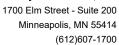

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-006-0.15-0.28 Lab ID: 10365383006 Collected: 10/07/16 11:35 Received: 10/07/16 19:35 Matrix: Solid

results reported on a wet weig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	48600	mg/kg	2370	380	1		10/19/16 14:58	7440-44-0	
Total Organic Carbon	55100	mg/kg	2820	452	1		10/19/16 15:05	7440-44-0	
Total Organic Carbon	55100	mg/kg	2790	447	1		10/19/16 15:13	7440-44-0	
Total Organic Carbon	44700	mg/kg	2860	458	1		10/19/16 15:21	7440-44-0	
Mean Total Organic Carbon	50900	mg/kg	2710	434	1		10/19/16 15:21	7440-44-0	


Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-007-0.0-0.15 Lab ID: 10365383007 Collected: 10/07/16 11:50 Received: 10/07/16 19:35 Matrix: Solid

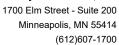
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	32500	mg/kg	2580	413	1		10/19/16 15:28	7440-44-0	
Total Organic Carbon	31800	mg/kg	2640	422	1		10/19/16 15:36	7440-44-0	
Total Organic Carbon	23100	mg/kg	2600	416	1		10/19/16 15:43	7440-44-0	
Total Organic Carbon	21600	mg/kg	2550	407	1		10/19/16 15:50	7440-44-0	
Mean Total Organic Carbon	27300	mg/kg	2590	414	1		10/19/16 15:50	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	40400	mg/kg	2820	451	1		10/19/16 15:58	7440-44-0	
Total Organic Carbon	47400	mg/kg	2660	426	1		10/19/16 16:05	7440-44-0	
Total Organic Carbon	44500	mg/kg	2610	417	1		10/19/16 16:12	7440-44-0	
Total Organic Carbon	43800	mg/kg	2740	439	1		10/19/16 16:20	7440-44-0	
Mean Total Organic Carbon	44100	mg/kg	2710	433	1		10/19/16 16:20	7440-44-0	


Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-009-0.0-0.15 Lab ID: 10365383009 Collected: 10/07/16 12:25 Received: 10/07/16 19:35 Matrix: Solid

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	6180	mg/kg	2140	343	1		10/19/16 16:27	7440-44-0	
Total Organic Carbon	4520	mg/kg	1020	163	1		10/19/16 16:35	7440-44-0	
Total Organic Carbon	2580	mg/kg	990	158	1		10/19/16 16:44	7440-44-0	
Total Organic Carbon	2480	mg/kg	992	159	1		10/19/16 16:51	7440-44-0	
Mean Total Organic Carbon	3940	mg/kg	1290	206	1		10/19/16 16:51	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-010-0.0-0.15 Lab ID: 10365383010 Collected: 10/07/16 12:40 Received: 10/07/16 19:35 Matrix: Solid

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	33200	mg/kg	2330	373	1		10/19/16 17:19	7440-44-0	
Total Organic Carbon	33500	mg/kg	2420	386	1		10/19/16 17:27	7440-44-0	
Total Organic Carbon	29900	mg/kg	2300	368	1		10/19/16 17:35	7440-44-0	
Total Organic Carbon	34800	mg/kg	2250	360	1		10/19/16 17:44	7440-44-0	
Mean Total Organic Carbon	32800	mg/kg	2320	372	1		10/19/16 17:44	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	28800	mg/kg	2470	395	1		10/19/16 17:52	7440-44-0	
Total Organic Carbon	42000	mg/kg	2470	394	1		10/19/16 17:59	7440-44-0	
Total Organic Carbon	33200	mg/kg	2480	396	1		10/19/16 18:12	7440-44-0	
Total Organic Carbon	30800	mg/kg	2490	398	1		10/19/16 18:19	7440-44-0	
Mean Total Organic Carbon	33700	mg/kg	2470	396	1		10/19/16 18:19	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Sample: BW16TR-011-0.0-0.15 Lab ID: 10365383012 Collected: 10/07/16 13:05 Received: 10/07/16 19:35 Matrix: Solid

riccanic reperiou on a life neig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	42400	mg/kg	2570	411	1		10/19/16 18:27	7440-44-0	
Total Organic Carbon	42200	mg/kg	2970	476	1		10/19/16 18:35	7440-44-0	
Total Organic Carbon	42100	mg/kg	2850	455	1		10/19/16 18:42	7440-44-0	
Total Organic Carbon	43400	mg/kg	2940	471	1		10/19/16 18:50	7440-44-0	
Mean Total Organic Carbon	42500	mg/kg	2830	453	1		10/19/16 18:50	7440-44-0	M1

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

10365383 Pace Project No.:

LABORATORY CONTROL SAMPLE:

Date: 10/27/2016 04:07 PM

QC Batch: 97596 EPA 9060A Analysis Method: QC Batch Method: **EPA 9060A** Analysis Description: 9060 TOC Average

10365383001, 10365383002, 10365383003, 10365383004, 10365383005, 10365383006, 10365383007, Associated Lab Samples:

10365383008, 10365383009, 10365383010, 10365383011, 10365383012

METHOD BLANK: 386204 Matrix: Solid

10365383001, 10365383002, 10365383003, 10365383004, 10365383005, 10365383006, 10365383007, Associated Lab Samples:

10365383008, 10365383009, 10365383010, 10365383011, 10365383012

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers Mean Total Organic Carbon mg/kg 88.8J 301 48.2 10/19/16 20:22

386205

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 77 49-151 Mean Total Organic Carbon 5820 4490 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386206 386207

MS MSD 10365379001 Spike MS MSD MS MSD % Rec Max Spike Units % Rec % Rec RPD RPD Parameter Result Conc. Conc. Result Result Limits Qual Mean Total Organic Carbon 33000 44700 45700 83900 74700 91 70-130 12 25 114 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386208 386209

MS MSD MSD MS MSD 10365383012 Spike Spike MS % Rec Max Qual Parameter Units % Rec % Rec Limits RPD RPD Result Conc Conc. Result Result Mean Total Organic Carbon 42500 31600 31100 68700 60100 83 70-130 13 25 M1 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-V Pace Analytical Services - Virginia

ANALYTE QUALIFIERS

Date: 10/27/2016 04:07 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365383

Date: 10/27/2016 04:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365383001	BW16TR-004-0.0-0.15	EPA 9060A	97596		
10365383001	BW16TR-004-0.0-0.15	EPA 9060A	97656		
10365383002	BW16TR-004-0.21-0.46	EPA 9060A	97596		
10365383002	BW16TR-004-0.21-0.46	EPA 9060A	97656		
10365383003	BW16TR-005-0.0-0.15	EPA 9060A	97596		
10365383003	BW16TR-005-0.0-0.15	EPA 9060A	97656		
10365383004	BW16TR-005-0.23-0.48	EPA 9060A	97596		
10365383004	BW16TR-005-0.23-0.48	EPA 9060A	97656		
10365383005	BW16TR-006-0.0-0.15	EPA 9060A	97596		
10365383005	BW16TR-006-0.0-0.15	EPA 9060A	97656		
10365383006	BW16TR-006-0.15-0.28	EPA 9060A	97596		
10365383006	BW16TR-006-0.15-0.28	EPA 9060A	97656		
10365383007	BW16TR-007-0.0-0.15	EPA 9060A	97596		
10365383007	BW16TR-007-0.0-0.15	EPA 9060A	97656		
10365383008	BW16TR-007-0.26-0.51	EPA 9060A	97596		
10365383008	BW16TR-007-0.26-0.51	EPA 9060A	97656		
10365383009	BW16TR-009-0.0-0.15	EPA 9060A	97596		
10365383009	BW16TR-009-0.0-0.15	EPA 9060A	97656		
10365383010	BW16TR-010-0.0-0.15	EPA 9060A	97596		
10365383010	BW16TR-010-0.0-0.15	EPA 9060A	97656		
10365383011	BW16TR-010-0.15-0.38	EPA 9060A	97596		
10365383011	BW16TR-010-0.15-0.38	EPA 9060A	97656		
10365383012	BW16TR-011-0.0-0.15	EPA 9060A	97596		
10365383012	BW16TR-011-0.0-0.15	EPA 9060A	97656		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

,							!			2				pidino pa repu	indiana amaidir	÷						
Section A	section A Required Client Information:	Ë	Section B Required Project Information:	t Informa	ation:			<i>ŏ</i> ₫	Section C	in China				Section D	Section D					(35,5950)	383	_
Сотра		CC.	Report To:	Nan	oy Mc	Nancy McDonald		¥.	Attention:	1	Accounts Payable	s Payat	<u>e</u>	Facility_	Vame: St. Louis	River Sedim	Facility_Name: St. Louis River Sediment Areas of Concern	Page		75		
Address:	s: 5 Empire Drive	ive	Copy To: Paul Raymaker	Raym	aker			రి	Company Name:	ne:	Bay \	Bay West, LLC	ပ္	Facility_Code:	Code: St Loui	St Louis River Sed			<u>.</u>	·		-
St. Pa	St. Paul, MN 55103							Ad	Address:		5 Emp	5 Empire Drive		Facility_ID:	D: 547023			#300	**			
Email To:		nmcdonald@baywest.com	Purchase Order No.:	No.:	108002	202		5	Lab Quote Reference:	rence:	æ	3000017136	136	Subfacility_code	ty_code:					ਲੋ	SLR-TR-5	
Phone:		651-291-3483	Project Name:	SLR	Sedir.	SLR Sediment AOCs		[#]	ab Project Manager	задет:	Oye	Oyeyemi Odujole	dujole						SE	Site Location		
Rednes	Requested Due Date/TAT:	Standard	Project Number:		J160139															STATE	≥	Z Z
								 				П				Request	Requested Analysis					
	Se Required C	Section E Required Client Information MAT	Valid Matrix Codes MATRIX CODE	ü			Collection			Preservatives	vatives		z/jes/nek									
# M3TI	Sample Location ID (sys_loc_code)	de ID	Drinking Water DW Waske Water W Soli/Solid P OII SO OII AI Tissue AR Other 75	MATRIX CODE	SAMPLE TYPE (9MQD=D 8ASP=Đ)	DATE	əmiT	# OF CONTAINERS	Unpreserved H ₂ SO₄	HOI HNO ³	HO&N ¿O _s 2 _s 8 _N	Methanol	TOC (SW-846 9060A Quad Burn)	Orain Size (ASTM D422 w/ hydron						Ŭ	Соттеп	
EX.	BW15MLW-005	BW14MLW-005-0-0.15	52	So	(S	3/12/15	1204	7													J	
- B	BW16TR-004	BW16TR-004-0.0-0.15	2	ပ္တ	<u>υ</u>	10/7/16	1040	10 2	2				02545				-				, O J	¥,
S BY	BW16TR-004	BW16TR-004-0.21-0.46	16	S	Ű	10/7/16	16 1045	15 2	2				-	-							2	
3 BV	BW16TR-005	BW16TR-005-0.0-0.15		SS	Ø	107/16	1100	30 2	2				- Datos	-							603	••
4 9	BW16TR-005	BW16TR-005-0.23-0.48	18	S	Ø	10/7/16	1105	5 2	2					-							7	
<u>8</u>	BW16TR-006	BW16TR-006-0.0-0.15		8	Ű	10/7/16	1130	30 2	2	\exists			*	-							3	
e B	BW16TR-006	BW16TR-006-0.15-0.28	82	S	Ø	10/7/16	1135	2	2					-							3	
7	BW16TR-007	BW16TR-007-0.0-0.15	10	S	O	10/7/16	1150	2 2	2				y and	-		-				.3	****	
8	BW16TR-007	BW16TR-007-0.26-0.51	51	S	σ	10/7/16	1155	2	2	$\frac{1}{2}$		-	restrict s	-		+				२ र	~ ·	
	BW16TR-009	BW16TR-009-0.0-0.15	(n)	S		10/7/16		25 2				•	A Serve	-							_ S - S	
<u>6</u>	BW16TR-010	BW16TR-010-0.15-0.38	,	8 8	0	10/7/16	16 1245		2 2												3	
12 8	BW16TR-011	BW16TR-011-0.0-0.15	2	တ္တ	Ű	10/7/16		2	2				SWEEN.	-							610	
	ADDITIC	ADDITIONAL COMMENTS		ELINO	UISHED	4	10 To 10 To	ore o	127			Acc	EPTED B	ACCEPTED BY (AFFILIATION	MOIL		DATE	TIME	IE	SAMPLE	SAMPLE CONDITIONS	SS.
Referen	ice Subcontractor	Reference Subcontractor Goods and/or Services Purchase Order Form signed by Bay West on \$1916.	heis Musson	$Z_{\frac{1}{2}}$	33 3	30	182	19/17/01	<u></u>	dhustan	4	· 4 /	Pollen	£ /		2)	5)]2/5] 51)[Ha1	2557		÷	<u>フ</u>	>
Page	•			(السر إ			425	9	7		7	K.	بلا	2	11/16	7				
21 of 6							SAMPLER NAME AND SI PRINT Name of SAMPLER:	AND SIGNATUR IPLER:	TURE	į.	$\begin{vmatrix} 5 \\ 3 \end{vmatrix}$	556	8			-				qmэТ (Э°)	ceived on lo	elea2 ybols (N/Y) (N/Y) signi saldme
2						σ.	SIGNATURE OF SAMPLE	PLER	No.		7	1	A A	Signed (M	LAAL DATE Signed (MM/DD/YY): /	12/01	9//				\neg	_

Face Analytical*

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016

Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name:	1 (Project	# WO#:10365383
Courier: Fed Ex TUPS	 ∏USPS		Client	
Commercial Pace SpeeDee	Other:_			10365383
Tracking Number:				
Custody Seal on Cooler/Box Present? Yes No	Si	eals Int	act? 💆	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□None		Other:	Temp Blank? Yes _No
Thermometer	IVDE	of Ice:	□We	,,
Cooler Temp Read (°C): 2,9,2,8 Cooler Temp Cor			<u>3,</u> C	
Temp should be above freezing to 6°C Correction Factor	or: <u>+0.7</u>	<u> </u>	Dat	te and Initials of Person Examining Contents: <u>BC トウブフル</u>
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United S	tates Al AF	2 A7 C4	A FI GA	ID, LA. Did samples originate from a foreign source (internationally,
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			□Yes	☐No including Hawaii and Puerto Rico)? ☐Yes ☐No
If Yes to either question, fill out a Reg	ulated Soil (hecklis	st (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	ZYes .	No	□N/A	1.
Chain of Custody Filled Out?	□Yes	□No	□N/A	2.
Chain of Custody Relinquished?	✓Yes	□No	□n/a	3.
Sampler Name and/or Signature on COC?	Yes	□No	N/A	4.
Samples Arrived within Hold Time?	Yes	□No	□n/a	5.
Short Hold Time Analysis (<72 hr)?	Yes	ØN₀	□N/A	6.
Rush Turn Around Time Requested?	Yes	ĮZN₀	□N/A	7:
Sufficient Volume?	Yes	□No	□n/a	8.
Correct Containers Used?	✓Yes	∏No	□N/A	9.
-Pace Containers Used?	⊘ ∕es	∐No	□n/a) T
Containers Intact?	✓Yes	No	□n/a	10.
Filtered Volume Received for Dissolved Tests?	∐Yes	No		11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	☑Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix: SL	•			5
All containers needing acid/base preservation have been			_	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
checked? All containers needing preservation are found to be in	Yes	∏No	ØN/A	
compliance with EPA recommendation?				Sample #
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	☐Yes	∏No	Z N/A	
Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC	□Yes	No	ZÎN/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?		□No	ZÎN/A	14.
Trip Blank Present?		<u>□</u> No	ZN/A	15.
Trip Blank Custody Seals Present?		□No	D⁄N/A	
Pace Trip Blank Lot # (if purchased):			7	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:	**			
-		,	•	
				· · · · · · · · · · · · · · · · · · ·
Project Manager Review: Law Catt				Date: 10/10/16
	mpiiance san	nples, a	copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out

Page 22 of 62

Intra-Regional Chain of Custody

Pace Analytical

LAB USE ONLY Z 9 Due Date: 10/17/2016 Samples Intact (Y Comments Requested Analysis Owner Received Date: 10/7/2016 or Received on Ice (X) 10/11/6 CAS × × × × × × × × × × × ASTM D422 Date/Time Preserved Containers Other Z Workorder Name: J160139 SLR Sediment AOC Matrix NA Solid Solid Solid Solid Solid Solid Solid Solid N)or Solid Solid Solid Solid Pace Analytical Billings MT Received By 10365383002 10365383010 10/7/2016 13:05 | 10365383012 10365383003 10365383004 10365383005 10365383006 10365383008 10365383009 10365383011 10365383001 10365383007 **Custody Seal** Phone (406)254-7226 150 N Ninth Street Billings, MT 59101 Lab ID 10/10/16 1252 10/7/2016 10:40 10/7/2016 10:45 10/7/2016 12:25 10/7/2016 12:40 10/7/2016 12:45 10/7/2016 11:00 10/7/2016 11:05 10/7/2016 11:30 10/7/2016 11:35 10/7/2016 11:50 10/7/2016 11:55 Date/Time Date/Time Collect ပွ Pace Sample Type 1 S PS PS PS PS PS PS PS PS PS PS PS Cooler Temperature on Receipt Pace Analytical Minnesota Workorder: 10365383 Released By Minneapolis, MN 55414 Phone (612)607-1700 BW16TR-004-0.21-0.46 BW16TR-005-0.23-0.48 BW16TR-006-0.15-0.28 BW16TR-007-0.26-0.51 BW16TR-010-0.15-0.38 BW16TR-005-0.0-0.15 BW16TR-006-0.0-0.15 BW16TR-007-0.0-0.15 BW16TR-009-0.0-0.15 BW16TR-010-0.0-0.15 BW16TR-004-0.0-0.15 BW16TR-011-0.0-0.15 1700 Elm Street Sample ID Report To: Lori Castille Received at: Suite 200 **Transfers** tem 10 12 7 2 9 ∞

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory. Page

Pace Analytical

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MT-C-184-Rev.10

Document Revised: 04Aug2016

Page 1 of 1 Issuing Authority: Pace Montana Quality Office

Sample Condition Client Name: Upon Receipt Race MW		F	Project #:	
Courier: Fed Ex UPS Commercial Pace	USPS Other:	Cli	ent	10365383
Tracking Number: 4757 5820	5478			
Custody Seal on Cooler/Box Present?	o Seals I	ntact?	Yes	No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	Nor	ne 🔲	Other:	Temp Blank? Yes
Thermometer Used: ☐ 160285052 ☐ 140279186 ☐ NA	Type of Ic	e:	/et 🗌	Blue None Samples on ice, cooling process has begun
Cooler Temp Read:			Da	te and Initials of Person Examining Contents: 10/11 WF
Cooler Temp Corrected: NA				Biological Tissue Frozen? Yes
Temp should be above freezing to 6°C				Comments:
Chain of Custody Present?	□ ye s	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and Signature on COC?	□Yes	No	□N/A	4.
Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	₽Ko	□N/A	6.
Rush Turn Around Time Requested?	Yes	OM	□N/A	7.
Sufficient Volume?	Yes	□No	□N/A	8.
Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	□Yes	No	□N/A	
Containers Intact?	Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	DATA	11. Note if sediment is visible in the dissolved container.
Sample Labels Match COC?	Yes	□No	□N/A	12.
4	Pires		□IA/A	12.
-includes Date/ fille/10/Affaiysis Watrix				
All containers needing acid/base preservation have been checked?	□Yes	□No	DN/A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI Sample #
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	□ */A	NA
Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water)	□Yes	Nivo		Lot # of added Initial when completed: preservative:
Headspace in VOA Vials (>6mm)?	□Yes	□No	N/A	14.
Trip Blank Present?	Yes	□No	□N/A	15.
Trip Blank Custody Seals Present?	Yes	□No	DAVA	
Pace Trip Blank Lot # (if purchased):	1	-		
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Field Data Required? Yes No Date/Time:
Comments/Resolution:				

Project Manager Review: Low Catter Date: 10/11/16

Note: Whenever there is a discrepancy affecting from the compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

10/11/16

Chain of Custody

W0#: 1276788

Due Date: 10/21/16

Pace Analytical 25 of 62 10/21

CLIENT: PACE MPLS

Pace Analytical Minnesota Workorder: 10365383 Lori Castille Report To Workorder Name: J160139 SLR Sediment AOC Subcontract To Pace Analytical Virginia MN 315 Chestnut Street Owner Received Date: 10/7/2016 Results Requested By: 10/1//2016

1			, EE		12	⇉	ᄒ	9	8	7	6	2	4	3	2	7	ilem		Pho	1700 Suite
(Transfers Released By	1947年,我们就会把我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们	BW16TR-011-0.0-0.15	BW16TR-010-0.15-0.38	BW16TR-010-0.0-0.15	BW16TR-009-0.0-0.15	BW16TR-007-0.26-0.51	BW16TR-007-0.0-0.15	BW16TR-006-0.15-0.28	BW16TR-006-0.0-0.15	BW16TR-005-0.23-0.48	BW16TR-005-0.0-0.15	BW16TR-004-0.21-0.46	BW16TR-004-0.0-0.15	Sample ID		Phone (612)607-1700	1700 Elm Street Suite 200
	\	V			PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	PS	Sample Type			
	polli lla 2	110/11/16/1	Date/Time		10/7/2016 13:05	10/7/2016 12:45	10/7/2016 12:40	10/7/2016 12:25	10/7/2016 11:55	10/7/2016 11:50	10/7/2016 11:35	10/7/2016 11:30	10/7/2016 11:05	10/7/2016 11:00	10/7/2016 10:45	10/7/2016 10:40	Collect Date/Time			Virgini Phone
	(UP)	700 (/	Received By		10365383012	10365383011	10365383010	10365383009	10365383008	10365383007	10365383006	10365383005	10365383004	10365383003	10365383002	10365383001	Lab 100 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			Virginia, MN 55792 Phone (218)742-1042
	6) \	y		Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Matrix:			
\ \ \	3									1			1				Unpreserved	Preserved C		
	10-12-1	idillati	Date/Time	Marine Service Control of the Contro)			- G 0			
		Ø			Ĥ	<u> </u>		$\hat{}$	^	_			$\hat{-}$	Â	Ê	<u>^</u>	100 9	060	9 va V	<u> 2 </u>
	ÿ			Charles Williams Control of																
				Сотп						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
				ents																
																			'	
									The state of the s	Annual An			and the state of t				LAB USE ONLY			
		10-17-16 DED		Date/Time Received By Date/Time	Date/Time Received By Date/Time Pate/Time Date/Time D	10/7/2016 13:05 10365383012 Solid 1	10/7/2016 12:45 10365383011 Solid 1	10/7/2016 12:40 10365383010 Solid 1	10/7/2016 12:25 10365383009 Solid 1	10/7/2016 11:55 10365383008 Solid 1	10/7/2016 11:50 10365383007 Solid 1	10/7/2016 11:35 10365383006 Solid 1	10/7/2016 11:30 10365383005 Solid 1	10/7/2016 11:05 10365383004 Solid 1	10/7/2016 11:00 10365383003 Solid 1	10/7/2016 11:05 10365383002 Solid 1	10/7/2016 10:40 10365383001 Solid 1	Date/Time Lab ID Matrix Date/Time Lab ID Matrix Date/Time Lab ID Date/Time Lab ID Date/Time Lab ID Date/Time Lab ID Date/Time Date	DeterTime Lab ID Matrix Spressived Containers C C	Die Collect Lab D

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document This chain of custody is considered complete as is since this information is available in the owner laboratory.

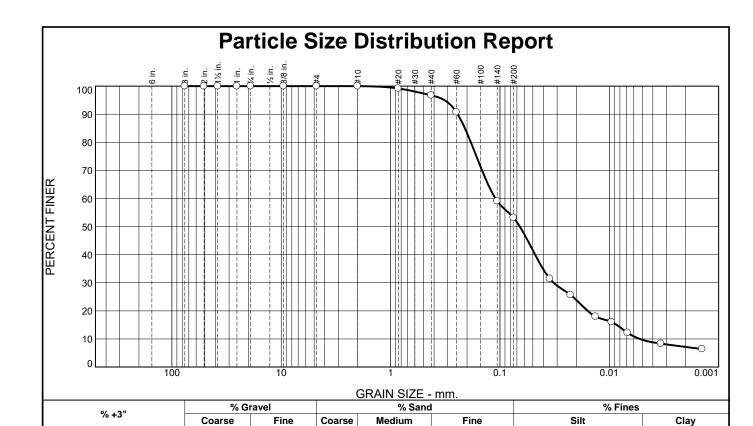
Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.:

Document Revised: 23Feb2015


Page 1 of 1

Issuing Authority:

F-VM-C-001-Rev.09

Pace Virginia, Minnesota Quality Office

Sample Condition Client Name: Upon Receipt Oace (NIV)			Project :	#: WO#:1276788
Courier: Fed Ex UPS	USPS Other:		Client	
Tracking Number:				1276788
Custody Seal on Cooler/Box Present?	□No	Seals I		Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble	ble Bags 🔲 N	one [Other:_l	Hac Pau Temp Blank? Yes No
Thermometer Used: 🖟 140792808	Type of		_	Blue None Samples on ice, cooling process has begun
Cooler Temp Read °C: 2 Cooler Temp should be above freezing to 6°C Correction	emp Corrected on Factor:	c: 2 - —	.3 Date and	Biological Tissue Frozen? Yes No NA Ind Initials of Person Examining Contents: One Original Services Comments: 10-12-16
Chain of Custody Present?	Z⁵Yes	□No	□N/A	1.
Chain of Custody Filled Out?	∑∕Yes	□No	□n/a	2.
Chain of Custody Relinquished?	✓Yes	□No	□n/A	3.
Sampler Name and Signature on COC?	/ □Yes	ZNo	□n/a	4.
Samples Arrived within Hold Time?	✓Yes	□No	□n/a	5.
Short Hold Time Analysis (<72 hr)?	Yes	Øίνο	□N/A	5.
Rush Turn Around Time Requested?	Yes	ZNo	□N/A	7.
Sufficient Volume?	∠ Yes	□No	□n/a	8.
Correct Containers Used?	∠ Yes	□No	□N/A	9.
-Pace Containers Used?	/ / Yes	□No	□N/A	
Containers Intact?	✓Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	N/A	11. Note if sediment is visible in the dissolved containers.
Sample Labels Match COC?	✓Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:	SĽ	_		
All containers needing acid/base preservation will checked and documented in the pH logbook.	be <u>Yes</u>	□No	ØN/A	See pH log for results and additional preservation documentation
Heads pace in Methyl Mercury Container	□Yes	□No	ØN/A	13.
Heads pace in VOA Vials (>6mm)?	∏Yes	□No	Ďn/a	14.
Trip Blank Present?	□Yes	□No	Ďn/a	15.
Trip Blank Custody Seals Present?	□Yes	□No	[]N/A	
Pace Trip Blank Lot # (if purchased):			· · · · · · · · · · · · · · · · · · ·	
			(Field Data Required? Yes No Date/Time:
Comments/Resolution:				
FECAL WAIVER ON FILE Y N Project Manager Review:	hen	TEMI	PERATUI	RE WAIVER ON FILE Y N Date: 10/13/16

0

TEST RESULTS (ASTM D422)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3	100						
2	100						
1.5	100						
1	100						
.75	100						
.375	100						
#4	100						
#10	100						
#20	99						
#40	97						
#60	91						
#140	59						
#200	53						
0.0350 mm.	31						
0.0226 mm.	26						
0.0134 mm.	18						
0.0095 mm.	16						
0.0068 mm.	12						
0.0034 mm.	8.3						
0.0014 mm.	6.4						

0

	Material Description	<u>on</u>						
sandy silt								
Δ++	erberg Limits (ASTM	D 4318)						
PL= NP	LL= NV	PI=						
	Classification							
USCS (D 2487)=	ML AASHTO (M 145)= A-4(0)						
- 0.2422	<u>Coefficients</u>	- 0.1000						
D₉₀= 0.2433 D₅₀= 0.0657	D₈₅= 0.2092 D₃₀= 0.0323	D ₆₀ = 0.1099 D ₁₅ = 0.0086						
D ₁₀ = 0.0053	C _u = 20.89	C _c = 1.80						
	Remarks							
Date Received:	10/7/16 Date T	ested: 10/25/16						
Tested By:		10, 20, 10						
	Rhonda Johnson							
	Lab Manager							
Title.	Lao Managei							

43

44

Location: BW16TR-004-0.0-0.15
Sample Number: 10365383-1
Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

10

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC **Location:** BW16TR-004-0.0-0.15 **Sample Number:** 10365383-1 **Material Description:** sandy silt

Sample Date: 10/7/16

Dry

Date Received: 10/7/16PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas **Test Date:** 10/25/16 **Checked By:** Rhonda Johnson Title: Lab Manager

Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
3	0.00	0.00	100

Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
731.01	565.59	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
51.91	0.00	#20	0.43	0.00	99
		#40	1.27	0.00	97
		#60	3.11	0.00	91
		#140	16.42	0.00	59
		#200	3.10	0.00	53

Hydrometer Test Data

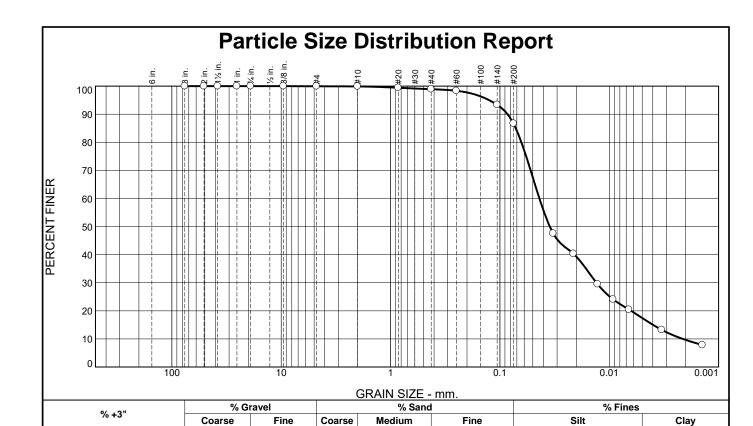
Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.91 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H


Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0350	31.5
5.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0226	25.7
15.00	17.0	18.0	9.3	0.0142	18.0	13.3	0.0134	18.0
30.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0095	16.0
60.00	17.0	15.0	6.3	0.0142	15.0	13.8	0.0068	12.2
250.00	17.0	13.0	4.3	0.0142	13.0	14.2	0.0034	8.3
1440.00	17.0	12.0	3.3	0.0142	12.0	14.3	0.0014	6.4

Cobbles		Gravel		Sand			and Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	3	44	47	43	10	53

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0053	0.0086	0.0158	0.0323	0.0477	0.0657	0.1099	0.1845	0.2092	0.2433	0.3202

Fineness Modulus	c _u	cc	
0.37	20.89	1.80	

TEST RESULTS (ASTM D422)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3	100						
2	100						
1.5	100						
1	100						
.75	100						
.375	100						
#4	100						
#10	100						
#20	99						
#40	99						
#60	98						
#140	93						
#200	87						
0.0326 mm.	48						
0.0212 mm.	40						
0.0128 mm.	29						
0.0092 mm.	24						
0.0066 mm.	20						
0.0033 mm.	13						
0.0014 mm.	7.8						

	Material Description						
silt							
Atte	erberg Limits (ASTM D 4318)						
PL= NP	LL= NV PI=						
USCS (D 2487)=	ML Classification (M 145)= A-4(0)						
	<u>Coefficients</u>						
D₉₀= 0.0849	D₈₅= 0.0715						
D₅₀= 0.0350 D₁₀= 0.0021	C _u = 20.51 C _c = 1.86						
Remarks							
Date Received:	10/7/16 Date Tested: 10/25/16						
Tested By:	Will Thomas						
Checked By:	Rhonda Johnson						
Title:	Lab Manager						

70

12

* (no specification provided)

0

Location: BW16TR-004-0.21-0.46 **Sample Number:** 10365383-2

0

0

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLK Sediment AOC

Project No: Figure

17

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-004-0.21-0.46 Sample Number: 10365383-2 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
815.16	558.57	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.12	0.00	100
		#10	0.13	0.00	100
55.32	0.00	#20	0.26	0.00	99

#40

#60

#140

#200

Hydrometer Test Data

0.00

0.00

0.00

0.00

99

98

93

87

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =55.32

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

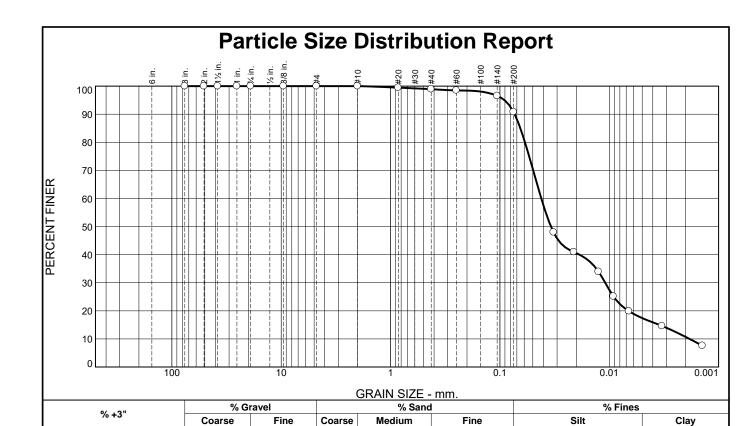
Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	35.0	26.3	0.0142	35.0	10.6	0.0326	47.6
5.00	17.0	31.0	22.3	0.0142	31.0	11.2	0.0212	40.3
15.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0128	29.5
30.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0092	24.1
60.00	17.0	20.0	11.3	0.0142	20.0	13.0	0.0066	20.5
250.00	17.0	16.0	7.3	0.0142	16.0	13.7	0.0033	13.2
1440.00	17.0	13.0	4.3	0.0142	13.0	14.2	0.0014	7.8
			Pace Ar	nalytical	Service	es, Inc		

0.29

0.31

2.77


3.69

Page 31 of 62

Cobbles		Gravel			Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0	0	0	0	0	1	12	13	70	17	87		

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0021	0.0040	0.0063	0.0131	0.0208	0.0350	0.0435	0.0636	0.0715	0.0849	0.1253

Fineness Modulus	c _u	cc	
0.06	20.51	1.86	

0

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	99		
#40	99		
#60	98		
#140	97		
#200	91		
.0323 mm.	48		
.0211 mm.	41		
.0125 mm.	34		
.0092 mm.	25		
.0066 mm.	20		
.0033 mm.	15		
.0014 mm.	7.6		

Material Description								
silt								
Atterberg Limits (ASTM D 4318)								
PL= NP LL= NV PI=								
USCS (D 2487)= ML								
<u>Coefficients</u>								
D ₉₀ = 0.0733 D ₈₅ = 0.0650 D ₆₀ = 0.0418 D ₅₀ = 0.0341 D ₃₀ = 0.0109 D ₁₅ = 0.0035								
D50= 0.0341								
Remarks								
Date Received: 10/7/16 Date Tested: 10/25/16								
Tested By: Will Thomas								
Checked By: Rhonda Johnson								
Title: Lab Manager								

74

* (no specification provided)

0

 Location: BW16TR-005-0.0-0.15
 Date Sampled:
 10/7/16

 Sample Number: 10365383-3
 10/7/16

Pace Analytical Services, Inc.	Client: Bay West, Inc	
,	Project: J160139 SLK Sediment AOC	
Billings, MT	Project No:	Eiguro
	Project No.	Figure

17

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-005-0.0-0.15 Sample Number: 10365383-3 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
717.88	586.89	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100

.375 0.00 0.00 100 #4 0.00 0.00 100 #10 0.00 0.00 100 56.98 0.00 #20 0.31 0.00 99 99 #40 0.31 0.00 0.25 98 #60 0.00 97 #140 1.10 0.00

Hydrometer Test Data

0.00

91

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

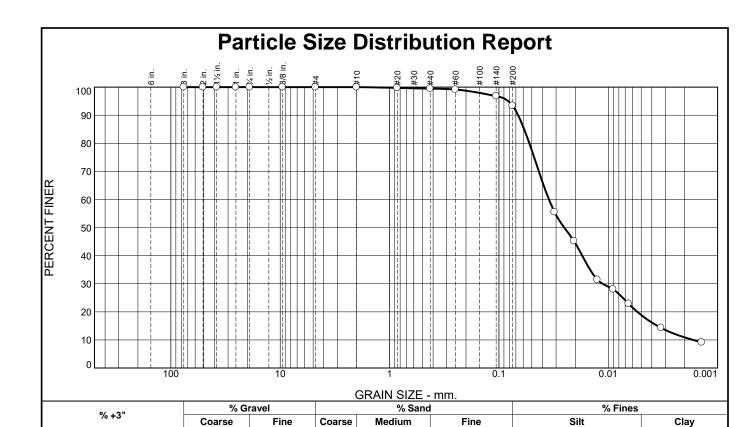
Weight of hydrometer sample =56.98 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	36.0	27.3	0.0142	36.0	10.4	0.0323	48.0
5.00	17.0	32.0	23.3	0.0142	32.0	11.0	0.0211	40.9
15.00	17.0	28.0	19.3	0.0142	28.0	11.7	0.0125	33.9
30.00	17.0	23.0	14.3	0.0142	23.0	12.5	0.0092	25.2
60.00	17.0	20.0	11.3	0.0142	20.0	13.0	0.0066	19.9
250.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0033	14.6
1440.00	17.0	13.0	4.3	0.0142	13.0	14.2	0.0014	7.6

3.28

Cobbles		Gravel			Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total		
0	0	0	0	0	1	8	9	74	17	91		

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0018	0.0035	0.0067	0.0109	0.0187	0.0341	0.0418	0.0590	0.0650	0.0733	0.0907

Fineness Modulus	c _u	C _C
0.04	22.69	1.54

	TEST RESULTS (ASTM D422)								
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
3	100								
2	100								
1.5	100								
1	100								
.75	100								
.375	100								
#4	100								
#10	100								
#20	100								
#40	99								
#60	99								
#140	97								
#200	93								
0.0310 mm.	56								
0.0206 mm.	45								
0.0126 mm.	31								
0.0090 mm.	28								
0.0065 mm.	23								
0.0033 mm.	14								
0.0014 mm.	9.2								

0

0

0

	Material Description
silt	
Atte	erberg Limits (ASTM D 4318)
PL= NP	LL= NV PI=
USCS (D 2487)=	ML AASHTO (M 145)= A-4(0)
	Coefficients
D₉₀= 0.0667	D₈₅= 0.0587
D₅₀ = 0.0253 D₁₀ = 0.0017	D30= 0.0113
-	Remarks
Date Received:	10/7/16 Date Tested: 10/25/16
Tested By:	Will Thomas
Checked By:	Rhonda Johnson
Title:	Lab Manager

74

Location: BW16TR-005-0.23-0.48 Sample Number: 10365383-4

(no specification provided)

Pace Analytical Services, Inc. Client

Billings, MT

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC

Project No:

6

Date Sampled: 10/7/16

Figure

19

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-005-0.23-0.48 **Sample Number:** 10365383-4 **Material Description:** silt Sample Date: 10/7/16

Date Received: 10/7/16PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas **Test Date:** 10/25/16 Checked By: Rhonda Johnson Title: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
780.22	604.54	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
58.24	0.00	#20	0.16	0.00	100
		#40	0.15	0.00	99

Hydrometer Test Data

0.00

0.00

0.00

99

97

93

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =58.24 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#60

#140

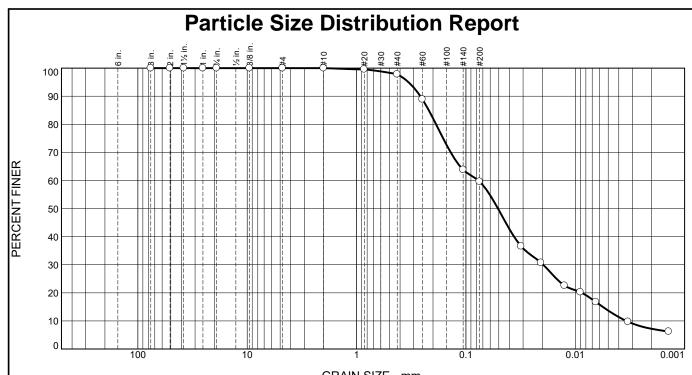
#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	41.0	32.3	0.0142	41.0	9.6	0.0310	55.5
5.00	17.0	35.0	26.3	0.0142	35.0	10.6	0.0206	45.2
15.00	17.0	27.0	18.3	0.0142	27.0	11.9	0.0126	31.5
30.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0090	28.0
60.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0065	22.9
250.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0033	14.3
1440.00	17.0	14.0	5.3	0.0142	14.0	14.0	0.0014	9.2
			Pace Ar	nalytical	Service	es, Inc		

0.19


1.36

1.98

Cobbles		Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	1	6	7	74	19	93	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0017	0.0036	0.0054	0.0113	0.0173	0.0253	0.0349	0.0527	0.0587	0.0667	0.0818

Fineness Modulus	c _u	С _С
0.03	20.84	2.19

GRAIN SIZE - mm.								
0/ 13"	% Gı	ravel	% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	0	2	38	46	14	

	TEST RESULTS	6 (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	98		
#60	89		
#140	64		
#200	60		
0.0313 mm.	37		
0.0206 mm.	31		
0.0125 mm.	23		
0.0090 mm.	20		
0.0065 mm.	17		
0.0033 mm.	9.7		
0.0014 mm.	6.2		

<u>Ma</u>	terial Description
sandy silt	
	g Limits (ASTM D 4318) L= NV PI=
USCS (D 2487)= ML	Classification AASHTO (M 145)= A-4(0)
	Coefficients
D ₉₀ = 0.2610 D ₈	5= 0.2187 D60= 0.0770
D₉₀= 0.2610 D₈ D₅₀= 0.0509 D₃ D₁₀= 0.0034 C ₁	0 = 0.0196
10	Remarks
Date Received: 10/7/1	6 Date Tested: 10/25/16
Tested By: Will	
Checked By: Rhone	
Title: Lab N	Ianager

* (no specification provided)

Location: BW16TR-006-0.0-0.15 **Sample Number:** 10365383-5 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.

Client: Bay West, Inc.
Project: J160139 SLK Sediment AOC

Billings, MT

Project No: Figure

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-006-0.0-0.15 Sample Number: 10365383-5 Material Description: sandy silt

Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

			Sie	ve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
932.85	594.30	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
85.64	0.00	#20	0.38	0.00	100
		#40	1.49	0.00	98
		#60	7.64	0.00	89
		#140	21.45	0.00	64
		#200	3.63	0.00	60

Hydrometer Test Data

Hydrometer test uses material passing #10

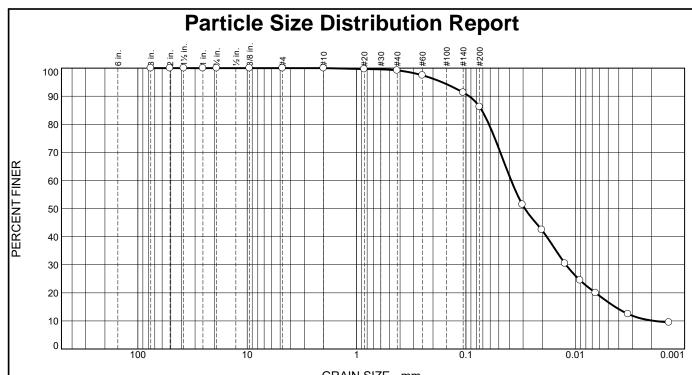
Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =85.64 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	40.0	31.3	0.0142	40.0	9.7	0.0313	36.6
5.00	17.0	35.0	26.3	0.0142	35.0	10.6	0.0206	30.7
15.00	17.0	28.0	19.3	0.0142	28.0	11.7	0.0125	22.6
30.00	17.0	26.0	17.3	0.0142	26.0	12.0	0.0090	20.2
60.00	17.0	23.0	14.3	0.0142	23.0	12.5	0.0065	16.7
250.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0033	9.7
1440.00	17.0	14.0	5.3	0.0142	14.0	14.0	0.0014	6.2

___ Pace Analytical Services, Inc. ___

Cobbles		Gravel			Sa	nd		Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	2	38	40	46	14	60

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0034	0.0056	0.0087	0.0196	0.0363	0.0509	0.0770	0.1875	0.2187	0.2610	0.3349

Fineness Modulus	c _u	С _С
0.36	22.55	1.47

GRAIN SIZE - mm.								
0/ - 21	% G	ravel	% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	0	1	13	69	17	

TEST RESULTS (ASTM D422)										
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	100									
#4	100									
#10	100									
#20	100									
#40	99									
#60	97									
#140	91									
#200	86									
0.0305 mm.	51									
0.0203 mm.	42									
0.0124 mm.	30									
0.0090 mm.	24									
0.0065 mm.	20									
0.0033 mm.	12									
0.0014 mm.	9.5									

Material Description									
silt									
A (
Atterberg Limits (ASTM D 4318) PL= NP									
	Classification								
USCS (D 2487)=		(M 145)= A-4(0)							
	Coefficients								
D90= 0.0932	D ₈₅ = 0.0716	D₆₀= 0.0385							
D₅₀= 0.0289 D₁₀= 0.0019	$D_{30} = 0.0122$ $C_{11} = 20.36$	D ₁₅ = 0.0043 C _c = 2.03							
10	Remarks								
	Kemarks								
Date Received: 1	0/7/16 Date T	ested: 10/25/16							
Tested By: Will Thomas									
Checked By: Rhonda Johnson									
Title: Lab Manager									
_									

* (no specification provided)

Location: BW16TR-006-0.15-0.28 **Sample Number:** 10365383-6 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLK Sediment AOC

Billings, MT

Project No: Figure

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-006-0.15-0.28 Sample Number: 10365383-6 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
854.61	617.17	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
66.74	0.00	#20	0.22	0.00	100
		#40	0.32	0.00	99
		#60	1.16	0.00	97

Hydrometer Test Data

0.00

0.00

91

86

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =66.74 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

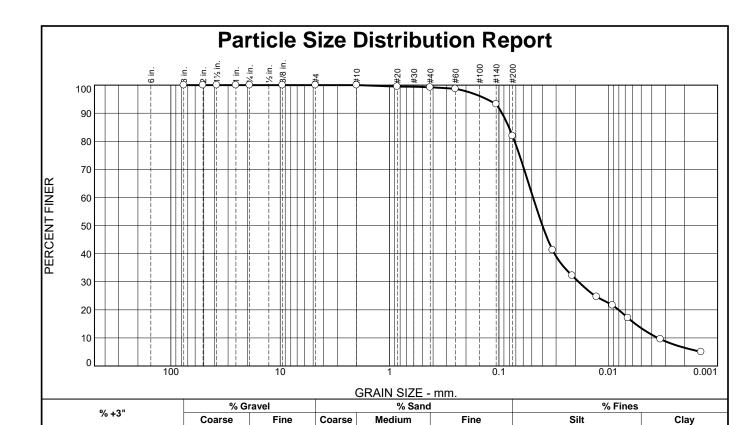
#140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	43.0	34.3	0.0142	43.0	9.2	0.0305	51.4
5.00	17.0	37.0	28.3	0.0142	37.0	10.2	0.0203	42.4
15.00	17.0	29.0	20.3	0.0142	29.0	11.5	0.0124	30.5
30.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0090	24.5
60.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0065	20.0
250.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0033	12.5
1440.00	17.0	15.0	6.3	0.0142	15.0	13.8	0.0014	9.5


4.09

3.40

Cobbles		Gravel		Sand Fine				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	1	13	14	69	17	86

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0019	0.0043	0.0065	0.0122	0.0182	0.0289	0.0385	0.0616	0.0716	0.0932	0.1655

Fineness Modulus	c _u	cc
0.08	20.36	2.03

0

7	EST RESULT	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	99		
#60	99		
#140	93		
#200	82		
0.0323 mm.	41		
0.0214 mm.	32		
0.0128 mm.	25		
0.0092 mm.	22		
0.0066 mm.	17		
0.0033 mm.	9.6		
0.0014 mm.	5.0		
* (no speci	ification provide	d)	

0

	Material Descrip	<u>tion</u>
silt with sand		
A.,		M D 4040)
PL= NP	erberg Limits (AST LL= NV	M D 4318) PI=
1 62 141		
USCS (D 2487)=	Classification ML AASHTO	<u>1</u> (M 145)= A-4(0)
	Coefficients	
D₉₀= 0.0936	D₈₅= 0.0809	D₆₀= 0.0487
D₅₀= 0.0400 D₁₀= 0.0035	$D_{30} = 0.0187$ $C_{11} = 13.84$	D ₁₅ = 0.0057 C _c = 2.04
2 10 - 0.0022	Remarks	
	Remarks	
Date Received:	10/7/16 Date	Tested: 10/25/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
Title:	Lab Manager	

69

17

Location: BW16TR-007-0.0-0.15 Sample Number: 10365383-7

Pace Analytical Services, Inc. Client: Bay West, Inc.

Project: J160139 SLK Sediment AOC

Billings, MT Project No: Figure

Date Sampled: 10/7/16

13

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC **Location:** BW16TR-007-0.0-0.15 **Sample Number:** 10365383-7 **Material Description:** silt with sand

Sample Date: 10/7/16

Date Received: 10/7/16PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas **Test Date:** 10/25/16 **Checked By:** Rhonda Johnson Title: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
749.61	614.56	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
66.22	0.00	#20	0.33	0.00	100
		#40	0.19	0.00	99
		#60	0.35	0.00	99

Hydrometer Test Data

0.00

0.00

93

82

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =66.22

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140

#200

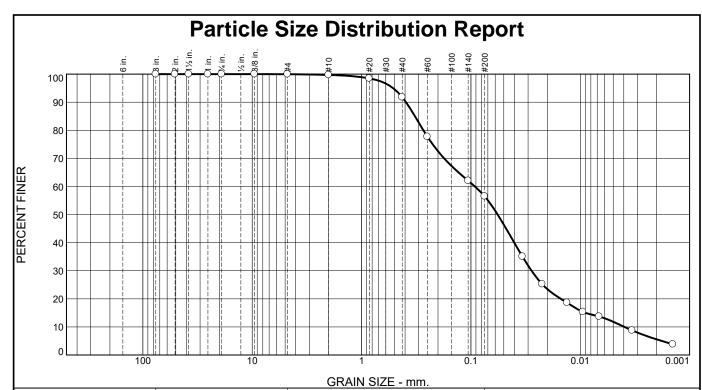
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	36.0	27.3	0.0142	36.0	10.4	0.0323	41.3
5.00	17.0	30.0	21.3	0.0142	30.0	11.4	0.0214	32.2
15.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0128	24.7
30.00	17.0	23.0	14.3	0.0142	23.0	12.5	0.0092	21.6
60.00	17.0	20.0	11.3	0.0142	20.0	13.0	0.0066	17.1
250.00	17.0	15.0	6.3	0.0142	15.0	13.8	0.0033	9.6
1440.00	17.0	12.0	3.3	0.0142	12.0	14.3	0.0014	5.0
			Pace Ar	nalytical	Service	es, Inc		

3.60

7.51


Page 46 of 62

Cobbles		Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	1	17	18	69	13	82	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0035	0.0057	0.0080	0.0187	0.0310	0.0400	0.0487	0.0718	0.0809	0.0936	0.1291

Fineness Modulus	c _u	C _C
0.06	13.84	2.04

_____ Pace Analytical Services, Inc. _____

0/ . 2		% Grave	el		% Sand		% Fines		
% +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0		0	0	0	8	35	45	12	
	TEST RESU	LTS (ASTM D422)			Mater	ial Description		
Opening	Percent	Spec.*	Pass	?	sandy silt		-		
Size	Finer	(Percent)	(X=Fa	iil)	-				
3	100								
2	100					Atterberg L	imits (ASTM D 4318)		
1.5	100				PL= NP		NV PI=		

2 1.5	100 100		PL= NP	erberg Li LL=	imits (ASTI NV	VI D 4318) PI=	
.75 .375	100 100 100		USCS (D 2487)=	ML Cla	assification AASHTO	(M 145)=	A-4(0)
#4 #10	100 100		D 0.2024		oefficients	D (0020
#20 #40	98 92		D₉₀= 0.3924 D₅₀= 0.0569 D₁₀= 0.0039	D ₈₅ = D ₃₀ = C ₁₁ = 2	0.3248 0.0279	D ₆₀ = 0 D ₁₅ = 0 C _c = 2.).0920).0090 14
#60	78		210- 0.0039	u	Remarks	OC- 2.	17
#140 #200	62 57						
0.0338 mm.	35						
0.0223 mm.	25	I					

Date Received: 10/7/16 **Date Tested:** 10/25/16 Tested By: Will Thomas Checked By: Rhonda Johnson Title: Lab Manager

(no specification provided)

19

15

14

8.8

3.8

0.0132 mm.

0.0095 mm.

0.0067 mm.

0.0034 mm.

0.0014 mm.

Location: BW16TR-007-0.26-0.51 **Sample Number:** 10365383-8 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.	Client: Bay West, Inc	
	Project: J160139 SLK Sediment AOC	
Billings, MT	Project No:	Figure

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-007-0.26-0.51 Sample Number: 10365383-8 Material Description: sandy silt

Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

			Sie	eve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
832.61	592.62	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.06	0.00	100
		#10	0.65	0.00	100
60.62	0.00	#20	0.75	0.00	98
		#40	4.06	0.00	92
		#60	8.55	0.00	78
		#140	9.53	0.00	62
		#200	3.37	0.00	57

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 60.62

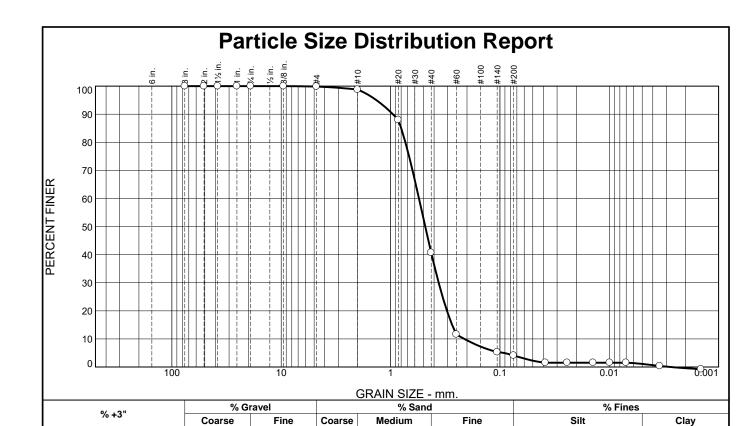
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	30.0	21.3	0.0142	30.0	11.4	0.0338	35.1
5.00	17.0	24.0	15.3	0.0142	24.0	12.4	0.0223	25.2
15.00	17.0	20.0	11.3	0.0142	20.0	13.0	0.0132	18.6
30.00	17.0	18.0	9.3	0.0142	18.0	13.3	0.0095	15.3
60.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0067	13.7
250.00	17.0	14.0	5.3	0.0142	14.0	14.0	0.0034	8.8
1440.00	17.0	11.0	2.3	0.0142	11.0	14.5	0.0014	3.8


____ Pace Analytical Services, Inc. ____

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	8	35	43	45	12	57

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0018	0.0039	0.0090	0.0150	0.0279	0.0401	0.0569	0.0920	0.2721	0.3248	0.3924	0.5145

Fineness Modulus	c _u	cc
0.54	23.34	2.14

_____ Pace Analytical Services, Inc. _____

58

Client: Bay West, Inc

Project No:

Project: J160139 SLK Sediment AOC

37

	TEST RESULTS	(ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	99		
#20	88		
#40	41		
#60	12		
#140	5		
#200	4.1		
0.0384 mm.	1.5		
0.0243 mm.	1.5		
0.0140 mm.	1.5		
0.0099 mm.	1.5		
0.0070 mm.	1.5		
0.0035 mm.	0.4		
0.0014 mm.			

(no specification provided)

Pace Analytical Services, Inc.

Billings, MT

Location: BW16TR-009-0.0-0.15 **Sample Number:** 10365383-9

0

0

	Material Description			
poorly graded sand	I			
PL= NP	erberg Limits (ASTM D 4318) LL= NV PI=			
USCS (D 2487)=	SP AASHTO (M 145)= A-1-b			
D₉₀= 0.9526 D₅₀= 0.4818 D₁₀= 0.2115	Coefficients D85= 0.7994 D60= 0.5497 D30= 0.3629 D15= 0.2738 Cu= 2.60 Cc= 1.13			
	Remarks			
Date Received:	10/7/16 Date Tested: 10/25/16			
Tested By:	Will Thomas			
Checked By: 1	Rhonda Johnson			
Title: Lab Manager				

3

Date Sampled: 10/7/16

Figure

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC **Location:** BW16TR-009-0.0-0.15 **Sample Number:** 10365383-9

Material Description: poorly graded sand

Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: SP AASHTO Classification: A-1-b

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
1176.05	606.78	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.86	0.00	100
		#10	6.09	0.00	99
85.93	0.00	#20	9.37	0.00	88
		#40	41.14	0.00	41
		#60	25.32	0.00	12
		#140	5.49	0.00	5
		#200	1.02	0.00	4.1

Hydrometer Test Data

Hydrometer test uses material passing #10

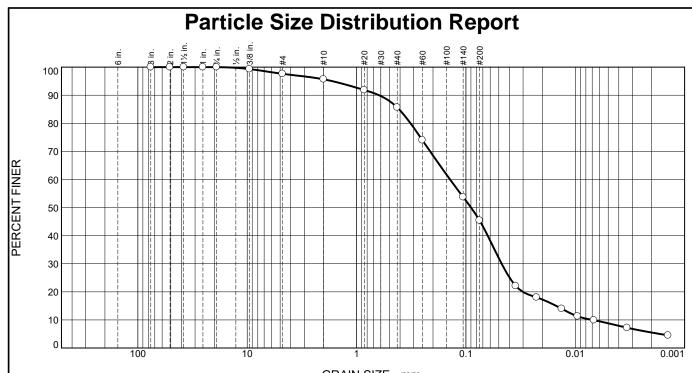
Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =85.93

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H


Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	10.0	1.3	0.0142	10.0	14.7	0.0384	1.5
5.00	17.0	10.0	1.3	0.0142	10.0	14.7	0.0243	1.5
15.00	17.0	10.0	1.3	0.0142	10.0	14.7	0.0140	1.5
30.00	17.0	10.0	1.3	0.0142	10.0	14.7	0.0099	1.5
60.00	17.0	10.0	1.3	0.0142	10.0	14.7	0.0070	1.5
250.00	17.0	9.0	0.3	0.0142	9.0	14.8	0.0035	0.4
1440.00	17.0	8.0	-0.7	0.0142	8.0	15.0	0.0014	-0.8
			D A -		<u> </u>			

Cobbles		Gravel			Sa	nd	Fines			
Copples	Coarse Fine Total		Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	1	58	37	96	3	1	4

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0913	0.2115	0.2738	0.3049	0.3629	0.4208	0.4818	0.5497	0.7320	0.7994	0.9526	1.3466

Fineness Modulus	c _u	C _C
2.15	2.60	1.13

				<u>GRAIN SIZE -</u>	· mm.		
0/ - 21	% G	ravel		% Sand	I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0	0	2	2	10	41	36	9

TEST RESULTS (ASTM D422)						
Percent	Spec.*	Pass?				
Finer	(Percent)	(X=Fail)				
100						
100						
100						
100						
100						
99						
98						
96						
92						
86						
74						
54						
45						
22						
18						
14						
11						
9.9						
7.2						
4.5						
	Percent Finer 100 100 100 100 100 99 98 96 92 86 74 54 45 22 18 14 11 9.9 7.2	Percent Spec.* (Percent) 100 100 100 100 100 100 99 98 96 92 86 74 54 45 22 18 14 11 9.9 7.2				

	Material Description
silty sand	
•	
PL= NP	erberg Limits (ASTM D 4318) LL= NV PI=
1\1	
USCS (D 2487)=	Classification SM AASHTO (M 145)= A-4(0)
	Coefficients
D₉₀= 0.6233	D ₈₅ = 0.4090 D ₆₀ = 0.1397 D ₃₀ = 0.0471 D ₁₅ = 0.0149
D₅₀ = 0.0897 D₁₀ = 0.0069	D30 = 0.0471
10	Remarks
Data Bassinada	10/7/16 Pote Tested: 10/05/16
Date Received:	
Tested By:	Will Thomas
Checked By: 1	Rhonda Johnson
Title:	Lab Manager

* (no specification provided)

Location: BW16TR-010-0.0-0.15 **Sample Number:** 10365383-10 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLK Sediment AOC

Billings, MT

Project No: Figure

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC **Location:** BW16TR-010-0.0-0.15 **Sample Number:** 10365383-10 Material Description: silty sand

Sample Date: 10/7/16

Date Received: 10/7/16PL: NP LL: NV

USCS Classification: SM AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas **Test Date:** 10/25/16 Checked By: Rhonda Johnson Title: Lab Manager

Dry Sample Sieve Weight Sieve and Tare Retained Weight Tare Opening Percent (grams) (grams) Size (grams) (grams) Finer 753.51 612.99 3 0.00 0.00 100 2 0.00 0.00 100 1.5 0.00 0.00 100 0.00 0.00 100 1 .75 0.00 0.00 100 .375 0.98 0.00 99 #4 2.37 0.00 98 #10 2.74 0.00 96 70.69 0.00 #20 2.83 0.00 92 #40 4.57 0.00 86 74 #60 8.63 0.00 14.95 #140 0.00 54

Hydrometer Test Data

0.00

45

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 96

Weight of hydrometer sample =70.69

Automatic temperature correction

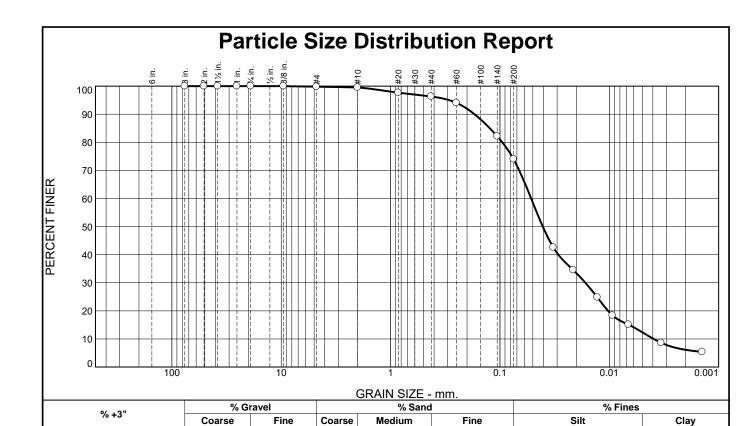
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0350	22.1
5.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0226	18.0
15.00	17.0	19.0	10.3	0.0142	19.0	13.2	0.0133	14.0
30.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0095	11.3
60.00	17.0	16.0	7.3	0.0142	16.0	13.7	0.0068	9.9
250.00	17.0	14.0	5.3	0.0142	14.0	14.0	0.0034	7.2
1440.00	17.0	12.0	3.3	0.0142	12.0	14.3	0.0014	4.5
			Pace Ar	nalytical	Service	es, Inc		


6.15

Page 55 of 62

Cobbles	Gravel			Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	2	2	2	10	41	53	36	9	45	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0017	0.0069	0.0149	0.0302	0.0471	0.0632	0.0897	0.1397	0.3209	0.4090	0.6233	1.6604

Fineness Modulus	c _u	С _С
0.84	20.15	2.29

	TEST RESULTS	(ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	98		
#40	96		
#60	94		
#140	82		
#200	74		
0.0326 mm.	43		
0.0214 mm.	35		
0.0129 mm.	25		
0.0093 mm.	18		
0.0067 mm.	15		
0.0034 mm.	8.6		
0.0014 mm.	5.4		

0

0

0

0

	Material De	scription									
silt with sand											
PL= NP	erberg Limits LL= NV		318 <u>)</u> Pl=								
USCS (D 2487)=	ML Classific		5)= A-4(0)								
D₉₀= 0.1708 D₅₀= 0.0406 D₁₀= 0.0039	D ₈₅ = 0.123 D ₃₀ = 0.016 C _u = 13.18	9 D 6	50= 0.0518 5= 0.0066 = 1.34								
Remarks											
Date Received:	10/7/16	Date Teste	d: 10/25/16								
Tested By:	Will Thomas										
Checked By:	Rhonda Johnsoi	1									
Title:	Lab Manager										

62

Location: BW16TR-010-0.15-0.38 Sample Number: 10365383-11

Billings, MT

(no specification provided)

Pace Analytical Services, Inc. Client: Bay West, Inc.

Project: J160139 SLK Sediment AOC

Project No: Figure

22

Date Sampled: 10/7/16

12

Sieve Test Data

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-010-0.15-0.38 Sample Number: 10365383-11 Material Description: silt with sand

Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
898.93	601.09	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.56	0.00	100
		#10	0.82	0.00	100
61.48	0.00	#20	1.15	0.00	98
		#40	0.85	0.00	96

Hydrometer Test Data

0.00

0.00

0.00

94

82

74

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 61.48

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#60

#140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	35.0	26.3	0.0142	35.0	10.6	0.0326	42.6
5.00	17.0	30.0	21.3	0.0142	30.0	11.4	0.0214	34.5
15.00	17.0	24.0	15.3	0.0142	24.0	12.4	0.0129	24.8
30.00	17.0	20.0	11.3	0.0142	20.0	13.0	0.0093	18.3
60.00	17.0	18.0	9.3	0.0142	18.0	13.3	0.0067	15.1
250.00	17.0	14.0	5.3	0.0142	14.0	14.0	0.0034	8.6
1440.00	17.0	12.0	3.3	0.0142	12.0	14.3	0.0014	5.4
			Pace Ar	nalytical	Service	es, Inc		

1.39

7.35

5.02

Cobbles		Gravel		Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	4	22	26	62	12	74	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0039	0.0066	0.0103	0.0166	0.0292	0.0406	0.0518	0.0951	0.1239	0.1708	0.2906

Fineness Modulus	c _u	C _C
0.22	13.18	1.34

_____ Pace Analytical Services, Inc. _____

	GRAIN SIZE - mm.									
0/ .2"	% G	ravel	% Sand			% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0	0	0	0	0	6	73	21			

TEST RESULTS (ASTM D422)					
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3	100				
2	100				
1.5	100				
1	100				
.75	100				
.375	100				
#4	100				
#10	100				
#20	100				
#40	100				
#60	99				
#140	98				
#200	94				
0.0313 mm.	59				
0.0206 mm.	49				
0.0123 mm.	40				
0.0090 mm.	31				
0.0065 mm.	25				
0.0033 mm.	16				
0.0014 mm.	8.1				

Material Description				
silt				
Attach and Limits (ACTM D 4040)				
Atterberg Limits (ASTM D 4318) PL= NP				
Classification				
$\begin{array}{ccc} & \underline{\textbf{Classification}} \\ \textbf{USCS (D 2487)=} & \text{ML} & \textbf{AASHTO (M 145)=} & \text{A-4}(0) \end{array}$				
<u>Coefficients</u>				
D₉₀= 0.0656				
D90= 0.0656 D85= 0.0575 D60= 0.0324 D50= 0.0214 D30= 0.0088 D15= 0.0031 D10= 0.0018 Cu= 17.88 Cc= 1.32				
Remarks				
Date Received: 10/7/16				
Tested By: Will Thomas				
Checked By: Rhonda Johnson				
Title: Lab Manager				

* (no specification provided)

Location: BW16TR-011-0.0-0.15 **Sample Number:** 10365383-12 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLK Sediment AOC

Billings, MT

Project No: Figure

10/26/2016

Client: Bay West, Inc

Project: J160139 SLK Sediment AOC Location: BW16TR-011-0.0-0.15 Sample Number: 10365383-12 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/25/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	Test	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
672.62	587.18	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
53.29	0.00	#20	0.13	0.00	100
		#40	0.06	0.00	100
		#60	0.15	0.00	99
		#140	0.83	0.00	98
		#200	2.11	0.00	94

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =53.29 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	17.0	40.0	31.3	0.0142	40.0	9.7	0.0313	58.8
5.00	17.0	35.0	26.3	0.0142	35.0	10.6	0.0206	49.4
15.00	17.0	30.0	21.3	0.0142	30.0	11.4	0.0123	40.0
30.00	17.0	25.0	16.3	0.0142	25.0	12.2	0.0090	30.6
60.00	17.0	22.0	13.3	0.0142	22.0	12.7	0.0065	25.0
250.00	17.0	17.0	8.3	0.0142	17.0	13.5	0.0033	15.6
1440.00	17.0	13.0	4.3	0.0142	13.0	14.2	0.0014	8.1
Pace Analytical Services, Inc								

....,

Cabbles		Gravel			Sa	nd			Fines	
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	6	6	73	21	94

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0018	0.0031	0.0046	0.0088	0.0123	0.0214	0.0324	0.0512	0.0575	0.0656	0.0794

Fineness Modulus	c _u	cc
0.02	17.88	1.32

Pace Analytical Services, Inc.

October 31, 2016

Nancy McDonald Bay West 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365950

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 12, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

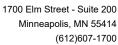
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10365950

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365950001	BW16SR-004-0.0-0.15	Solid	10/12/16 12:00	10/12/16 18:30
10365950002	BW16SR-016-0.15-0.60	Solid	10/12/16 12:05	10/12/16 18:30
10365950003	BW16TR-008-0.0-0.15	Solid	10/12/16 13:10	10/12/16 18:30
10365950004	BW16TR-013-0.0-0.15	Solid	10/12/16 13:15	10/12/16 18:30
10365950005	BW16TR-017-0.0-0.15	Solid	10/12/16 13:35	10/12/16 18:30
10365950006	BW16TR-018-0.0-0.15	Solid	10/12/16 13:40	10/12/16 18:30
10365950007	BW16BLR-001-0.0-0.15	Solid	10/12/16 12:10	10/12/16 18:30

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Required	Section A Required Client Information:		Section B Required Project Information:	Informat	je Egon:		<u>-</u>	Section C Invoice Infor	rmelion:		٠		Section D	Section D	_				2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	103/659501	(O		
Company			Report To:	Nanc	Nancy McDonald	nald		Attention:			Accounts Payable	able	Facility	Name: S	it Louis R	wer Sedim	Facility_Name: St. Louis River Sediment Areas of Concern	Concern	a Page			<u>ا</u> پ		_
Address:	5 Empire Drive		Copy To: Paul Raymaker	Rayma	ker			Company Name:	Name:	ď	Bay West, LLC	FC	Facility_Code:	igoog-	St Louis River Sed	River Se	, ,		25°		_	5	•	_
St. Paul	St. Paul, MN 55103						4	Address:		5 Er	5 Empire Drive	ive	Facility ID:		547023				#303					_
Email To:	nmcdonald@		Purchase Order No.:		108002			Lab Quote Reference:	eference:		3000017136	7136	Subfaci	Subfacility_code:							SL	SLR-Misc2		
Рћопе:		51-291-3483	Project Name:		Sedimer	SLR Sediment AOCs		Lab Project Manager:	Manager:	ľ	yeyemi	Oyeyemi Odujole	_							Site	Site Location			T
Requeste	Requested Due Date/TAT:	Standard	Project Number:	J160139	139															6 44 10 10 10 10 10 10 10 10 10 10 10 10 10 1	STATE	≥	Z Z	
ŀ												1. July 1. S.	* September			Sequest	Requested Analysis	is						<i>I</i>
	Se Required C	Vali Sequired Client Information MATRIX	Valid Matrix Codes RIX CODE			Collection	tion		Pres	Preservatives	Si	(19ten	1:-:					-						
#Mart	Sample Location ID (sys_bc_xxde)	Drinkin Waste Waste Produs Soil/So Oil Wipe (sys_sample_oode) Trissue Other	Drinking Water Dw Waste Water W Soil/Soild P Oil S Oil Air Tissue AR Other Other	MATRIX CODE	SAMPLE TYPE (G=GRAB C=COMP)	DATE	9miT	Unpreserved # OF CONTAINERS	HVSO4	NaOH HCI	Na ₂ S ₂ O ₃ Methanol	Other Grein Size (ASTM D422 w/ hydron			•	<u> </u>		<u> </u>				Comments	r r	· · · · · · · · · · · · · · · · · · ·
Ex. BW	BW15MLW-005	BW14MLW-005-0-0.15	: -	S	o o	3/12/15	1204	上				1 (2)	$\prod_{i=1}^{n}$			╫		1		-				
1 BW1	BW16SR-004	BW16SR-004-0.0-0.15		လွ	ŋ	10/12/16		-			-	5 24 (c)			-	 				-	8		0	
2 BW	BW16SR-016	BW16SR-016-0.15-0.60		S	ŋ	10/12/16	1205	1 1													8		6.39	
3 BW	BW16TR-008	BW16TR-008-0.0-0.15		8	9	10/12/16	1310	1 1				-									(90		52.0	
4 BW1	BW16TR-013	BW16TR-013-0.0-0.15		S	 'U	10/12/16	1315	-				- -									790		50	
5 BW1	BW16TR-017	BW16TR-017-0.0-0.15		S	ø	10/12/16	1335	1				r galina									200	0	3	<u>}</u>
6 BW1	BW16TR-018	BW16TR-018-0.0-0.15		8	o.	10/12/16	1340	-			_	- -									300		200	_
7 BW1	BW16BLR-001	BW16BLR-001-0.0-0.15		S	٥	10/12/16	1210	-												,	00	~	\$10	
6 0 m		10																						
10								1								-								,,
7					+			-							H									
7.5	ADDITIO	ADDITIONAL COMMENTS	RE	LINGUIS	HED BY !	RELINQUISHED BY / AFFILIATION	DATE				¥Č	CEPTEDE	ACCEPTED BY / AFFILIATION	NOITA		14. 14. 14. 14. 14. 14. 14.	DATE	40.0 2.3 2.5 2.5 1.8	TIME	100	SAMPLE	SAMPLE CONDITIONS	ş	_
)	hns	1/2	Musson	BayWest	+ 10/a/k	1445		73	J V	1	1	7	3		21-61-0	ی	13.5	`` -	6,	-	<u> </u>	. '
Reference Order Fon	s Subcontractor (m signed by Bay	Reference Subconfractor Goods andfor Services Purchase Order Form signed by Bay West on 9/19/16	1/2		M	9	1001		9		\ (1				10	01/21/6	7		., 		₹	<u>> </u>	
Pag							1011 416 10	R	7	1	7		7			2	112/	<u></u>	8	1. C. J.				
e 3 of 27	[®]	ę.				SAMPLER PRINT NAME SIGNATURE	SAMPLER NAME AND SIGNAT PRINT Name of SAMPLER: SIGNATURE of SAMPLEP:	ATURE CO	\mathbb{Z}_{i}	7	Nussen		DATE Signed (MM/DD/YY):	W/DD/m);		10/12/11					qmөТ (Э°)	Received on in	Samples Inta	
	w						7	1		\$		<u> </u>					9				_			_

Pace Analytical®

Document Name:

Sample Condition Upon Receipt Form

Document No.:

Page 1 of 2

Document Revised: 02Aug2016 Issuing Authority:

F-MN-L-213-rev.17

Pace Minnesota Quality Office

Sample Condition Client Name:	a	I	Project #	" WO#: 10365950
Bay West LL	Contraction of the Contraction o			
Courier: Fed Ex UPS	USPS	□Ci	ient	
☐Commercial ☐Pace ☐SpeeDee	Other:			10365950
Tracking Number:	70			
Custody Seal on Cooler/Box Present? Yes N	o Se	als Inta	ict? 🔎	A1
Packing Material: Bubble Wrap Bubble Bags	None		ther:	Temp Blank? ☑Ýes ☐No
Thermometer ✓ 151401163 □ BB8A9121675 Used: □ 151401164 □ B88A0143310	IVUE	of Ice:	∭Wet	Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 23 16 Cooler Temp Co	rrected (°C):	3, 5.		Biological Tissue Frozen? ☐Yes ☐No ☐N/A
Temp should be above freezing to 6°C Correction Fac	tor: 🛗	7	Date	e and Initials of Person Examining Contents: <u>りん (の/パス//</u>
USDA Regulated Soil(N/A, water sample)	C+-+ AL AE		EL CAL	D. LA
MS NO NM NV OK OR SO TN TX or VA (check maps)?			Yes	D, LA. Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Re	gulated Soil (Checklis	t (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	⊒Ÿes	□No	□N/A	1.
Chain of Custody Filled Out?	<u>"É</u> Yes	□No	□N/A	2.
Chain of Custody Relinquished?	∠ZÝes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	√ZĬYes	□No	□N/A	4.
Samples Arrived within Hold Time?	□ÆVes	∏No ₄²	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	□Ño	□N/A	6.
Rush Turn Around Time Requested?	□Yes	☑Ño	□N/A	7.
Sufficient Volume?	J⊒Ŷes	□No	□N/A	8.
Correct Containers Used?	∭ZYes	□No	□n/a	9.
-Pace Containers Used?	Yes	□No	□N/A	
Containers Intact?	<u> </u>	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	☐Yes	□No	ØÑ/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:	√ √ Yes	∐No	□n/a	12.
All containers needing acid/base preservation have been				13. ØHNO₃ □H₂SO₄ □NaOH □HCI
checked?	Yes	□No	□n/a	100, 000
All containers needing preservation are found to be in compliance with EPA recommendation?	-			Sample # () -5-5
(HNO ₃ , H ₂ SO ₄ , HCi<2; NaOH >9 Sulfide, NaOH>12 Cyanide	e) 🗹 Yes	□No	N/A □ N/A	
Exceptions: VOA, Coliform, TOC, Oil and Grease, (DRO/8015\water) DOC	***-Wes	U (6″∫ 1 □No	N/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No		14.
Trip Blank Present?	 □Yes	□No		15.
Trip Blank Custody Seals Present?	□Yes	□No	"≝n/a	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
				Date/Time:
Person Contacted:				
Person Contacted: Comments/Resolution:				

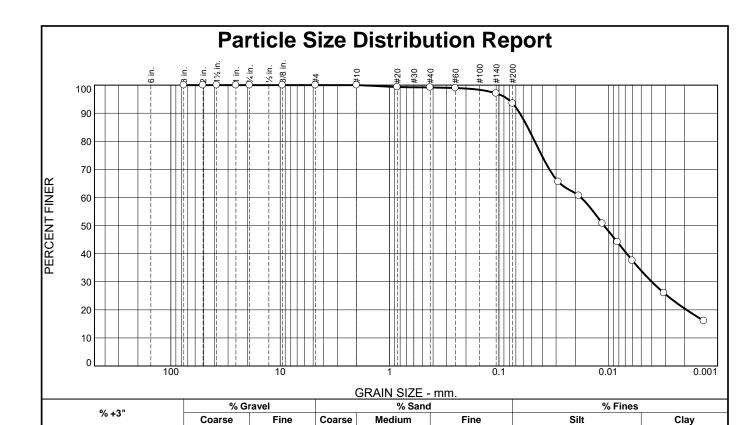
Project Manager Review: Low Eatter Date: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers).

Pace Analytical Minnesota Pace Analytical Billings MT Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth Street 150 N Ninth	Rec	Workorder: 10365950 Received at:	Workorder	Workorder Name: J160139 SLR Sediment AUCS Sediment AUCS	SLK Sedime	nt AUCs		Owner Receive	Owner Received Date: 10/12/2016	J/12/2016 Due Date: 10/26/2016 Requested Analysis	91.02//
Sample D Sample Collect Collect Collec	Pac 17C Sui Min Phc	ce Analytical Minnesota 00 Elm Street te 200 ineapolis, MN 55414 one (612)607-1700		Pace Analy 150 N Nintl Billings, MT Phone (406	tical Billings N n Street 59101 ()254-7226	TI					
Sample Date/Time Collect Type Lab ID Date/Time Matrix Date Date Date Date Date Date Date Date	Rep	oort To: i Castille					Preserved				
BW16SR-004-0 0-0 15 PS 10/12/2016 12:00 10365950001 6 lid 1 X BW16SR-016-0 15-0 60 PS 10/12/2016 13:10 10365950002 Solid 1 X BW16TR-013-0 0-0.15 PS 10/12/2016 13:15 10365950004 Solid X X BW16TR-013-0 0-0.15 PS 10/12/2016 13:15 10365950006 Solid X X BW16TR-018-0 0-0.15 PS 10/12/2016 13:40 10365950006 Solid X X BW16TR-018-0 0-0.15 PS 10/12/2016 13:40 10365950006 Solid X X BW16TR-018-0 0-0.15 PS 10/12/2016 13:40 10365950006 Solid X X BW16TR-018-0 0-0.15 PS 10/12/2016 12:10 10365950006 Solid X X	Item		Sample Type	Collect Date/Time	Lab ID	Matrix	Other				LAB USE ONLY
BW16TR-006-0-015 PS 10/12/2016 13:10 10365950002 Solid N N N BW16TR-008-0-0-15 PS 10/12/2016 13:15 10365950004 Solid N N BW16TR-017-0-0-015 PS 10/12/2016 13:35 10365950005 Solid N N BW16TR-018-0-0-0-15 PS 10/12/2016 13:40 10365950005 Solid N N BW16TR-018-0-0-0-15 PS 10/12/2016 13:40 10365950007 Solid N N BW16TR-018-0-0-0-15 PS 10/12/2016 12:10 10365950007 Solid N N BW16TR-018-0-0-0-0-15 PS 10/12/2016 12:10 10365950007 Solid N N BW16TR-018-0-0-0-0-0-15 PS 10/12/2016 12:10 10365950007 Solid N N BW16TR-018-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	-	BW16SR-004-0.0-0.15	PS	10/12/2016 12:00	10365950001	Solid	-	×			
BW16TR-008-0 0-0 15 PS 10/12/2016 13:15 10365950003 Solid	2	BW16SR-016-0.15-0.60	PS	10/12/2016 12:05	10365950002	Solid		×			
BW16TR-013-0 0-0 15 PS 10/12/2016 13:15 10365950004 Solid	3	BW16TR-008-0.0-0.15	PS	10/12/2016 13:10	10365950003	Solid		×			
BW46TR-017-0-0-15 PS 10/12/2016 13:35 10365950005 Solid X X BW46TR-018-0-0-15 PS 10/12/2016 13:40 10365950006 Solid V X X BW46BLR-001-0-0-0-15 PS 10/12/2016 12:10 10365950007 Solid V X X Released By	4	BW16TR-013-0.0-0.15	Sd	10/12/2016 13:15	10365950004	Solid		×			
BW45TR-016.0-0.15 PS 10/12/2016.13:40 10365950006 Solid V	5	BW16TR-017-0.0-0.15	PS	10/12/2016 13:35	10365950005	Solid		×			
BW16BLR-001-0.0-0.15 PS 10/12/2016 12:10 10365950007 Solid	9	BW16TR-018-0.0-0.15	PS	10/12/2016 13:40	10365950006	Solid	<u>-</u>	×			
Released By Date/Time Received By Date/Time Date/Time	7	BW16BLR-001-0.0-0.15	PS	10/12/2016 12:10	10365950007	Solid		×			
Released By Date/Time Received By Date/Time Date/Time (10/13/16 200 (15/10 1/00 10/14/10 094)										Comments	
46 (10/13/16/200) 10/13/16/200 (10/14/10004)	Trai			Date/Time	Received E	3y		Date/Time			
Faler 10/4/10094	-	* LIV			1 00		<		-		
3	2		50/CK		15/	Just	ha	10/m/m OA	15		
	E 4										
V ar I Deceived on Ira (V) Iras (Proposition Or I Deceived on Iras (V)	. 6	Tomposotius on D	Doccint 21	-	Jeas voo			oceived on Ice	N or N	Samples Intact (V) or	N TO (X

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical


Document Name: Sample Condition Upon Receipt Form

Document No.: F-MT-C-184-Rev.10

Document Revised: 04Aug2016
Page 1 of 1
Issuing Authority:
Pace Montana Quality Office

Sample Condition Upon Receipt Client Name:		P	roject #:	
Pace MN	- Juana			1021 5050
☐Commercial ☐Pace	USPS Other:	Clie		10365950
Tracking Number: 6752	58	2064	196	
Custody Seal on Cooler/Box Present?	o Seals I I	ntact?	Ves	No Optional: Proj. Due Date: Proj. Name:
Packing Material: Dubble Wrap Bubble Bags	Non	e 🔲	Other:	Temp Blank? Yes No
Thermometer Used: 160285052 140279186	Type of Ice	: 🕍	let 🔲	Blue None Samples on ice, cooling process has begun
Cooler Temp Read: 3.	9		Dat	te and Initials of Person Examining Contents: 15/14/10#
Cooler Temp Corrected: 3	4			Biological Tissue Frozen? Yes
Temp should be above freezing to 6°C		_		Comments:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and Signature on COC?	☐Yes	□No	DNZA	4.
Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	No	□N/A	6.
Rush Turn Around Time Requested?	Yes	240	□N/A	7.
Sufficient Volume?	Yes	□No	□N/A	8.
Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	Ves	□No	□N/A	3.
Containers Intact?	Yes		□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No □No	□N/A	11. Note if sediment is visible in the dissolved container.
Sample Labels Match COC?	Yes	□No	□N/A	12.
	Mes		LIVA	12.
-Includes Date/Time/ID/Analysis Matrix: 5 L All containers needing acid/base preservation have been checked?	Yes	□No	` ⊠ Ñ/A	13. □HNO₃ □H₂SO₄ □NaOH □HCl
Checked?			/ \	Sample #
All containers needing preservation are found to be in	□v			
compliance with EPA recommendation? (HNO $_3$, H $_2$ SO $_4$, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	QN/A	WA
Exceptions: VOA, Coliform, TOC, Oil and Grease,	□Yes	QNo.		Lot # of added
WI-DRO (water)	_			Initial when completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes	□No	DMA	14.
Trip Blank Present?	☐Yes	□No	DN/A	15.
Trip Blank Custody Seals Present?	☐Yes	□No	DN/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				
-				
Project Manager Review: Low Ca	the			Date: 10/14/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

0

7	EST RESULT	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	99		
#40	99		
#60	99		
#140	97		
#200	94		
0.0286 mm.	66		
0.0186 mm.	61		
0.0113 mm.	51		
0.0083 mm.	44		
0.0060 mm.	38		
0.0031 mm.	26		
0.0013 mm.	16		
* (no speci	ification provide	d)	

0

	Material Description
silt	
Atte	erberg Limits (ASTM D 4318)
PL= NP	LL= NV PI=
USCS (D 2487)=	ML Classification (M 145)= A-4(0)
	Coefficients
D₉₀= 0.0644 D₅₀= 0.0109	D₈₅ = 0.0545
D ₁₀ =	C _u = C _c =
	Remarks
Date Received:	10/12/16 Date Tested: 10/27/16
Tested By:	Will Thomas
Checked By:	Rhonda Johnson
Title:	Lab Manager

60

Location: BW16SR-004-0.0-0.15 Sample Number: 10365950-1 Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's

Billings, MT

Project No: Figure

5

Date Sampled: 10/12/16

34

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16SR-004-0.0-0.15 Sample Number: 10365950-1 Material Description: silt Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
668.50	565.87	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
60.59	0.00	#20	0.40	0.00	99
		#40	0.10	0.00	99
		#60	0.14	0.00	99
		#140	1.14	0.00	97
		#200	2.15	0.00	94

Hydrometer Test Data

Hydrometer test uses material passing #10

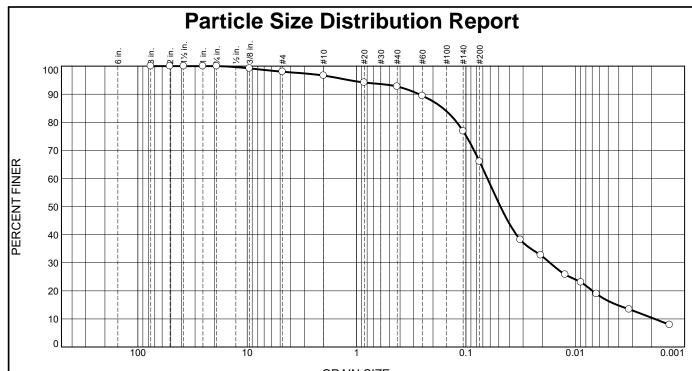
Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =60.59 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	47.0	39.8	0.0138	47.0	8.6	0.0286	65.6
5.00	19.0	44.0	36.8	0.0138	44.0	9.1	0.0186	60.7
15.00	19.0	38.0	30.8	0.0138	38.0	10.1	0.0113	50.8
30.00	19.0	34.0	26.8	0.0138	34.0	10.7	0.0083	44.2
60.00	19.0	30.0	22.8	0.0138	30.0	11.4	0.0060	37.5
250.00	19.0	23.0	15.8	0.0138	23.0	12.5	0.0031	26.0
1440.00	19.0	17.0	9.8	0.0138	17.0	13.5	0.0013	16.1
			Pace Ar	nalytical	Service	es, Inc		

Cobbles		Gravel			Sa	nd		Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	1	5	6	60	34	94	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0019	0.0040	0.0068	0.0109	0.0178	0.0470	0.0545	0.0644	0.0825

Fineness
Modulus
0.04

Pace Analytical Services, Inc.

	GRAIN SIZE - mm.										
	% +3"	% G	ravel	% Sand			% Fines				
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
	0	0	2	1	4	27	50	16			

	TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	99									
#4	98									
#10	97									
#20	94									
#40	93									
#60	89									
#140	77									
#200	66									
0.0317 mm.	38									
0.0207 mm.	33									
0.0124 mm.	26									
0.0089 mm.	23									
0.0064 mm.	19									
0.0032 mm.	13									
0.0014 mm.	7.9									

Material Description								
sandy silt								
Atterberg Limits (ASTM D 4318)								
PL= NP LL= NV Pl=								
Classification								
USCS (D 2487)= ML AASHTO (M 145)= A-4(0)								
<u>Coefficients</u>								
D₉₀= 0.2687 D₈₅= 0.1618 D₆₀= 0.0636								
D50= 0.0483 D30= 0.0170 D15= 0.0041 D10= 0.0019 Cu= 33.84 Cc= 2.43								
Remarks								
Date Received: 10/12/16								
Tested By: Will Thomas								
Checked By: Rhonda Johnson								
Title: Lab Manager								

(no specification provided)

Location: BW16SR-016-0.15-0.60 **Sample Number:** 10365950-2 **Date Sampled:** 10/12/16

Pace Analytical Services, Inc.

Client: Bay West, Inc.
Project: J160139 SLR Sediment AOC's

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16SR-016-0.15-0.60 Sample Number: 10365950-2 Material Description: sandy silt

Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sie	VA	Ice	3)ata
ल्यान	v =	1111	-	10 110

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
828.50	571.63	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	2.06	0.00	99
		#4	3.06	0.00	98
		#10	3.50	0.00	97
70.25	0.00	#20	1.80	0.00	94
		#40	1.03	0.00	93
		#60	2.41	0.00	89
		#140	9.14	0.00	77
		#200	7.87	0.00	66

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 97

Weight of hydrometer sample =70.25

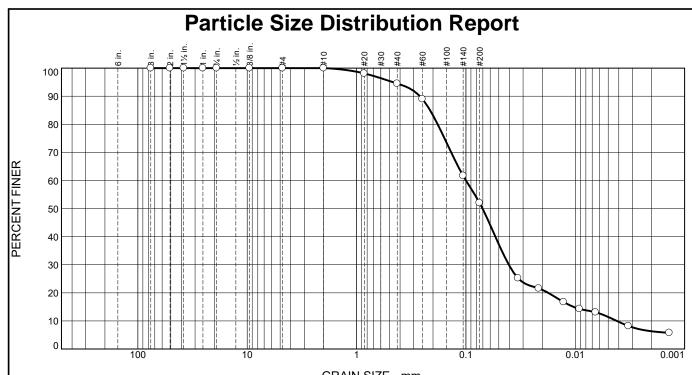
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	35.0	27.8	0.0138	35.0	10.6	0.0317	38.2
5.00	19.0	31.0	23.8	0.0138	31.0	11.2	0.0207	32.7
15.00	19.0	26.0	18.8	0.0138	26.0	12.0	0.0124	25.8
30.00	19.0	24.0	16.8	0.0138	24.0	12.4	0.0089	23.0
60.00	19.0	21.0	13.8	0.0138	21.0	12.9	0.0064	18.9
250.00	19.0	17.0	9.8	0.0138	17.0	13.5	0.0032	13.4
1440.00	19.0	13.0	5.8	0.0138	13.0	14.2	0.0014	7.9


___ Pace Analytical Services, Inc. ___

Cobbles		Gravel			Sand Fines					
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	2	2	1	4	27	32	50	16	66

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0019	0.0041	0.0070	0.0170	0.0346	0.0483	0.0636	0.1211	0.1618	0.2687	1.1667

Fineness Modulus	c _u	C _C
0.42	33.84	2.43

_____ Pace Analytical Services, Inc. _____

GRAIN SIZE - mm.							
% +3"	% Gravel % Sand			% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0	0	0	0	5	43	41	11

TEST RESULTS (ASTM D422)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3	100					
2	100					
1.5	100					
1	100					
.75	100					
.375	100					
#4	100					
#10	100					
#20	98					
#40	95					
#60	89					
#140	62					
#200	52					
0.0334 mm.	25					
0.0216 mm.	22					
0.0128 mm.	17					
0.0092 mm.	14					
0.0065 mm.	13					
0.0033 mm.	8.2					
0.0014 mm.	5.8					

sandy silt

A
Atterberg Limits (ASTM D 4318) PL= NP
Classification USCS (D 2487)= ML AASHTO (M 145)= A-4(0)
<u>Coefficients</u>
D90= 0.2636 D85= 0.2127 D60= 0.0999 D50= 0.0705 D30= 0.0405 D15= 0.0104 D10= 0.0042 Cu= 23.94 Cc= 3.93
D50= 0.0705 D30= 0.0405 D15= 0.0104 D10= 0.0042 Cu= 23.94 Cc= 3.93
Remarks
Date Received: 10/12/16 Date Tested: 10/27/16
Tested By: Will Thomas
Checked By: Rhonda Johnson
Title: Lab Manager

* (no specification provided)

 Location: BW16TR-008-0.0-0.15
 Date Sampled:
 10/12/16

 Sample Number: 10365950-3
 10/12/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOC's

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16TR-008-0.0-0.15 Sample Number: 10365950-3 Material Description: sandy silt

Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	Test	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
932.69	624.30	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
82.21	0.00	#20	1.55	0.00	98
		#40	2.97	0.00	95
		#60	4.53	0.00	89
		#140	22.45	0.00	62
		#200	7.94	0.00	52

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

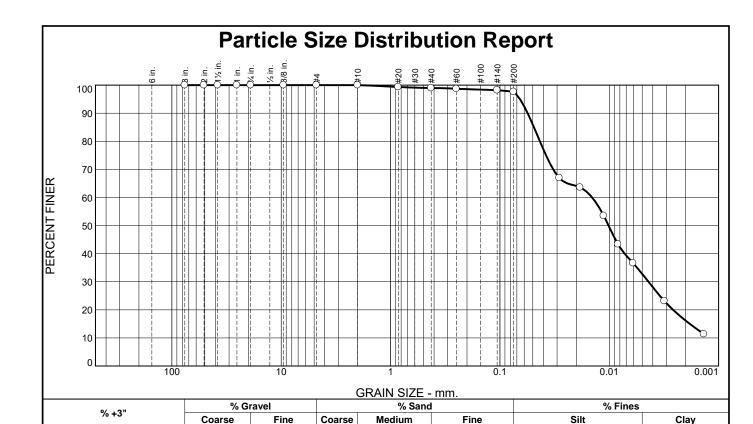
Weight of hydrometer sample =82.21 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	28.0	20.8	0.0138	28.0	11.7	0.0334	25.2
5.00	19.0	25.0	17.8	0.0138	25.0	12.2	0.0216	21.6
15.00	19.0	21.0	13.8	0.0138	21.0	12.9	0.0128	16.7
30.00	19.0	19.0	11.8	0.0138	19.0	13.2	0.0092	14.3
60.00	19.0	18.0	10.8	0.0138	18.0	13.3	0.0065	13.1
250.00	19.0	14.0	6.8	0.0138	14.0	14.0	0.0033	8.2
1440.00	19.0	12.0	4.8	0.0138	12.0	14.3	0.0014	5.8


_ Pace Analytical Services, Inc. __

Cobbles	Gravel			Sand			Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	5	43	48	41	11	52

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0042	0.0104	0.0177	0.0405	0.0538	0.0705	0.0999	0.1812	0.2127	0.2636	0.4649

Fineness Modulus	c _u	cc	
0.39	23.94	3.93	

_____ Pace Analytical Services, Inc. _____

TEST RESULTS (ASTM D422)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3	100					
2	100					
1.5	100					
1	100					
.75	100					
.375	100					
#4	100					
#10	100					
#20	99					
#40	99					
#60	99					
#140	98					
#200	98					
0.0286 mm.	67					
0.0185 mm.	64					
0.0112 mm.	53					
0.0083 mm.	43					
0.0061 mm.	37					
0.0031 mm.	23					
0.0014 mm.	11					

Coarse

0

0

Fine

0

Coarse

0

	Material Descript	tion					
silt							
Atte	erberg Limits (ASTI	M D 4318)					
PL= NP	LL= NV	Pl=					
USCS (D 2487)=	ML Classification	(M 145)= A-4(0)					
D₉₀= 0.0558 D₅₀= 0.0101	Coefficients D ₈₅ = 0.0488 D ₃₀ = 0.0044	D ₆₀ = 0.0143 D ₁₅ = 0.0018					
D ₁₀ =	C _u =	C _C =					
	Remarks						
Date Received:	10/12/16 Date	Tested: 10/27/16					
Tested By:	Will Thomas						
Checked By:	Rhonda Johnson						
Title: 1	Lab Manager						

Silt

65

Clay

33

Fine

Location: BW16TR-013-0.0-0.15 **Sample Number:** 10365950-4 Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's

Billings, MT

Project No: Figure

Date Sampled: 10/12/16

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16TR-013-0.0-0.15 Sample Number: 10365950-4 Material Description: silt Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	Test	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
801.76	607.95	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
59.36	0.00	#20	0.39	0.00	99
		#40	0.22	0.00	99
		#60	0.17	0.00	99
		#140	0.29	0.00	98
		#200	0.33	0.00	98

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

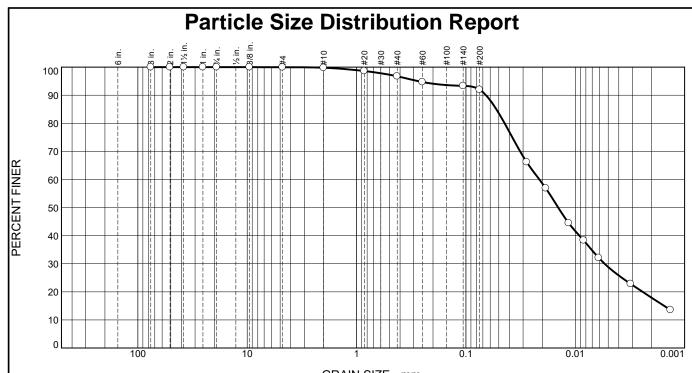
Weight of hydrometer sample =59.36

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm


Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	47.0	39.8	0.0138	47.0	8.6	0.0286	67.0
5.00	19.0	45.0	37.8	0.0138	45.0	8.9	0.0185	63.6
15.00	19.0	39.0	31.8	0.0138	39.0	9.9	0.0112	53.5
30.00	19.0	33.0	25.8	0.0138	33.0	10.9	0.0083	43.4
60.00	19.0	29.0	21.8	0.0138	29.0	11.5	0.0061	36.6
250.00	19.0	21.0	13.8	0.0138	21.0	12.9	0.0031	23.2
1440.00	19.0	14.0	6.8	0.0138	14.0	14.0	0.0014	11.4
			Pace Ar	nalytical	Service	es, Inc		

Cobbles		Gravel		Sand			nd Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	1	1	2	65	33	98

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0018	0.0026	0.0044	0.0072	0.0101	0.0143	0.0431	0.0488	0.0558	0.0655

Fineness
Modulus
0.04

Pace Analytical Services, Inc.

			(<u>GRAIN SIZE -</u>	· mm.			
0/ - 211	% G	ravel	% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	0	3	5	63	29	

	TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	100									
#4	100									
#10	100									
#20	99									
#40	97									
#60	95									
#140	93									
#200	92									
0.0278 mm.	66									
0.0186 mm.	57									
0.0115 mm.	45									
0.0084 mm.	38									
0.0061 mm.	32									
0.0031 mm.	23									
0.0013 mm.	14									

	Material Descripti	<u>on</u>
silt		
A 44.	whore Limite /ACTM	ID 4240)
PL= NP	erberg Limits (ASTM LL= NV	PI=
	Classification	
USCS (D 2487)=		(M 145)= A-4(0)
-	Coefficients	
D₉₀= 0.0655 D₅₀= 0.0143	D ₈₅ = 0.0527	D₆₀= 0.0213
D ₅₀ = 0.0143 D ₁₀ =	D ₃₀ = 0.0054 C _u =	D ₁₅ = 0.0015 C _c =
510-	<u>.</u>	oc-
	Remarks	
Date Received:	10/12/16 Date T	ested: 10/27/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
	Lab Manager	
1100.	Duo Munugoi	

* (no specification provided)

Location: BW16TR-017-0.0-0.15 **Sample Number:** 10365950-5 **Date Sampled:** 10/12/16

Pace Analytical Services, Inc. Client: Bay West, Inc Project: J160139 SLR Sediment AOC's

Billings, MT Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16TR-017-0.0-0.15
Sample Number: 10365950-5
Material Description: silt
Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sie	VA	Ice	3)ata
ल्यान	v =	1111	-	10 110

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
749.38	587.84	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.06	0.00	100
		#10	0.29	0.00	100
64.45	0.00	#20	0.76	0.00	99
		#40	1.20	0.00	97
		#60	1.35	0.00	95
		#140	0.89	0.00	93
		#200	0.86	0.00	92

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

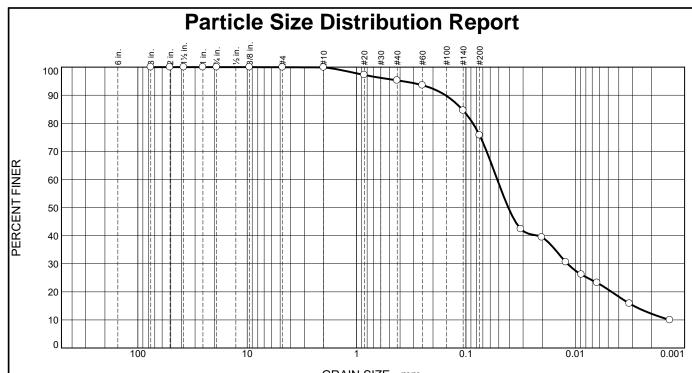
Weight of hydrometer sample =64.45 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	50.0	42.8	0.0138	50.0	8.1	0.0278	66.2
5.00	19.0	44.0	36.8	0.0138	44.0	9.1	0.0186	56.9
15.00	19.0	36.0	28.8	0.0138	36.0	10.4	0.0115	44.5
30.00	19.0	32.0	24.8	0.0138	32.0	11.0	0.0084	38.3
60.00	19.0	28.0	20.8	0.0138	28.0	11.7	0.0061	32.1
250.00	19.0	22.0	14.8	0.0138	22.0	12.7	0.0031	22.8
1440.00	19.0	16.0	8.8	0.0138	16.0	13.7	0.0013	13.5


_ Pace Analytical Services, Inc. __

Cobbles		Gravel Sand			Sand			Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	3	5	8	63	29	92

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0015	0.0024	0.0054	0.0092	0.0143	0.0213	0.0443	0.0527	0.0655	0.2722

Fineness Modulus
0.14

Pace Analytical Services, Inc.

			(<u>GRAIN SIZE -</u>	· mm.			
0/ - 211	% G	ravel		% Sand		% Fines	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	0	5	19	55	21	

	TEST RESULT	S (ASTM D422)	•
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	97		
#40	95		
#60	94		
#140	85		
#200	76		
0.0315 mm.	42		
0.0202 mm.	39		
0.0122 mm.	31		
0.0088 mm.	26		
0.0063 mm.	23		
0.0032 mm.	16		
0.0014 mm.	10.0		

	Material Descript	<u>ion</u>				
silt with sand						
	berg Limits (ASTN					
PL= NP	LL= NV	PI=				
	Classification					
USCS (D 2487)=	ML AASHTO	(M 145)= A-4(0)				
	Coefficients					
D₉₀= 0.1539 D₅₀= 0.0409	D ₈₅ = 0.1085	D₆₀= 0.0517				
D₅₀= 0.0409 D₁₀= 0.0014	$D_{30} = 0.0118$ $C_{11} = 37.62$	D ₁₅ = 0.0029 C _c = 1.96				
D ₁₀ = 0.0014	Ou= 37.02	OC= 1.90				
	Remarks					
Date Received: 10)/12/16 Date	Tested: 10/27/16				
Tested By: W	ill Thomas					
Checked By: R	nonda Johnson					
Title: La	ab Manager					

* (no specification provided)

Location: BW16TR-018-0.0-0.15 **Sample Number:** 10365950-6 **Date Sampled:** 10/12/16

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOC's

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16TR-018-0.0-0.15 Sample Number: 10365950-6 Material Description: silt with sand

Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve Test Data Dry Sample Sieve Weight Sieve Retained Weight and Tare Tare Opening Percent (grams) (grams) Size (grams) (grams) Finer 910.51 617.36 3 0.00 0.00 100 2 0.00 0.00 100 1.5 0.00 0.00 100 0.00 0.00 100 1 .75 0.00 0.00 100 .375 0.00 0.00 100 #4 0.11 0.00 100 #10 0.17 0.00 100 67.76 0.00 #20 1.82 0.00 97 #40 1.32 0.00 95 94 #60 1.16 0.00 #140 6.10 0.00 85

Hydrometer Test Data

0.00

76

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =67.76 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	36.0	28.8	0.0138	36.0	10.4	0.0315	42.4
5.00	19.0	34.0	26.8	0.0138	34.0	10.7	0.0202	39.4
15.00	19.0	28.0	20.8	0.0138	28.0	11.7	0.0122	30.6
30.00	19.0	25.0	17.8	0.0138	25.0	12.2	0.0088	26.2
60.00	19.0	23.0	15.8	0.0138	23.0	12.5	0.0063	23.2
250.00	19.0	18.0	10.8	0.0138	18.0	13.3	0.0032	15.9
1440.00	19.0	14.0	6.8	0.0138	14.0	14.0	0.0014	10.0

5.97

_ Pace Analytical Services, Inc. _

Cobbles		Gravel			Sa	ınd			Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	5	19	24	55	21	76

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0014	0.0029	0.0047	0.0118	0.0221	0.0409	0.0517	0.0862	0.1085	0.1539	0.3815

Fineness Modulus	c _u	cc
0.22	37.62	1.96

Pace Analytical Services, Inc.

10

6

	TEST RESULTS	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	99		
#20	90		
#40	89		
#60	88		
#140	85		
#200	83		
0.0317 mm.	52		
0.0211 mm.	39		
0.0125 mm.	33		
0.0091 mm.	24		
0.0066 mm.	18		
0.0033 mm.	9.0		
0.0014 mm.	5.2		

0

0

0

	Material Descripti	<u>on</u>
silt with sand		
	erberg Limits (ASTN	
PL= NP	LL= NV	PI=
	Classification	
USCS (D 2487)=	ML AASHTO	(M 145)= A-4(0)
	Coefficients	
D₉₀= 0.8456	D₈₅= 0.0938	D₆₀= 0.0379
D₅₀= 0.0300 D₁₀= 0.0036	D₃₀= 0.0110 C₁₁= 10.45	D ₁₅ = 0.0052 C _c = 0.88
D10= 0.0030	C _u = 10.43	C _C = 0.88
	Remarks	
Date Received:	10/12/16 Date 1	Tested: 10/27/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
Title:	Lab Manager	

69

Location: BW16BLR-001-0.0-0.15 Sample Number: 10365950-7

(no specification provided)

Pace Analytical Services, Inc. Clic

Billings, MT

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's

Project No:

Figure

Date Sampled: 10/12/16

14

GRAIN SIZE DISTRIBUTION TEST DATA

10/28/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC's Location: BW16BLR-001-0.0-0.15 Sample Number: 10365950-7 Material Description: silt with sand

Sample Date: 10/12/16

Date Received: 10/12/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/27/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sie	eve 1	est	Data	
	_			

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
657.22	594.23	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.09	0.00	100
		#10	0.44	0.00	99
52.61	0.00	#20	4.84	0.00	90
		#40	0.71	0.00	89
		#60	0.51	0.00	88
		#140	1.33	0.00	85
		#200	1.05	0.00	83

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =52.61 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -7

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	19.0	35.0	27.8	0.0138	35.0	10.6	0.0317	52.3
5.00	19.0	28.0	20.8	0.0138	28.0	11.7	0.0211	39.1
15.00	19.0	25.0	17.8	0.0138	25.0	12.2	0.0125	33.5
30.00	19.0	20.0	12.8	0.0138	20.0	13.0	0.0091	24.0
60.00	19.0	17.0	9.8	0.0138	17.0	13.5	0.0066	18.4
250.00	19.0	12.0	4.8	0.0138	12.0	14.3	0.0033	9.0
1440.00	19.0	10.0	2.8	0.0138	10.0	14.7	0.0014	5.2

____ Pace Analytical Services, Inc. ___

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	1	10	6	17	69	14	83

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0036	0.0052	0.0074	0.0110	0.0221	0.0300	0.0379	0.0642	0.0938	0.8456	1.3476

Fineness Modulus	c _u	C _C
0.44	10.45	0.88

_____ Pace Analytical Services, Inc. _____

Laboratory Data **Review Checklist**

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/viewdocument.html?gid=16113. Also see the MPCA Laboratory Quality Control (QC) and Data Policy: http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation									
Proj	ect nan	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365379					
Wor	k order	numb	per: 3000017136		Report date (mm/dd/yyyy): 11/01/2016							
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr	presei nental/	vative <u>handb</u>	s, refei ook/int	r to the Minnesota Department of Health's ternet/envhandbook.html					
	Ques	tions		Yes	No	N/A	Comments					
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes								
	b.	Is th	ere a sample condition form with the report?	\boxtimes								
	C.	Wer	e there samples requiring preservation?		\boxtimes							
		i.	If so, were they properly preserved?			\boxtimes						
		ii.	Were they received on ice?	\boxtimes								
	d.	Wer	e samples received in the correct containers?	\boxtimes								
		i.	Was there enough sample volume/weight to complete all requested analyses?									
		ii.	Was there enough extra sample collected to complete method required batch QC?									
	е.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes								
	f.		Are there notes about sample condition or holding time issues on the COC? Explain impact.									
	g.	repo	ere narration or data qualifiers within the rt about sample condition or holding time es? Explain impact.				The collection time on the sample label for BW16TR-015-0.15-0.36 was incorrect. The correct time was 13:55. No data were qualified.					
2.	Cali	brat	ion									
	Ques	tion		Yes	No	N/A	Comments					
	a.	calib	he report narrative or data qualifiers indicate ration problems for any analyses? If yes, ain the data impact.		\boxtimes							

3	R	lan	ıks
.) .			IN .7

iii.

Are all samples in the preparation batch also

3.	Blar	Blanks										
	Ques	stion		Yes	No	N/A	Comments					
	а.		any of the analyses contain samples for field ip blanks?									
		i.	If yes, are there target analytes present above the reporting limit?									
		ii.	If yes, are the same compounds also present in the samples? Explain possible impact.									
	b.		method blanks for any analyses contain target ytes above the reporting limit?				A low-level concentration of TOC (88.8 mg/kg) was detected in Method blank 386204.					
		i.	If yes, are the same compounds present in the samples?									
		ii. Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.					Sample results were > 10 times the blank concentration.					
4.	Suri	roga	tes									
т.	Ques		103	Yes	No	N/A	Comments					
	а.	Are there organic analyses that contain surrogate compounds?										
	b.	Are	the lab recovery limits specified on the report?									
		i.	Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?									
	C.	Are there surrogates outside lab limits? (These should have a data qualifier)				\boxtimes						
		i.	If yes, are the surrogates above the lab limits?									
		ii.	Below the lab limits?			\boxtimes						
		iii.	Explain what this could mean for the affected samples.									
5.	Lab	orat	ory Control Sample/Laboratory Co	ontro	l Sar	nple	Duplicate (LCS/LCSD)					
	Ques		<u> </u>	Yes	No	N/A	Comments					
	a.	repo	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is an Matrix Spike/Matrix Spike Duplicate /MSD] or sample/sample dup for precision.)	\boxtimes								
		i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?									
	b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)									
		i.	If yes, are the analytes above the lab limits?									
		ii	Below the lab limits?			M						

 \boxtimes

		flagge	ed for the same analyte(s)?				
	iv.		in what this could mean for the ed samples.			\boxtimes	
Mat	rix S	pike	/Matrix Spike Duplicate/Sai	mple D	uplic	ate ((MS/MSD/Dup)
Question				Yes	No	N/A	Comments
a.		Do the analytical methods used require an MS and/or MSD? If no, skip to 6.b.					
	i.		the required matrix spikes been ared and reported?				
	ii.	If no, as to	is there and explanation in the report why?				
	iii.		ne lab process an alternate spiked le (such as LCSD) instead?		\boxtimes		MS/MSDs were performed.on sample BW16TR-011-0.60-0.85.
	iv.	Are th	ne lab limits specified on the report?				
	V.	<u> </u>					
	vi.	Are there compounds outside the lab limit		? 🗆	\boxtimes		
		1.	If yes, are the analytes above the la limits?				
		2.	Below the lab limits?				
		3.	Is the source sample also flagged for compounds outside lab limits?	or 🔲		\boxtimes	
b.			e duplicate reported for the analytical If no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the nits?				
	ii.	ii. If no, has the associated source sample been flagged?					
C.	Wha	t is the	impact of failed QC on this project?			\boxtimes	
Met	Method Detection Limits/Report Limits						
Ques	stion			Yes	No	N/A	Comments
a.	Are reporting and/or method detection limits clearly listed on the report for all analyses? (may also be called quantitation limits)						

Additional comments on report:

- (1) No blind field duplicates were collected with the TOC samples in this SDG.
- (2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • 651-296-6300 • 800-657-3864 n-ean2-11h • 10/20/11 Page 3 of 3

November 01, 2016

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager


Low Call

Enclosures

cc: Paul Raymaker, Bay West

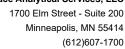
Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Virginia Minnesota Certification ID's


315 Chestnut Street, Virginia, MN 55792

Alaska Certification UST-107 Alaska Certification UST-107 Alaska Certification #MN01084

Arizona Department of Health Certification #AZ0785 Minnesota Dept of Health Certification #: 027-137-445 North Dakota Certification: # R-203 Wisconsin DNR Certification # : 998027470 WA Department of Ecology Lab ID# C1007

Nevada DNR #MN010842015-1

Oklahoma Department of Environmental Quality

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365379001	BW16TR-011-0.60-0.85	Solid	10/07/16 13:10	10/07/16 19:35
10365379002	BW16TR-012-0.0-0.15	Solid	10/07/16 13:20	10/07/16 19:35
10365379003	BW16TR-014-0.0-0.15	Solid	10/07/16 13:30	10/07/16 19:35
10365379004	BW16TR-014-0.15-0.38	Solid	10/07/16 13:35	10/07/16 19:35
10365379005	BW16TR-015-0.0-0.15	Solid	10/07/16 13:50	10/07/16 19:35
10365379006	BW16TR-015-0.15-0.36	Solid	10/07/16 13:55	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10365379001	BW16TR-011-0.60-0.85	EPA 9060A	KRV	5	PASI-V
10365379002	BW16TR-012-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365379003	BW16TR-014-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365379004	BW16TR-014-0.15-0.38	EPA 9060A	KRV	5	PASI-V
10365379005	BW16TR-015-0.0-0.15	EPA 9060A	KRV	5	PASI-V
10365379006	BW16TR-015-0.15-0.36	EPA 9060A	KRV	5	PASI-V

(612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Method: EPA 9060A

Description: Total Organic Carbon Quad

Client: Bay West, Inc.

Date: November 01, 2016

General Information:

6 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 97596

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379001,10365383012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MSD (Lab ID: 386209)

• Mean Total Organic Carbon

QC Batch: 97885

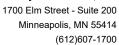
A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379003,10365945003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 387933)
 - · Mean Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

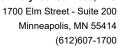

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-011-0.60-0.85 Lab ID: 10365379001 Collected: 10/07/16 13:10 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a wet-weigh			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	10600	mg/kg	5810	930	1		10/19/16 10:16	7440-44-0	
Total Organic Carbon	53600	mg/kg	2520	403	1		10/19/16 10:25	7440-44-0	
Total Organic Carbon	54200	mg/kg	3470	555	1		10/19/16 10:33	7440-44-0	
Total Organic Carbon	13500	mg/kg	3810	609	1		10/19/16 10:40	7440-44-0	
Mean Total Organic Carbon	33000	mg/kg	3900	624	1		10/19/16 10:40	7440-44-0	


Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-012-0.0-0.15 Lab ID: 10365379002 Collected: 10/07/16 13:20 Received: 10/07/16 19:35 Matrix: Solid

ricounte roportou en u mot moig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	10900	mg/kg	3350	536	1		10/19/16 12:01	7440-44-0	
Total Organic Carbon	30200	mg/kg	2650	423	1		10/19/16 12:08	7440-44-0	
Total Organic Carbon	27700	mg/kg	2590	415	1		10/19/16 12:15	7440-44-0	
Total Organic Carbon	9260	mg/kg	2700	431	1		10/19/16 12:23	7440-44-0	
Mean Total Organic Carbon	19500	mg/kg	2820	451	1		10/19/16 12:23	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-014-0.0-0.15 Lab ID: 10365379003 Collected: 10/07/16 13:30 Received: 10/07/16 19:35 Matrix: Solid

riccanic reperiou on a life neig			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	8230	mg/kg	3260	522	1		10/21/16 13:52	7440-44-0	
Total Organic Carbon	34100	mg/kg	1700	272	1		10/21/16 13:59	7440-44-0	
Total Organic Carbon	21700	mg/kg	1960	313	1		10/21/16 14:07	7440-44-0	
Total Organic Carbon	21100	mg/kg	1960	314	1		10/21/16 14:14	7440-44-0	
Mean Total Organic Carbon	21300	mg/kg	2220	355	1		10/21/16 14:14	7440-44-0	M1

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-014-0.15-0.38 Lab ID: 10365379004 Collected: 10/07/16 13:35 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a wet-weigh			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	26900	mg/kg	2720	435	1		10/21/16 15:21	7440-44-0	
Total Organic Carbon	27600	mg/kg	2490	398	1		10/21/16 15:28	7440-44-0	
Total Organic Carbon	11400	mg/kg	2450	392	1		10/21/16 15:36	7440-44-0	
Total Organic Carbon	19900	mg/kg	2470	396	1		10/21/16 15:43	7440-44-0	
Mean Total Organic Carbon	21400	mg/kg	2530	405	1		10/21/16 15:43	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-015-0.0-0.15 Lab ID: 10365379005 Collected: 10/07/16 13:50 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a wet-weigh			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	16200	mg/kg	2470	394	1		10/24/16 06:39	7440-44-0	
Total Organic Carbon	28000	mg/kg	1970	315	1		10/24/16 06:46	7440-44-0	
Total Organic Carbon	28600	mg/kg	1860	297	1		10/24/16 06:55	7440-44-0	
Total Organic Carbon	16100	mg/kg	1880	302	1		10/24/16 07:02	7440-44-0	
Mean Total Organic Carbon	22200	mg/kg	2040	327	1		10/24/16 07:02	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Sample: BW16TR-015-0.15-0.36 Lab ID: 10365379006 Collected: 10/07/16 13:55 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a wet-weigh			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	17300	mg/kg	2760	442	1		10/28/16 14:10	7440-44-0	
Total Organic Carbon	34000	mg/kg	2860	458	1		10/28/16 14:18	7440-44-0	
Total Organic Carbon	16200	mg/kg	2660	426	1		10/28/16 14:25	7440-44-0	
Total Organic Carbon	25800	mg/kg	2740	439	1		10/28/16 14:32	7440-44-0	
Mean Total Organic Carbon	23300	mg/kg	2760	441	1		10/28/16 14:32	7440-44-0	

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

QC Batch: 97596 Analysis Method: EPA 9060A

QC Batch Method: EPA 9060A Analysis Description: 9060 TOC Average

Associated Lab Samples: 10365379001, 10365379002

METHOD BLANK: 386204 Matrix: Solid

Associated Lab Samples: 10365379001, 10365379002

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Mean Total Organic Carbon mg/kg 88.8J 301 48.2 10/19/16 20:22

LABORATORY CONTROL SAMPLE: 386205

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon 77 mg/kg 5820 4490 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386206 386207

MS MSD 10365379001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 44700 45700 83900 74700 70-130 12 25 Mean Total Organic Carbon 33000 114 91 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386208 386209 MS MSD 10365383012 Spike MS MS MSD Spike MSD % Rec Max % Rec Parameter Units RPD Result Conc. Conc. Result Result % Rec Limits RPD Qual Mean Total Organic Carbon 42500 31600 31100 68700 60100 83 57 70-130 13 25 M1 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

J160139 SLR Sediment AOC Project:

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

QC Batch: 97885 Analysis Method: EPA 9060A 9060 TOC Average

QC Batch Method: **EPA 9060A** Analysis Description: Associated Lab Samples: 10365379003, 10365379004, 10365379005

METHOD BLANK: 387929 Matrix: Solid

Associated Lab Samples: 10365379003, 10365379004, 10365379005

> Reporting Parameter Limit MDL Qualifiers Units Result Analyzed

Mean Total Organic Carbon ND 302 48.3 10/21/16 08:33 mg/kg

LABORATORY CONTROL SAMPLE: 387930

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon 85 mg/kg 5820 4930 49-151

Blank

387932 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387931

MS MSD 10365945003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 37600 36100 65200 105 70-130 25 Mean Total Organic Carbon 25700 62600 102 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387933 387934

MS MSD 10365379003 Spike MS MS MSD Spike MSD % Rec Max Parameter Units % Rec RPD Qual Result Conc. Conc. Result Result % Rec Limits RPD Mean Total Organic Carbon 21300 21800 22500 30700 39500 43 81 70-130 25 25 M1 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

QC Batch: 98471

QC Batch Method: EPA 9060A

1 Analysis Method: 9060A Analysis Description:

9060 TOC Average

EPA 9060A

Associated Lab Samples: 10365379006

METHOD BLANK: 390620 Matrix: Solid

Associated Lab Samples: 10365379006

ParameterUnitsBlank Reporting ResultReporting LimitMDLAnalyzedQualifiersMean Total Organic Carbonmg/kgND30148.210/28/16 13:33

LABORATORY CONTROL SAMPLE: 390621

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon 82 mg/kg 5820 4780 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390622 390623

MS MSD 10365379006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 31300 32100 56900 62700 107 70-130 10 25 Mean Total Organic Carbon 23300 123 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390624 390625

MS MSD 10367134006 MS MSD MS MSD Spike Spike % Rec Max % Rec Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec Limits Qual Mean Total Organic Carbon 34600 46600 48400 68800 87300 73 109 70-130 24 25 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

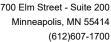
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.


LABORATORIES

PASI-V Pace Analytical Services - Virginia

ANALYTE QUALIFIERS

Date: 11/01/2016 03:46 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 11/01/2016 03:46 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365379001	BW16TR-011-0.60-0.85	EPA 9060A	97596		
10365379001	BW16TR-011-0.60-0.85	EPA 9060A	97656		
10365379002	BW16TR-012-0.0-0.15	EPA 9060A	97596		
10365379002	BW16TR-012-0.0-0.15	EPA 9060A	97656		
10365379003	BW16TR-014-0.0-0.15	EPA 9060A	97885		
10365379003	BW16TR-014-0.0-0.15	EPA 9060A	97886		
10365379004	BW16TR-014-0.15-0.38	EPA 9060A	97885		
10365379004	BW16TR-014-0.15-0.38	EPA 9060A	97886		
10365379005	BW16TR-015-0.0-0.15	EPA 9060A	97885		
10365379005	BW16TR-015-0.0-0.15	EPA 9060A	97886		
10365379006	BW16TR-015-0.15-0.36	EPA 9060A	98471		
10365379006	BW16TR-015-0.15-0.36	EPA 9060A	98634		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information	formation	Section B Renuited Project Information	act lafat	in contraction in the contractio				Section C	, ن				Section D	<u> </u>					۷,	77	7/2
Company: Bay West, LLC	Vest, LLC	Report To:	Na	ncy Mc	Nancy McDonald			Aftention:	Attention:		Accounts Payable	훒	Facility	Facility_Name: St. I	Louis River	on: St. Louis River Sediment Areas of Concern	Concern		۷)))	$\sqrt{}$
Address: 5 Em	5 Empire Drive	Copy To: Paul Raymaker	ul Rayn	naker				Company Name:	'Name:	Ba	Bay West, LLC	TC	Facility	Facility_Code: St	St Louis River Sed	er Sed		e do	-	₽	*
St Paul, MN 55103	5103							Address:		5 En	5 Empire Drive	e e	Facility_ID:		547023			#505			
Email To: nmcd	nmcdonald@baywest.com	Purchase Order No.:	r No.:	108002	200			Lab Quote Reference	Reference:		3000017136	7136	Subfac	Subfacility_code:				<u> </u>		SLR-TR	و
Phone:	5	Project Name:	1	₹ Sedii	SLR Sediment AOCs	SCs		Lab Project Manager	t Manager:	6	Oyeyemi Odujole)dujole						100 mm	Site Location		
Requested Due Date/TAT:)ate/TAT: Standard	Project Number	1	J160139															STATE		Z Z
															Re	Requested Analysis	si				
	Section E Required Client Information	Valid Matrix Codes MATRIX CODE	Ģ			Collection	uo		Pre	Preservatives	Š		(neter)	-							
Sample Location ID (sys_joc_code)	ple Sample ID (sye_sample_code)	Drinking Water DW Product W Soulsoid P Oil SO Wipe OL Air WP Air WP Air WP Air WP Tresue AR Other TS	MATRIX CODE	SAMPLE TYPE (G=GRAB C=COMP)	(-)MOO-0 (10/10 0)	DATE	əmiT	# OF CONTAINERS	H ² SO ₄	NaOH HCI	Na ₂ S ₂ O ₃ Methanol Other	TOC (\$W-846 9060A Quad Burn)	Grain Size (ASTM D422 w/ hydron							Comments	\$
Ex. BW15MLW-005	-005 BW14MLW-005-0-0.15	-0-0.15	S	9		3/12/15	1204					1 1/20 1	<u> </u>		\parallel					0	
1 BW16TR-011	11 BW16TR-011-0.60-0.85	.60-0.85	တ္တ	9		10/7/16	1310	2 2				-	-							Ŏ	000
2 BW16TR-012	12 BW16TR-012-0.0-0.15	.0-0.15	8	Ö		10/7/16	1320	2 2				-	-							ວ	d 3
3 BW16TR-014	14 BW16TR-014-0.0-0.15	.0-0.15	8	ڻ -		10/7/16	1330	2 2	-				1							3	8رن
4 BW16TR-014	14 BW16TR-014-0.15-0.38	.15-0.38	8	o o	_	10/7/16	1335	2 2				-	-							h ça	Ч
5 BW16TR-015	15 BW16TR-015-0.0-0.15	.0-0.15	S	ø		10/7/16	1350	2 2				-	-							3	\sim
6 BW16TR-015	15 BW16TR-015-0.15-0.36	.15-0.36	S	o o		10/7/16	1355	2 2				- 	-							306	6
7			_		_						+	177 44			_						
& G			+		-				+	+		20, 2 , 2 .			_						
10																					
11								-		\dashv		Marija Marija									
12	oriente de la companya de la company				The state of the s		11.00					3									
	ADDITIONAL COMMENTS		KELING	OISHED	EV. AF	_ [.	à	Z Z	1		V		V AFF	MILON		DATE		TIME		SAMPLE CONDITIONS	S _N
Reference Subco Order Form signe	Reference Subcontractor Goods and/or Services Purchase Order Form signed by Bay West on 9/19/16	S Purchase Chultura	ইৠ	Musson true Pe		Kay West	107/16	\$\$\$ [78]		dellatura	4	مه (रिका	- }		11/2/0)		555 70	4.9	セナ	<i>></i>
Pag					1	\	(C/7/16	PROS	<u>د</u>	1	6	_ 				1/2/01	3	193E	82		(V/V)
je 17 d						SAMPLER	SAMPLER NAME AND SIGNATURE	ATURE	┨╢.				v.		**************************************				Temp (°C)	ed on los	(Y/N)
of 40						PRINT Name of SAMPL SIGNATURE of SAMPL	PRINT Name of SAMPLER:	7	Si.	3/2	0550	PATE	Signed (A	DATE Signed (MM/DD/YY):	\$	7/14/				Custody	
						_	7	3	7	7	7		,		7	21/1/01]

Face Analytical*

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Oc. 11/0-4	C		Project	# WO#: 10365379
1304 Was / CL	<u>- (</u>			****
	USPS		Client	
Commercial SpeeDee [Tracking Number:	Other:_			10365379
Hacking Munices.				
Custody Seal on Cooler/Box Present? Yes No	!	Seals Int	act?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Subble Bags	□Non	e 🗌	Other:	Temp Blank? Yes No
Thermometer	Тур	e of Ice:	□We	et Blue None Samples on ice, cooling process has begun
Used: 151401164		. 3.1	3,0	Biological Tissue Frozen? ☐Yes ☐No ☐N/A
Temp should be above freezing to 6°C Correction Facto				te and initials of Person Examining Contents: BC 1017/1
USDA Regulated Soil (N/A, water sample)		_		10
Did samples originate in a quarantine zone within the United St MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	ates: AL, A	AR, AZ, C.	A, FL, GA, □Yes	ID, LA. Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
	lated Soil	Checkli	— .	-Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Z∕Yes	□No	□n/a	1.
Chain of Custody Filled Out?	″Yes	□No	□N/A	2.
Chain of Custody Relinquished?	ZYes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	□n/a	4.
Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	∐Yes	⊿ No	□n/a	6.
Rush Turn Around Time Requested?	□Yes	ØN₀	□n/a	7.
Sufficient Volume?	ZÎYes	□No	□n/a	8.
Correct Containers Used?	✓Yes	□No	□n/a	9.
-Pace Containers Used?	□ /es	□No	□N/A	.:
Containers Intact?	☑ Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	∐Yes	□No	□M/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	. □∕∕e s	₽Ño	□N/A	12. ID AWINTR-015-0.16-0.36 hos involved
-Includes Date/Time/ID/Analysis Matrix:		でノフ	/16	time on label, should be "1752"
All containers needing acid/base preservation have been		П.,	F	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
checked? All containers needing preservation are found to be in	∐Yes	∐No	ØN/A	Sample #
compliance with EPA recommendation?	_	_	<u>_</u> ~.	
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease,	∐Yes	□No	ØÑ/A	Initial when Lot # of added
DRO/8015 (water) DOC	∐Yes	□No	⊠ N/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No	Z N/A	14.
Trip Blank Present?	Yes	□No	N/A	15.
Trip Blank Custody 5eals Present?	Yes	□No	Øn/a	
Pace Trip Blank Lot # (if purchased):			-	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? ☐ Yes ☐ No
Person Contacted:				Date/Time:
Comments/Resolution:				

Project Manager Review: Law Catter Date: 10/10/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers).

Intra-Regional Chain of Custody

Pace Analytical www.pacelabs.com

LAB USE ONLY Z 9 Due Date: 10/17/2016 Samples Intact Y Comments Requested Analysis Owner Received Date: 10/7/2016 Y or (N 6930 Received on Ice × × × × × ASTM D422 Date/Time Preserved Containers Other mswilled Z Workorder Name: J160139 SLR Sediment AOC Matrix Solid Solid Solid Solid Solid Solid Custody Seal (Y) or Pace Analytical Billings MT Received By 10/7/2016 13:55 10365379006 10365379002 10365379003 10365379004 10365379005 150 N Ninth Street Billings, MT 59101 Phone (406)254-7226 10365379001 Lab ID 10/10/16 1250 10/7/2016 13:35 10/7/2016 13:10 10/7/2016 13:20 10/7/2016 13:30 10/7/2016 13:50 Date/Time Date/Time Collect ပ MANGETAN Pace Sample Type Cooler Temperature on Receipt UA PS PS PS PS PS PS Pace Analytical Minnesota 1700 Elm Street Workorder: 10365379 Released By Minneapolis, MN 55414 BW16TR-011-0.60-0.85 BW16TR-014-0.15-0.38 BW16TR-015-0.15-0.36 BW16TR-012-0.0-0.15 BW16TR-014-0.0-0.15 BW16TR-015-0.0-0.15 Phone (612)607-1700 Sample ID Lori Castille Received at Report To: Suite 200 **Transfers** Item | 2

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Page 1 of

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.:

F-MT-C-184-Rev.10

Document Revised: 04Aug2016 Page 1 of 1

Issuing Authority: Pace Montana Quality Office

Courier: Fed Ex UPS Commercial Pace Tracking Number: 475 5860	USPS Other:	Cli	ent	16365379
Custody Seal on Cooler/Box Present?	lo Seals	Intact?	Eves	No Optional: Proj. Due Date: Proj. Name:
Packing Material: Subble Wrap Bubble Bag	s No	ne 🗌	Other:	Temp Blank? Yes
Thermometer Used: ☐ 160285052 ☐ 140279186 ☐ NA	Type of Ic	e:	Vet 🗌	Blue None Samples on ice, cooling process has begun
Cooler Temp Read:			Da	e and Initials of Person Examining Contents: 10/11 att
Cooler Temp Corrected:				Biological Tissue Frozen? Yes No
Temp should be above freezing to 6°C				Comments:
Chain of Custody Present?	Dyes	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	₩es	□No	□N/A	3.
Sampler Name and Signature on COC?	Yes	□No	□N/A	4.
Samples Arrived within Hold Time?	Dies :	No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	DK0	□N/A	6.
Rush Turn Around Time Requested?	□Yes	DANO.	□N/A	7.
Sufficient Volume?	- Kes	□ No	□N/A	8.
Correct Containers Used?	400.0			9.
-Pace Containers Used?	, ⊈Yes □Yes	□No ☑No	□N/A □N/A	9.
Containers Intact?	☑ Yes	7.2.2		10
Filtered Volume Received for Dissolved Tests?		□No	□N/A	10.
	□Yes	□ No	DAV/A	11. Note if sediment is visible in the dissolved container.
Sample Labels Match COC?	Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:				
All containers needing acid/base preservation have been checked?	□Yes	No	DN/A	13.
				Sample #
All containers needing preservation are found to be in	□Yes	□No	□Ñ/A	114
compliance with EPA recommendation?			711/1	$\mathcal{N}^{\mathcal{N}}$
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)				
Exceptions: VOA, Coliform, TOC, Oil and Grease,	Yes	Divo		Lot # of added
WI-DRO (water)		7		Initial when completed: preservative:
Headspace in VOA Vials (>6mm)?	□Yes	□No	WN/A	14.
Trip Blank Present?	□Yes	□No	DN/A	15.
Trip Blank Custody Seals Present?	Yes	□ No	DAV/A	
Pace Trip Blank Lot # (if purchased):		_	7	
CLIENT NOTIFICATION / PESOLUTION				5110 t D : 12
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

4		
	>	_
1	Ç	2
1	•	F
	۲	7
)
	C	ַת
	C	2 Q
	Č	

Due Date: 10/21/16 Pace Analytical Page 21 of 40

CLIENT: PACE MPLS PM: CLJ

Coole	3	· -	Transfers	#100 240 240 240 240 240 240 240 240 240 2	6 B	б	4	3 B	2 B	<u> </u>	\$	Lori Castille Pace Analyt 1700 Elm S Suite 200 Minneapolis Phone (612	Report To	Work
Cooler Temperature on Receipt	4		rs Released By		BW16TR-015-0.15-0.36	BW16TR-015-0.0-0.15	BW16TR-014-0.15-0.36	BW16TR-014-0.0-0.15	BW16TR-012-0.0-0.15	BW16TR-011-0.60-0.85	Sample ID	Lori Castille Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700		Workorder: 10365379
ceipt 2,3 °C		10	Da		PS 10/7/2016 13:55	PS 10/7/2016 13:50	PS 10/7/2016 13:35	PS 10/7/2016 13:30	PS 10/7/2016 13:20	PS 10/7/2016 13:10	Sample Collect Type Date/Time			Workorder Name: J
Custody Seal (y	III PO CIÓN	洭	Date/Time Received By		6 13:55 10365379006	6 13:50 10365379005	6 13:35 10365379004	6 13:30 10365379003	6 13:20 10365379002	6 13:10 10365379001	ne Lab ID	Pace Analytical Virginia MN 315 Chestnut Street Virginia, MN 55792 Phone (218)742-1042	Subcontract To	Workorder Name: J160139 SLR Sediment AOC
or N			Y		Solid 1	Solid 1	Solid 1	Solid 1	Solid 1	Solid 1	Mart Victorian Control of Control	a MN Preserved Containers		
Received on Ice 🗭	16-1476	OHIMITIAL POP	Date/Time		×	×	×	×	×	×	TOC	Containers SOGO quad	TOTAL STANSON	Owner Received Date:
or N	,	ŏ		シスペース (1) 1 (1) (1) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4									Requested Analysis	10///2016
Samples Intact (V or				Comments			the state of the s		The same of the sa				alysis	Results Requested By:
Y or N										And the second s	LAB USE ONLY	-		sy: 10/21/2016

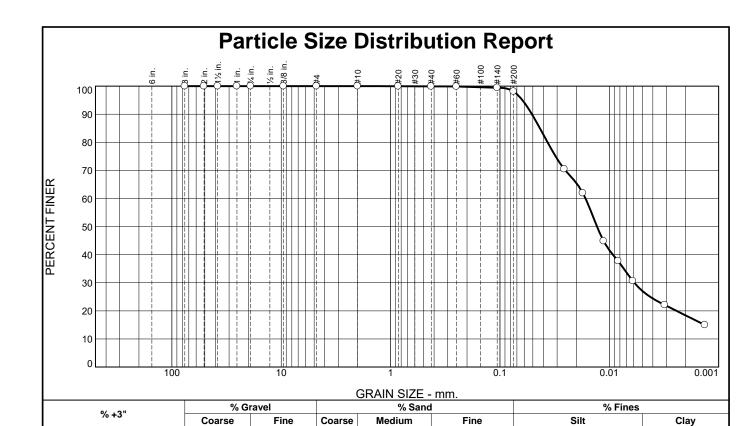
^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.:


Document Revised: 23Feb2015

Page 1 of 1

Issuing Authority:

F-VM-C-001-Rev.09 Pace Virginia, Minnesota Quality Office

Sample Condition Client Name:			Project #	
Upon Receipt Pace - (4 1V				W0#:1276786
Courier: Fed Ex UPS	USPS		Client	manage a minutal all all all
☐Commercial ☐Pace	Other:			
Tracking Number:	····			1276786
Custody Seal on Cooler/Box Present? Yes	No	Seals I		Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bag	gs 🔲 N	one [Other:_f	YOL POL Temp Blank? Yes No
Thermometer Used: 140792808	Type of	Ice:	Wet [Blue None Samples on ice, cooling process has begun
Cooler Temp Read °C: 2 () Cooler Temp Co	orrected °	c. 2	.3	Biological Tissue Frozen? Yes No NA
Temp should be above freezing to 6°C Correction Factor				d Initials of Person Examining Contents:
				Comments: (10-12-16
Chain of Custody Present?	Ŷes	□No	□N/A	1.
Chain of Custody Filled Out?	ŻYes	□No	□n/A	2.
Chain of Custody Relinquished?	□Yes	□No	□N/A	3.
Sampler Name and Signature on COC?	Yes	ØNo	□N/A	4.
Samples Arrived within Hold Time?	☑Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	Z⁄No	□N/A	6.
Rush Turn Around Time Requested?	Yes	ZNo	□N/A	7.
Sufficient Volume?	Yes	□No	□N/A	8.
Correct Containers Used?	Ø Yes	□No	□N/A	9.
-Pace Containers Used?	☐ Yes	No	□N/A	
Containers Intact?	✓Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	.∐Yes	□No	[ZÑ/A	11. Note if sediment is visible in the dissolved containers.
Sample Labels Match COC?	√es	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:	<u> フレ</u>			
All containers needing acid/base preservation will be checked and documented in the pH logbook.	□Yes	□No	ĎN/A	See pH log for results and additional preservation documentation
Headspace in Methyl Mercury Container	Yes	□No	ĎN/A	13.
Headspace in VOA Vials (>6mm)?	□Yes	□No	ĎN/A	14.
Trip Blank Present?	Yes	□No	√ N/A	1 S.
Trip Blank Custody Seals Present?	□Yes	□No	`_N/A	
Pace Trip Blank Lot # (if purchased):	. •			
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:			[Date/Time:
Comments/Resolution:				
FECAL WAIVER ON FILE Y N		TEM	PERATUI	RE WAIVER ON FILE Y N
~ _ A				
Project Manager Review:	compliance	samples.	a copy of th	Date: 10/12/16 is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

0

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	98		
0.0258 mm.	70		
0.0174 mm.	62		
0.0113 mm.	45		
0.0083 mm.	38		
0.0061 mm.	31		
0.0031 mm.	22		
0.0013 mm.	15		

0

silt	Material Description	
	erberg Limits (ASTM D 43 [,]	
PL= NP	LL= NV PI:	=
USCS (D 2487)=	ML Classification (M 145))= A-4(0)
D ₉₀ = 0.0510 D ₅₀ = 0.0129 D ₁₀ =	Coefficients D ₈₅ = 0.0431 D ₆₀ D ₃₀ = 0.0059 D ₁₅ C _u = C _c =	= 0.0165 = 0.0013
	Remarks	
Date Received:	10/7/16 Date Tested	: 10/20/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
Title:	Lab Manager	

71

Location: BW16TR-011-0.60-0.85
Sample Number: 10365379-1
Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT Project No:

Figure

Date Sampled: 10/7/16

27

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-011-0.60-0.85 Sample Number: 10365379-1 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	1621	Dala

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
686.24	580.62	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
70.32	0.00	#20	0.02	0.00	100
		#40	0.04	0.00	100
		#60	0.04	0.00	100
		#140	0.29	0.00	99
		#200	0.95	0.00	98

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 70.32

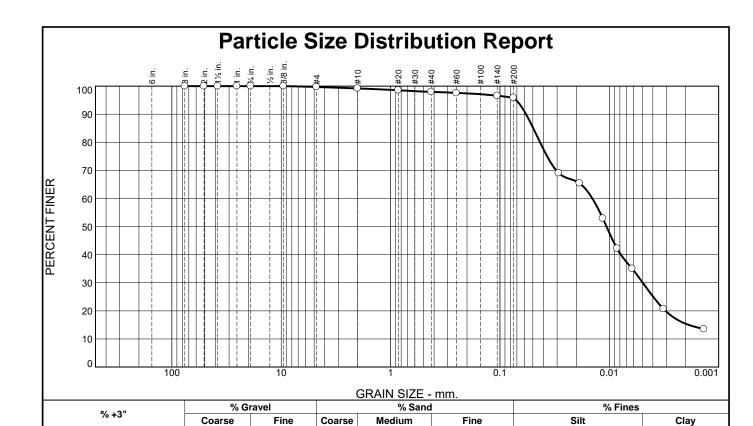
Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	58.0	49.5	0.0140	58.0	6.8	0.0258	70.5
5.00	18.0	52.0	43.5	0.0140	52.0	7.8	0.0174	61.9
15.00	18.0	40.0	31.5	0.0140	40.0	9.7	0.0113	44.9
30.00	18.0	35.0	26.5	0.0140	35.0	10.6	0.0083	37.7
60.00	18.0	30.0	21.5	0.0140	30.0	11.4	0.0061	30.6
250.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0031	22.1
1440.00	18.0	19.0	10.5	0.0140	19.0	13.2	0.0013	15.0
			Pace Ar	nalytical	Service	es, Inc		


Fractional Components

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	2	2	71	27	98

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0013	0.0024	0.0059	0.0093	0.0129	0.0165	0.0367	0.0431	0.0510	0.0622

Fineness
Modulus
0.01

Pace Analytical Services, Inc.

TEST RESULTS (ASTM D422)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
3	100							
2	100							
1.5	100							
1	100							
.75	100							
.375	100							
#4	100							
#10	99							
#20	99							
#40	98							
#60	98							
#140	97							
#200	96							
0.0290 mm.	69							
0.0187 mm.	65							
0.0115 mm.	53							
0.0085 mm.	42							
0.0062 mm.	35							
0.0032 mm.	21							
0.0014 mm.	14							

0

0

0

		<u>ption</u>
silt		
Atte	erberg Limits (AS	TM D 4318)
PL= NP	LL= NV	PI=
USCS (D 2487)=	ML Classification AASHT	on O (M 145)= A-4(0)
D₉₀= 0.0577	<u>Coefficient</u> D ₈₅ = 0.0496	D₆₀= 0.0143
D ₅₀ = 0.0106 D ₁₀ =	D ₃₀ = 0.0049 C _u =	D ₁₅ = 0.0019 C _c =
	Remarks	
Date Received:		e Tested: 10/20/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
Title:]	Lab Manager	

66

2

Location: BW16TR-012-0.0-0.15 Sample Number: 10365379-2 Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

30

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-012-0.0-0.15 Sample Number: 10365379-2 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
829.58	574.43	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.77	0.00	100
		#10	1.31	0.00	99
55.38	0.00	#20	0.36	0.00	99
		#40	0.33	0.00	98
		#60	0.23	0.00	98

Hydrometer Test Data

0.00

0.00

97

96

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =55.38 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	47.0	38.5	0.0140	47.0	8.6	0.0290	69.0
5.00	18.0	45.0	36.5	0.0140	45.0	8.9	0.0187	65.5
15.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0115	52.9
30.00	18.0	32.0	23.5	0.0140	32.0	11.0	0.0085	42.2
60.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0062	35.0
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	20.7
1440.00	18.0	16.0	7.5	0.0140	16.0	13.7	0.0014	13.5

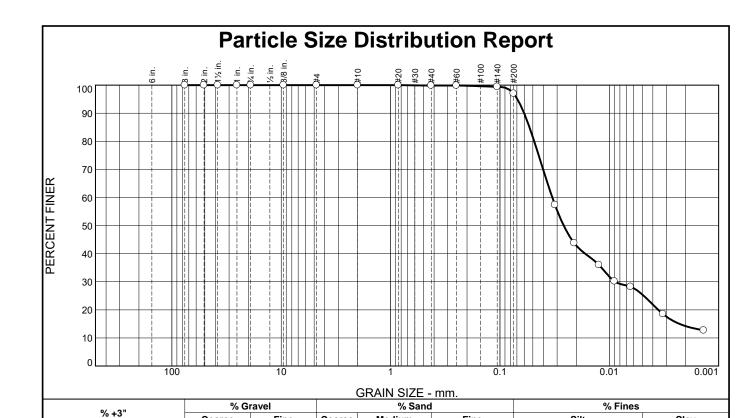
0.53

0.41

_ Pace Analytical Services, Inc. __

Hydrometer Test Data (continued)

Eff. **Elapsed** Temp. Actual Corrected Diameter Percent Time (min.) (deg. C.) Reading Reading Κ Rm Depth (mm.) Finer


Fractional Components

Cobbles		Gravel		Sand			Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	1	1	2	4	66	30	96

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0019	0.0031	0.0049	0.0078	0.0106	0.0143	0.0430	0.0496	0.0577	0.0708

Fineness Modulus 0.09

Pace Analytical Services, Inc. _

	TEST RESULTS	(ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	97		
0.0314 mm.	57		
0.0210 mm.	44		
0.0124 mm.	36		
0.0090 mm.	30		
0.0064 mm.	28		
0.0032 mm.	19		
0.0014 mm.	13		

Coarse

0

0

Fine

Coarse

0

Medium

Fine

3

Silt

72

Clay

25

Location: BW16TR-014-0.0-0.15 **Sample Number:** 10365379-3 Pace Analytical Services, Inc. Client: Bay West, Inc

Billings, MT

(no specification provided)

Project: J160139 SLR Sediment AOC

Project No:

Page 29 of 40

Date Sampled: 10/7/16

Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-014-0.0-0.15 Sample Number: 10365379-3 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	rest	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
657.30	565.75	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
51.49	0.00	#20	0.00	0.00	100
		#40	0.07	0.00	100
		#60	0.00	0.00	100
		#140	0.23	0.00	99
		#200	1.25	0.00	97

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.49 Automatic temperature correction

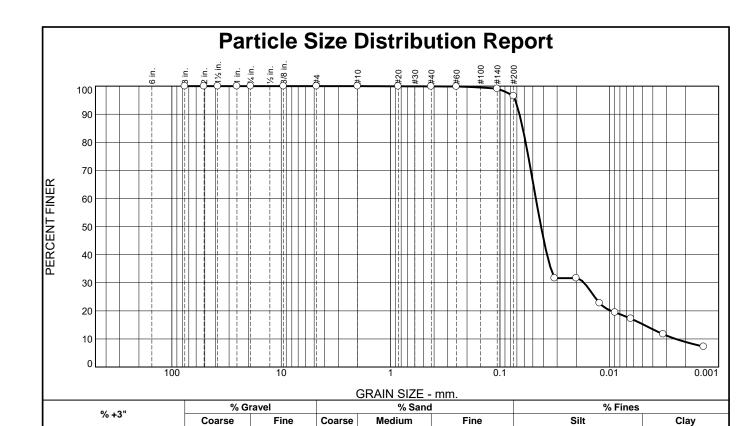
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0314	57.4
5.00	18.0	31.0	22.5	0.0140	31.0	11.2	0.0210	43.8
15.00	18.0	27.0	18.5	0.0140	27.0	11.9	0.0124	36.0
30.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0090	30.2
60.00	18.0	23.0	14.5	0.0140	23.0	12.5	0.0064	28.2
250.00	18.0	18.0	9.5	0.0140	18.0	13.3	0.0032	18.5
1440.00	18.0	15.0	6.5	0.0140	15.0	13.8	0.0014	12.7

__ Pace Analytical Services, Inc. ___


Fractional Components

Cobbles		Gravel		Sand			Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	3	3	72	25	97

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0023	0.0036	0.0088	0.0166	0.0261	0.0332	0.0486	0.0537	0.0601	0.0692

Fineness
Modulus
0.01

Pace Analytical Services, Inc.

0

TEST RESULTS (ASTM D422)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
3	100							
2	100							
1.5	100							
1	100							
.75	100							
.375	100							
#4	100							
#10	100							
#20	100							
#40	100							
#60	100							
#140	99							
#200	97							
0.0316 mm.	32							
0.0200 mm.	32							
0.0123 mm.	23							
0.0089 mm.	19							
0.0064 mm.	17							
0.0032 mm.	12							
0.0014 mm.	7.3							

0

	Material Description	<u>on</u>							
silt									
A.,		D 4040)							
PL= NP	erberg Limits (ASTM LL= NV	D 4318) Pl=							
	Classification								
USCS (D 2487)=		M 145)= A-4(0)							
	Coefficients								
D₉₀= 0.0663	D₈₅= 0.0619	D₆₀= 0.0469							
D₅₀= 0.0421 D₁₀= 0.0025	D₃₀= 0.0170 C_{II}= 19.02	D ₁₅ = 0.0048 C _c = 2.50							
Remarks									
Date Received:	10/7/16 Date T	ested: 10/20/16							
Tested By:		CSICU. 10/20/10							
Checked By:	Rhonda Johnson								
Title:	Lab Manager								

82

Location: BW16TR-014-0.15-0.38 **Sample Number:** 10365379-4

(no specification provided)

Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

15

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC **Location:** BW16TR-014-0.15-0.38 **Sample Number:** 10365379-4 **Material Description:** silt Sample Date: 10/7/16

Date Received: 10/7/16PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas **Test Date:** 10/20/16Checked By: Rhonda Johnson Title: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
987.32	589.81	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
90.18	0.00	#20	0.05	0.00	100
		#40	0.03	0.00	100
		#60	0.04	0.00	100

Hydrometer Test Data

0.00

0.00

99

97

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 90.18

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#60 #140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

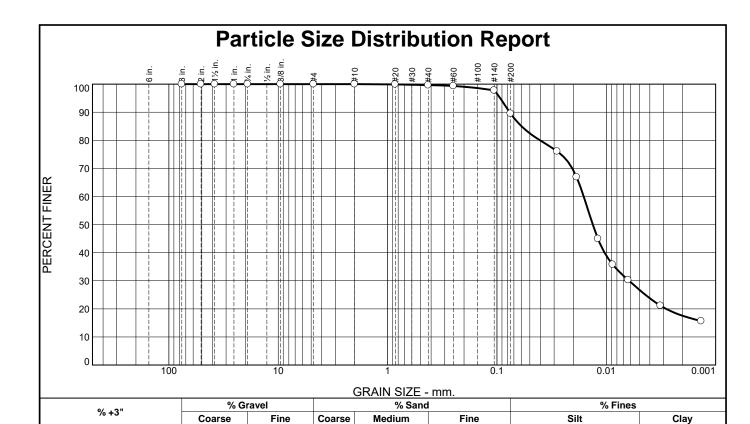
Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	37.0	28.5	0.0140	37.0	10.2	0.0316	31.7
5.00	18.0	37.0	28.5	0.0140	37.0	10.2	0.0200	31.7
15.00	18.0	29.0	20.5	0.0140	29.0	11.5	0.0123	22.8
30.00	18.0	26.0	17.5	0.0140	26.0	12.0	0.0089	19.5
60.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0064	17.2
250.00	18.0	19.0	10.5	0.0140	19.0	13.2	0.0032	11.7
1440.00	18.0	15.0	6.5	0.0140	15.0	13.8	0.0014	7.3

0.69

2.34

_ Pace Analytical Services, Inc. __


Fractional Components

Cobbles		Gravel			Sand				Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	3	3	82	15	97

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0025	0.0048	0.0096	0.0170	0.0371	0.0421	0.0469	0.0582	0.0619	0.0663	0.0724

Fineness Modulus	c _u	cc
0.01	19.02	2.50

Pace Analytical Services, Inc.

,	TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?							
Size	Finer	(Percent)	(X=Fail)							
3	100									
2	100									
1.5	100									
1	100									
.75	100									
.375	100									
#4	100									
#10	100									
#20	100									
#40	100									
#60	99									
#140	98									
#200	90									
0.0282 mm.	76									
0.0187 mm.	67									
0.0119 mm.	45									
0.0087 mm.	36									
0.0063 mm.	30									
0.0032 mm.	21									
0.0014 mm.	16									
* (no spec	cification provide	d)								

0

0

0

0

10

0

silt	
	- 1
Atterberg Limits (ASTM D 4318)	
PL= NP LL= NV PI=	
USCS (D 2487)= ML Classification AASHTO (M 145)= A-4(0)	
<u>Coefficients</u>	
D ₉₀ = 0.0765 D ₈₅ = 0.0596 D ₆₀ = 0.0161 D ₅₀ = 0.0133 D ₃₀ = 0.0062 D ₁₅ =	
D ₁₀ = C _u = C _c =	
Remarks	
Date Received: 10/7/16	
Tested By: Will Thomas	
Checked By: Rhonda Johnson	
Title: Lab Manager	_

63

Location: BW16TR-015-0.0-0.15 Sample Number: 10365379-5 Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

27

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-015-0.0-0.15 Sample Number: 10365379-5 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
683.51	571.55	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
54.62	0.00	#20	0.06	0.00	100
		#40	0.14	0.00	100

Hydrometer Test Data

0.00

0.00

0.00

99

98

90

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =54.62

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#60 #140

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

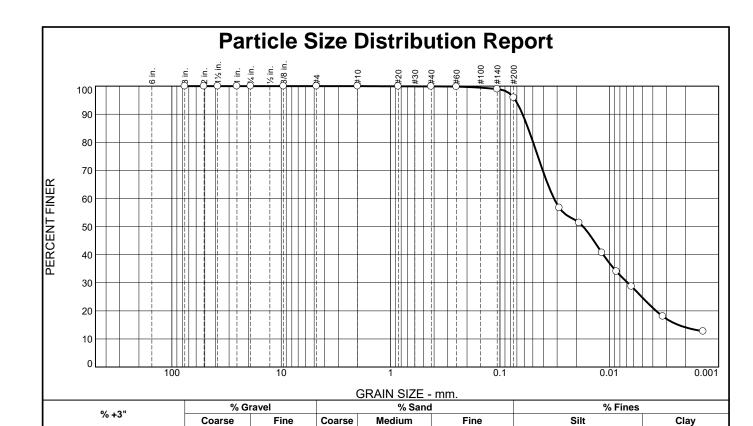
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	50.0	41.5	0.0140	50.0	8.1	0.0282	76.1
5.00	18.0	45.0	36.5	0.0140	45.0	8.9	0.0187	66.9
15.00	18.0	33.0	24.5	0.0140	33.0	10.9	0.0119	44.9
30.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0087	35.8
60.00	18.0	25.0	16.5	0.0140	25.0	12.2	0.0063	30.3
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	21.1
1440.00	18.0	17.0	8.5	0.0140	17.0	13.5	0.0014	15.6

0.16

0.85

4.51

_ Pace Analytical Services, Inc. __


Fractional Components

Cobbles	Gravel			Sand					Fines	
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	10	10	63	27	90

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0028	0.0062	0.0104	0.0133	0.0161	0.0403	0.0596	0.0765	0.0933

Fineness
Modulus
0.02

Pace Analytical Services, Inc. _____

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	96		
0.0287 mm.	57		
0.0189 mm.	51		
0.0117 mm.	41		
0.0086 mm.	34		
0.0063 mm.	29		
0.0032 mm.	18		
0.0014 mm.	13		
)1 T IIIII.	13		

0

0

0

Material Description silt
Atterberg Limits (ASTM D 4318) PL= NP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Date Received: 10/7/16 Date Tested: 10/20/16 Tested By: Will Thomas
Checked By: Rhonda Johnson Title: Lab Manager

71

Location: BW16TR-015-0.15-0.36
Sample Number: 10365379-6

Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-015-0.15-0.36 Sample Number: 10365379-6 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	rest	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
954.72	568.99	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
76.69	0.00	#20	0.05	0.00	100
		#40	0.02	0.00	100
		#60	0.06	0.00	100
		#140	0.69	0.00	99
		#200	2.31	0.00	96

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =76.69 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.56Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	ĸ	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	51.0	42.5	0.0144	51.0	7.9	0.0287	56.7
5.00	18.0	47.0	38.5	0.0144	47.0	8.6	0.0189	51.4
15.00	18.0	39.0	30.5	0.0144	39.0	9.9	0.0117	40.7
30.00	18.0	34.0	25.5	0.0144	34.0	10.7	0.0086	34.0
60.00	18.0	30.0	21.5	0.0144	30.0	11.4	0.0063	28.7
250.00	18.0	22.0	13.5	0.0144	22.0	12.7	0.0032	18.0
1440.00	18.0	18.0	9.5	0.0144	18.0	13.3	0.0014	12.7

__ Pace Analytical Services, Inc. ___

Fractional Components

Cobbles		Gravel		Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	4	4	71	25	96

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0023	0.0037	0.0068	0.0114	0.0173	0.0321	0.0497	0.0552	0.0621	0.0722

Fineness Modulus
0.01

_____ Pace Analytical Services, Inc. _____

Laboratory Data Review Checklist

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation							
Proj	ect nar	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10367134			
Wor	k order	r numl	per: 3000017136		Report date (mm/dd/yyyy):11/02/2016					
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr							
	Ques	stions		Yes	No	N/A	Comments			
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes						
	b.	Is th	ere a sample condition form with the report?	\boxtimes						
	C.		e there samples requiring preservation?		\boxtimes					
		i.	If so, were they properly preserved?			\boxtimes				
		ii.	Were they received on ice?	\boxtimes						
	d.	•		\boxtimes						
		i.	Was there enough sample volume/weight to complete all requested analyses?							
		ii.	Was there enough extra sample collected to complete method required batch QC?							
	е.		e samples received with adequate holding for sample prep for all requested analyses?							
	f.	f. Are there notes about sample condition or holding time issues on the COC? Explain impact. g. Is there narration or data qualifiers within the report about sample condition or holding time issues? Explain impact.								
	g.									
2.	Cali	brat								
	Ques	stion		Yes	No	N/A	Comments			
a. Do the report narrative or data qualifiers indicate calibration problems for any analyses? If yes, explain the data impact.										

ıes	stion		Yes	No	N/A	Comments
a.		any of the analyses contain samples for field rip blanks?				
	i.	If yes, are there target analytes present above the reporting limit?				
	ii.	If yes, are the same compounds also present in the samples? Explain possible impact.			\boxtimes	
b.		method blanks for any analyses contain target lytes above the reporting limit?				
	i.	If yes, are the same compounds present in the samples?				
	ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.				

compounds? \boxtimes Are the lab recovery limits specified on the report? \boxtimes b. Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy? \boxtimes Are there surrogates outside lab limits? (These should have a data qualifier) \boxtimes If yes, are the surrogates above the lab limits? \boxtimes ii. Below the lab limits? \boxtimes Explain what this could mean for the affected samples. \boxtimes Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Ques	tion		Yes	No	N/A	Comments
a.	repo there	there LCS/LCSD samples present for the orted analyses? (An LCS alone is acceptable if e is a Matrix Spike/Matrix Spike Duplicate (MSD] or sample/sample dup for precision.)	\boxtimes			
	i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?	\boxtimes			
b.		there LCS/LCSD compounds outside lab s? (These should have a data qualifier.)		\boxtimes		
	i.	If yes, are the analytes above the lab limits?			\boxtimes	
	ii.	Below the lab limits?			\boxtimes	
	iii.	Are all samples in the preparation batch also flagged for the same analyte(s)?				

Ques		1	/Matrix Spike Duplicate/Samp	Yes	No	N/A	Comments
а .		he ana	lytical methods used require an MS	103	110	IVA	Comments
<u> </u>			D? If no, skip to 6.b.				
	i.	Have prepa	the required matrix spikes been ared and reported?	\boxtimes			The MS/MSD was performed as batch QC a mercury sample from SDG 10366982. The MS/MSD for TOC was performed on samp BW16TR-018-0.0-0.15.
	ii.	If no, as to	is there and explanation in the report why?				
	iii.		ne lab process an alternate spiked le (such as LCSD) instead?				
	iv.	Are th	ne lab limits specified on the report?	\boxtimes			
	V.	comp	e limits seem reasonable when pared to the suggested guidelines in the A QC Policy?	\boxtimes			
	vi.	Are th	nere compounds outside the lab limits?		\boxtimes		
		1.	If yes, are the analytes above the lab limits?				
		2.	Below the lab limits?			\boxtimes	
		3.	Is the source sample also flagged for compounds outside lab limits?				
b.			e duplicate reported for the analytical PIf no, skip to 6.c.				RPDs discussed apply to MS/MSDs.
	i.	Is the	RPD for the duplicate pair within the mits?				
	ii. If no, has the associated source sample been flagged?						
c. What is the impact of failed QC on this project?							
Met	hod	Dete	ction Limits/Report Limits				
Ques	tion			Yes	No	N/A	Comments
a.	clea	rly liste	ng and/or method detection limits d on the report for all analyses? (may led quantitation limits)	\boxtimes			

Α

<u>www.pca.state.mn.us</u> • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats n-ean2-11h • 10/20/11 Page 3 of 3

November 02, 2016

Nancy McDonald Bay West 5 Empire Drive Saint Paul, MN 55103

RE: Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 21, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lori Castille

lori.castille@pacelabs.com

Project Manager

Low Carre

Enclosures

cc: Paul Raymaker, Bay West

Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 Alaska Certification UST-107 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014

Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Virginia Minnesota Certification ID's

315 Chestnut Street, Virginia, MN 55792 Alaska Certification UST-107 Alaska Certification UST-107

Alaska Certification #MN01084

Arizona Department of Health Certification #AZ0785 Minnesota Dept of Health Certification #: 027-137-445 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN 00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA#: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563


Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C

North Dakota Certification: # R-203 Wisconsin DNR Certification #: 998027470 WA Department of Ecology Lab ID# C1007

Wisconsin Certification #: 999407970

Nevada DNR #MN010842015-1

Oklahoma Department of Environmental Quality

SAMPLE SUMMARY

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10367134001	BW16SR-004-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45
10367134002	BW16SR-016-0.15-0.60	Solid	10/20/16 10:00	10/21/16 09:45
10367134003	BW16TR-008-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45
10367134004	BW16TR-013-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45
10367134005	BW16TR-017-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45
10367134006	BW16TR-018-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45
10367134007	BW16BLR-001-0.0-0.15	Solid	10/20/16 10:00	10/21/16 09:45

(612)607-1700

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10367134001	BW16SR-004-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134002	BW16SR-016-0.15-0.60	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134003	BW16TR-008-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134004	BW16TR-013-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134005	BW16TR-017-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134006	BW16TR-018-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V
10367134007	BW16BLR-001-0.0-0.15	EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 9060A	KRV	5	PASI-V

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Method: EPA 7471B
Description: 7471B Mercury
Client: Bay West, Inc.
Date: November 02, 2016

General Information:

7 samples were analyzed for EPA 7471B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

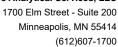
All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Method: EPA 9060A

Description: Total Organic Carbon Quad

Client: Bay West, Inc.

Date: November 02, 2016

General Information:

7 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

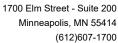
The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

10/28/16 07:35 7440-44-0

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

39500

mg/kg

Pace Project No.: 10367134

Mean Total Organic Carbon

Date: 11/02/2016 01:42 PM

Sample: BW16SR-004-0.0-0.15 Lab ID: 10367134001 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.17 0.049 0.013 10/25/16 10:40 10/27/16 15:19 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 60.5 % 0.10 0.10 1 11/01/16 14:32 Analytical Method: EPA 9060A **Total Organic Carbon Quad** Total Organic Carbon 48300 447 10/28/16 07:13 7440-44-0 2800 mg/kg 46000 Total Organic Carbon 2980 477 10/28/16 07:20 7440-44-0 mg/kg 1 Total Organic Carbon 29400 mg/kg 3320 531 10/28/16 07:28 7440-44-0 1 **Total Organic Carbon** 34300 mg/kg 3290 526 1 10/28/16 07:35 7440-44-0

3100

495

1

10/28/16 08:05 7440-44-0

700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

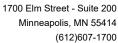
Project: J160139 SLR Sediment AOCs

36500

mg/kg

Pace Project No.: 10367134

Mean Total Organic Carbon


Date: 11/02/2016 01:42 PM

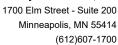
Sample: BW16SR-016-0.15-0.60 Lab ID: 10367134002 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.28 0.032 0.0084 10/25/16 10:40 10/27/16 15:21 7439-97-6 Mercury mg/kg **Dry Weight** Analytical Method: ASTM D2974 Percent Moisture 45.7 % 0.10 0.10 1 11/01/16 14:32 **Total Organic Carbon Quad** Analytical Method: EPA 9060A Total Organic Carbon 48100 463 10/28/16 07:42 7440-44-0 2890 mg/kg 1 Total Organic Carbon 62100 2670 428 10/28/16 07:51 7440-44-0 mg/kg 1 Total Organic Carbon 19800 mg/kg 2920 468 10/28/16 07:58 7440-44-0 1 **Total Organic Carbon** 15900 mg/kg 2930 469 1 10/28/16 08:05 7440-44-0

2860

457

1

ANALYTICAL RESULTS


Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Date: 11/02/2016 01:42 PM

Sample: BW16TR-008-0.0-0.15 Lab ID: 10367134003 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.050 0.031 0.0082 10/25/16 10:40 10/27/16 15:23 7439-97-6 Mercury mg/kg **Dry Weight** Analytical Method: ASTM D2974 0.10 Percent Moisture 45.5 % 0.10 1 11/01/16 14:32 Analytical Method: EPA 9060A **Total Organic Carbon Quad** Total Organic Carbon 7210 469 10/28/16 08:13 7440-44-0 2930 mg/kg 1 303 Total Organic Carbon 24200 1890 10/28/16 08:21 7440-44-0 mg/kg 1 Total Organic Carbon 26700 mg/kg 2050 328 10/28/16 08:28 7440-44-0 1 **Total Organic Carbon** 23900 mg/kg 2270 363 1 10/28/16 08:40 7440-44-0 Mean Total Organic Carbon 20500 mg/kg 2290 366 1 10/28/16 08:40 7440-44-0

10/28/16 09:11 7440-44-0

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

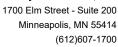
29500

mg/kg

Pace Project No.: 10367134

Mean Total Organic Carbon

Date: 11/02/2016 01:42 PM


Sample: BW16TR-013-0.0-0.15 Lab ID: 10367134004 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.10 0.047 0.012 10/25/16 10:40 10/27/16 15:25 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 58.4 % 0.10 0.10 1 11/01/16 14:32 Analytical Method: EPA 9060A **Total Organic Carbon Quad** Total Organic Carbon 35800 400 10/28/16 08:49 7440-44-0 2500 mg/kg 1 10/28/16 08:56 7440-44-0 Total Organic Carbon 35900 2890 463 mg/kg 1 Total Organic Carbon 34600 mg/kg 2550 408 10/28/16 09:03 7440-44-0 1 **Total Organic Carbon** 11700 mg/kg 2910 466 1 10/28/16 09:11 7440-44-0

2710

434

1

10/28/16 09:40 7440-44-0

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

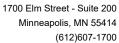
25700

mg/kg

Pace Project No.: 10367134

Mean Total Organic Carbon

Date: 11/02/2016 01:42 PM


Sample: BW16TR-017-0.0-0.15 Lab ID: 10367134005 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.13 0.044 0.012 10/25/16 10:40 10/27/16 15:27 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 54.8 % 0.10 0.10 1 11/01/16 14:33 Analytical Method: EPA 9060A **Total Organic Carbon Quad** Total Organic Carbon 45000 472 10/28/16 09:18 7440-44-0 2950 mg/kg 1 10/28/16 09:26 7440-44-0 Total Organic Carbon 45300 3280 524 mg/kg 1 Total Organic Carbon 7230 mg/kg 3090 495 10/28/16 09:33 7440-44-0 1 **Total Organic Carbon** 5150 mg/kg 3170 507 1 10/28/16 09:40 7440-44-0

3120

499

1

10/31/16 10:02 7440-44-0

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOCs

34600

mg/kg

Pace Project No.: 10367134

Mean Total Organic Carbon

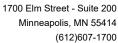
Date: 11/02/2016 01:42 PM

Sample: BW16TR-018-0.0-0.15 Lab ID: 10367134006 Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.12 0.039 0.010 10/25/16 10:40 10/27/16 15:29 7439-97-6 Mercury mg/kg Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 54.5 % 0.10 0.10 1 11/01/16 15:14 Analytical Method: EPA 9060A **Total Organic Carbon Quad** Total Organic Carbon 39400 3300 528 10/31/16 09:40 7440-44-0 mg/kg 1 46800 3520 563 10/31/16 09:48 7440-44-0 Total Organic Carbon mg/kg 1 Total Organic Carbon 13600 mg/kg 3350 536 10/31/16 09:55 7440-44-0 1 **Total Organic Carbon** 38800 mg/kg 3390 543 1 10/31/16 10:02 7440-44-0

3390

543

1


10/28/16 09:47 7440-44-0

10/28/16 10:05 7440-44-0

10/28/16 10:15 7440-44-0

10/28/16 10:22 7440-44-0

10/28/16 10:22 7440-44-0

ANALYTICAL RESULTS

Collected: 10/20/16 10:00 Received: 10/21/16 09:45 Matrix: Solid

Lab ID: 10367134007

Analytical Method: EPA 9060A

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

11200

186000

184000

204000

146000

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Sample: BW16BLR-001-0.0-0.15

Total Organic Carbon Quad

Total Organic Carbon

Total Organic Carbon

Total Organic Carbon

Total Organic Carbon

Mean Total Organic Carbon

Date: 11/02/2016 01:42 PM

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 7471B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 0.19 0.030 10/25/16 10:40 10/27/16 15:32 7439-97-6 Mercury mg/kg 0.11 Analytical Method: ASTM D2974 **Dry Weight** Percent Moisture 82.5 % 0.10 0.10 11/01/16 15:15 1

4490

4700

13300

15000

9380

719

752

2130

2400

1500

1

1

1

1

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Date: 11/02/2016 01:42 PM

QC Batch: 442710 Analysis Method: EPA 7471B

QC Batch Method: EPA 7471B Analysis Description: 7471B Mercury Solids

Associated Lab Samples: 10367134001, 10367134002, 10367134003, 10367134004, 10367134005, 10367134006, 10367134007

METHOD BLANK: 2412946 Matrix: Solid

Associated Lab Samples: 10367134001, 10367134002, 10367134003, 10367134004, 10367134005, 10367134006, 10367134007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersMercurymg/kgND0.0170.004510/27/16 14:49

LABORATORY CONTROL SAMPLE: 2412947

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury mg/kg .5 0.55 110 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2412948 2412949

MS MSD 10366982001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual ND .51 .5 0.59 0.55 75-125 20 Mercury 113 108 mg/kg

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

QC Batch: 444492 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10367134001, 10367134002, 10367134003, 10367134004, 10367134005

SAMPLE DUPLICATE: 2425661

ParameterUnits1277424005 ResultDup ResultMax ResultPercent Moisture%9.510.2730

SAMPLE DUPLICATE: 2425662

Date: 11/02/2016 01:42 PM

		10367134005	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	54.8	54.8	0	30	

(612)607-1700

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

QC Batch: 444507 Analysis Method: ASTM D2974

QC Batch Method: ASTM D2974 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 10367134006, 10367134007

SAMPLE DUPLICATE: 2425768

10367218004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 20.6 % 30 Percent Moisture 21.5 5

SAMPLE DUPLICATE: 2425769

Date: 11/02/2016 01:42 PM

10367218017 Dup Max RPD **RPD** Parameter Units Result Result Qualifiers Percent Moisture % 20.5 19.3 6 30

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Date: 11/02/2016 01:42 PM

QC Batch: 98471 Analysis Method: EPA 9060A

QC Batch Method: EPA 9060A Analysis Description: 9060 TOC Average

Associated Lab Samples: 10367134001, 10367134002, 10367134003, 10367134004, 10367134005, 10367134006, 10367134007

METHOD BLANK: 390620 Matrix: Solid

Associated Lab Samples: 10367134001, 10367134002, 10367134003, 10367134004, 10367134005, 10367134006, 10367134007

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersMean Total Organic Carbonmg/kgND30148.210/28/16 13:33

LABORATORY CONTROL SAMPLE: 390621

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon 82 mg/kg 5820 4780 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390622 390623

MS MSD 10365379006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 31300 32100 56900 70-130 25 Mean Total Organic Carbon 23300 62700 107 123 10 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390624 390625

MS MSD 10367134006 Spike MS MS Spike MSD MSD % Rec Max Parameter Units % Rec RPD Result Conc. Conc. Result Result % Rec Limits **RPD** Qual Mean Total Organic Carbon 34600 46600 48400 68800 87300 73 109 70-130 24 25 mg/kg

(612)607-1700

QUALIFIERS

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 11/02/2016 01:42 PM

PASI-M Pace Analytical Services - Minneapolis
PASI-V Pace Analytical Services - Virginia

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOCs

Pace Project No.: 10367134

Date: 11/02/2016 01:42 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10367134001	BW16SR-004-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134002	BW16SR-016-0.15-0.60	EPA 7471B	442710	EPA 7471B	443204
10367134003	BW16TR-008-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134004	BW16TR-013-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134005	BW16TR-017-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134006	BW16TR-018-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134007	BW16BLR-001-0.0-0.15	EPA 7471B	442710	EPA 7471B	443204
10367134001	BW16SR-004-0.0-0.15	ASTM D2974	444492		
10367134002	BW16SR-016-0.15-0.60	ASTM D2974	444492		
10367134003	BW16TR-008-0.0-0.15	ASTM D2974	444492		
10367134004	BW16TR-013-0.0-0.15	ASTM D2974	444492		
10367134005	BW16TR-017-0.0-0.15	ASTM D2974	444492		
10367134006	BW16TR-018-0.0-0.15	ASTM D2974	444507		
10367134007	BW16BLR-001-0.0-0.15	ASTM D2974	444507		
10367134001	BW16SR-004-0.0-0.15	EPA 9060A	98471		
10367134001	BW16SR-004-0.0-0.15	EPA 9060A	98634		
10367134002	BW16SR-016-0.15-0.60	EPA 9060A	98471		
10367134002	BW16SR-016-0.15-0.60	EPA 9060A	98634		
10367134003	BW16TR-008-0.0-0.15	EPA 9060A	98471		
10367134003	BW16TR-008-0.0-0.15	EPA 9060A	98634		
10367134004	BW16TR-013-0.0-0.15	EPA 9060A	98471		
10367134004	BW16TR-013-0.0-0.15	EPA 9060A	98634		
10367134005	BW16TR-017-0.0-0.15	EPA 9060A	98471		
10367134005	BW16TR-017-0.0-0.15	EPA 9060A	98634		
10367134006	BW16TR-018-0.0-0.15	EPA 9060A	98471		
10367134006	BW16TR-018-0.0-0.15	EPA 9060A	98634		
10367134007	BW16BLR-001-0.0-0.15	EPA 9060A	98471		
10367134007	BW16BLR-001-0.0-0.15	EPA 9060A	98634		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

8	Section A		Section B Remined Profest Information:	FILE OF THE PERSON OF THE PERS	figur		-	Section C	į			Š Č	Section D Fouts Information	je ji					0	10367134	134	
E LEC	Company: Bay West, LLC	- C	Report To:	Mailee	ie Gart	Mailee Garton - Great Lake Envi	nvironmental	Attention:	.1	Accounts Payable	appe	Fad .	Facility_Name:	St. Lauis 6	liver Sedi	St. Louis River Sediment Areas of Concern		Page	-	75	-	
Add	Address: 5 Empire Drive	e,	Copy To: Paul Raymaker - Bay West	Кауша	ker - B	ay West		Company Name:	di	Bay West, LLC	EEC	Faci	Facility Code:	St Louis River Sed	River S	9						
ŝ	St. Paul, MN 55103		Nancy McDonald - Bay West	ald - B	ay We	St	 	Address:		5 Empire Drive	ę,	Faci	Facility_ID:	547023				#202	v.	St R-ToxBlo-07		
ĒЩЗ	Email To: mgarton@glec.com	sc.com	Purchase Order No.:		108002	2		Lab Quote Reference;	ñ	3000017136	7136	Sub	Subfacility_code:	<u>e:</u>					,			
Phone:		231-941-2230	Project Name:		Sedim	SLR Sediment AOCs		Lab Project Manager		Oyeyemi Odujale	Odujole									e de la composição de l	2	
Reg	Requested Due Date/TAT:	Standard	Project Number.	J160139	139															164 TOTAL		T.
															t on B	Requested Analysis						0390
	Sec		d Matri			Collection	tiori	ď.	Preservatives	ន												Jan.
_	Required Cl	Required Client Information MATE	MATRIX CODE	·				-						(ໝໍາ								1
# M3TI	Sample Location ID (sys_loc_code)	Drinking Water Waste I Waste I Salifsal (sys_sample_code) Tissue Other	Dirholing DWW Waste Water WW Waste Water WW Product P SolarSolid SO Sit Wips AR Air Trissue TS Other OT	MATRIX CODE	SAMPLE TYPE (9=6RAS C=COMP)	∃TAG	əmi⊺	# OF CONTRINERS # No CONTRINERS HySO4 HNO3	HCI HO≊N	Na ₂ S ₂ O ₃ Methanol Other	S8 848-WS) ansiuf bns anixold		- Mercury (74718) - Mercury (74718)	TOC (SW-846 8060A Quad Bu					:	Comments	<u>ਈ</u>	· 1 f
1							rocr		_		9555				_					1100		_
4	BWY5MLW-005	BW14MLVV-005-0-0.15	2	S;	5		3504	-				×	×	×						ade	100	
5	BW16SR-004	BW16SR-004-0.0-0.15	5	တ္တ	ט	10/20/16	10:00	- =			1	\vdash		-	-					500	500	
, , ,	BW46SR-016	BW16SR-016-0.15-0.60	09	8	υ	10/20/16	10:00	3 -		+		×	×	×						3	200	т-
7		BW16TR-008-0.0-0.15	5	တ္တ	O	10/20/16	10:00	3		-		×		×						3	7 2	-
99		BW16TR-013-0.0-0.15	5	S.	Ø	10/20/16	10:00	7		+	ļ	×	×	×	-					-		
30 sn	BW16TR-017	BW16TR-017-0.0-0.15	5	ပ္တ	Ø	10/20/16	10:00	· 3 :				×	_	×	-		_	-			3 8	
200		BW16TR-018-0.0-0.15	5	S	U	10/20/16	10:00	- (- (-	-		×		×			4				7 6	T
7.	8W46BLR-001	BW16BLR-001-0.0-0.15	15	S	Ø	10/20/16	10:00				(1)	×	,×	*	,	2 2 7 7	╣	<u>8</u>	\$			Т-
	CONTROL S							pace tox lab		Date	200ct16	191		SHIPP	i.e.	8.0	n s			,		
	Jeus 2						Dep:			Hot:	8	e S	9	HANDLING:		0.00	8.0					
	Size -			-						. Ac		=	3					-		į		
	listrice in									SV68; PRIORITE OVERNING. TRCK: 9802 5318 5172	5318 5	172				. -	_					
Ď							C. O. A. C.	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		28	CEPTED	BYTA	ACCEPTED BY PAFFILIATION		- 12 ·	DATE	2	TIME		SAMPLE CONDITIONS	SNOLL	7
	ADDITIO	ADDITIONAL COMMENTS	#	S	nskien G	RELINGUISHED BY A PHILLIA I DA			6	13	13	X	ļ		=	10/21/16	0	, 45	٥			
		Pac and Laurin Street	50	ΜŽ	altee G	Mailee Garlon/GLEC	Juzura	004		,		4	8						9	/>	/	7
97. Ref.	ference Pace Subconitz 6/16	Reference Page Subconflactor Otter Form agriculty Form 19716/16									'									(N/A)		
							HANNE KAID CICARATION	Handre		(3) (1) (2) (3)							_		qmeT (0°)	eol no b	29배우(((사사) (1년 (()	
] -						PRINT Name	me of SAMPLER:						Maile	Mailee Garton					1	Peceive		
						SIGNATURE	RE of SAMPLER:		3	7	\ \	TE Sign	DATE Signed (MMDD/YY):	نين		10/20/16				-	-	٦
])	<u>,</u>	. <i>لا</i> ا	×												

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

ample Condition Client Name:			Project :	* WO#:10367134
Bay WEST LL	<u> </u>			
urier: ☐Fed Ex ☐UPS [USPS	□c	lient	8 8 8 1 1 1 1 1 1 1
Commercial Pace SpeeDee	_]Other:_			10367134
racking Number: <u>9802</u> <u>5518</u> 5	101			
ustody Seal on Cooler/Box Present?	5112	ieais Inta	act?	Yes No Optional: Proj. Due Date: Proj. Name:
acking Material: Bubble Wrap Bubble Bags	□None		Other:	Temp Blank? Yes No
ermometer 151401163		of ice:	Wet	Samples on ice, cooling process has begun
poler Temp Read (°C): (1). (1). Cooler Temp Corn			<u>ፈ′()</u> ,	1 Biological Tissue Frozen? Yes No NA
mp should be above freezing to 6°C Correction Factor	r: <u>†0</u> .	1_	` Dat	e and Initials of Person Examining Contents: <u>RC 10/21/1り</u>
DA Regulated Soil (N/A, water sample) I samples originate in a quarantine zone within the United St	tates: Al., A	R. AZ. CA	A. FL. GA. I	D. LA Did samples originate from a foreign source (internationally,
NC. NM. NY. OK. OR, SC. TN. TX or VA (check maps)?			Yeş	No including Hawaii and Puerto Rico)?
If Yes to either question, fill out a Regu	lated Soil	Checklis	st (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
nain of Custody Present?	Yes	No	□N/A	1.
hain of Custody Filled Out?	Yes	□No	□N/A	2
nain of Custody Relinquished?	Yes	□No	□N/A	3.
ampler Name and/or Signature on COC?	Ves	□No	□N/A	4.
amples Arrived within Hold Time?	Yes	□No	□n/a	5.
nort Hold Time Analysis (<72 hr)?	Yes	Νο	□n/a	6.
ush Turn Around Time Requested?	□Yes		N/A	7.
ufficient Volume?	ZYes	□No	□n/a	8.
orrect Containers Used?	Yes	 □No	□n/A	9.
-Pace Containers Used?	Yes	□N∘	□n/A	_
ontainers Intact?	Yes	□No	□N/A	10.
iltered Volume Received for Dissolved Tests?	Yes	□No		11. Note if sediment is visible in the dissolved container
<u> </u>	Yes	□No	□N/A	12.
ample Labels Match COC?	∡ _11es	Пио	LIN/A	
-Includes Date/Time/ID/Analysis Matrix:				
thecked?	∐Yes	□No	Z N/A	13.
All containers needing preservation are found to be in			-	Sample #
compliance with EPA recommendation? (HNO3, H2SO4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	N/A	
exceptions: VOA, Coliform, TOC, Oil and Grease,	_		_	Initial when Lot # of added
DRO/8015 (water) DOC	Yes	□No	ZN/A	completed: preservative:
teadspace in VOA Vials (>6mm)?	Yes	□No		14.
Trip Blank Present?	Yes	□No	ZN/A	15.
Trip Blank Custody Seals Present?	∐Yes	∐No	J M/A	
Pace Trip Blank Lot # (if purchased):			*	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? ☐ Yes ☐ No
Person Contacted:				Date/Time:
Comments/Resolution:				

Project Manager Review: _ Low Eatt		>		Date: $10/24/16$ his form will be sent to the North Carolina DEHNR Certification Office (i.e. or

Page 21 of 23

Chain of Custody

Workorder: 10367134

PM: CLJ 277663

Pace Analytical 22 of 23

CLIENT: PACE MPLS Due Date: 11/03/16

σ Ç ယ Cooler Temperature on Receipt Item Minneapolis, MN 55414 Phone (612)607-1700 Pace Analytical Minnesota Suite 200 1700 Elm Street Transfers Report To Lori Castille BW16TR-017-0.0-0.15 BW16\$R-016-0.15-0.60 BW16BLR-001-0.0-0.15 BW16TR-018-0.0-0.15 BW16TR-013-0.0-0.15 BW16TR-008-0,0-0,15 BW16SR-004-0.0-0.15 Sample ID Released By Workorder Name: J160139 SLR Sediment AOCs PS PS PS PS PS Sd Sample Date/Time Collect 10/20/2016 10:00 10367134007 10/20/2016 10:00 10367134006 10/20/2016 10:00 10367134005 10/20/2016 10:00 10/20/2016 10:00 10/20/2016 10:00 10/20/2016 10:00 Date/Time Subcontract To Pace Analytical Virginia MN 315 Chestnut Street Virginia, MN 55792 Phone (218)742-1042 **Custody Seal** 10367134003 10367134004 10367134002 Lab ID 10367134001 Received By Solid Solid Solid Solid Solid Solid Solid Matrix Unpreserved Owner Received Date: 10/21/2016 Results Requested By: 11/3/2016 Received on Ice Date/Time 10-25-16 OC. 906 \times \times 0800 5 z Requested Analysis Samples Intact(X Comments LAB USE ONLY 윽 z

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.;

Document Revised: 23Feb2015

Page 1 of 1

Issuing Authority: e Virginia, Minnesota Quality Office

<u> </u>		F-VM-C-	001-Rev.09	9	Pace Virginia, Minnesota Quality Office
Sample Condition Client Name: Police - M M Courier: Fed Ex JUPS	USPS		Project	#: 40	‡:1277663
Commercial Pace Tracking Number:	Other	_	Client	12776	63
Custody Seal on Cooler/Box Present?	□No	Seals	Intact? [Yes 🗌 No	Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap V Bubble	Bags 🔲 N	one (☑Other:_d	KOZ POL	Temp Blank? ☐ res ☐ No
Thermometer Used: 140792808	Type of	Ice:]Wet [BlueNo:	ne Samples on ice, cooling process has begun
Cooler Temp Read °C: Cooler Temp Temp should be above freezing to 6°C Correction Fa	Corrected °	c: Z		В	iological Tissue Frozen? Yes No VINA on Examining Contents: JPK 1972 4119 Comments: M 10-25-11
Chain of Custody Present?	✓Yes	□No	□N/A	1,	
Chain of Custody Filled Out?	∑Yes	□No	□N/A	2.	
Chain of Custody Relinquished?	□res	□No	□N/A	3.	
Sampler Name and Signature on COC?	Yes	ØΝο	□N/A	4.	
Samples Arrived within Hold Time?	 Ŷes	□No	□N/A	5.	
Short Hold Time Analysis (<72 hr)?	Yes	No	□N/A	6.	
Rush Turn Around Time Requested?	Yes	ŹΝο	□N/A	7.	
Sufficient Volume?	✓ Yes	☐ No	□N/A	8.	
Correct Containers Used?		□No		9.	
-Pace Containers Used?	7 ☑Yes	□No	□N/A		
Containers Intact?	∠ Yes	□No	□N/A	10.	
Filtered Volume Received for Dissolved Tests?	Yes	□No	N/A		iment is visible in the dissolved containers.
Sample Labels Match COC?	Yes			12.	interiors visible at the dissolved containers.
-Includes Date/Time/ID/Analysis Matrix:	51			1 +2.	
All containers needing acid/base preservation will be checked and documented in the pH logbook.	Yes	□No	ŹN/A	See pH log documenta	for results and additional preservation
Heads pace in Methyl Mercury Container	Yes	□No	ŽN/A	13.	
Heads pace in VOA Vials (>6mm)?	Yes	□No	N/A	14.	
Trip Blank Present?	☐Yes	□No	ØN/A	15.	
Trip Blank Custody Seals Present?	Yes	□No	Д N/A		
Pace Trip Blank Lot # (If purchased):	·			······································	
CLIENT NOTIFICATION/RESOLUTION Person Contacted:	,		Г	Date/Time:	Field Data Required? Yes No

FECAL WAIVER ON FILE Y N

Comments/Resolution:

TEMPERATURE WAIVER ON FILE Y

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Laboratory Data **Review Checklist**

Doc Type: Data Review

Instructions: The following is the Minnesota Pollution Control Agency's (MPCA) informal checklist that may be used to review data. The information follows the general format of the National Functional Guidelines which is the primary data review tool used in the U.S. Environmental Protection Agency's Contract Laboratory Program for Superfund analytical work. This checklist should be used in conjunction with the Laboratory Data Checklist Guidance (p-eao-11a): http://www.pca.state.mn.us/index.php/viewdocument.html?gid=16113. Also see the MPCA Laboratory Quality Control (QC) and Data Policy: http://www.pca.state.mn.us/index.php/view-document.html?gid=16288.

Pro	ject	Info	rmation				
Proj	ect nan	ne:	SLR Sediments AOCs – Thomson Reservoir		Labor	atory:	Pace - 10365379
Wor	k order	numb	per: 3000017136		Repo	rt date	(mm/dd/yyyy): 11/01/2016
1.	For h	elp wi	ation th this section on holding times, containers and http://www.health.state.mn.us/divs/phl/environr	presei nental/	rvative <u>'handb</u>	s, refei ook/int	r to the Minnesota Department of Health's ternet/envhandbook.html
	Ques	tions		Yes	No	N/A	Comments
	a.	Is th	ere a chain of custody (COC) with the report?	\boxtimes			
	b.	Is th	ere a sample condition form with the report?	\boxtimes			
	C.	Wer	e there samples requiring preservation?		\boxtimes		
		i.	If so, were they properly preserved?			\boxtimes	
		ii.	Were they received on ice?	\boxtimes			
	d.	Wer	e samples received in the correct containers?	\boxtimes			
		i.	Was there enough sample volume/weight to complete all requested analyses?				
		ii.	Was there enough extra sample collected to complete method required batch QC?				
	е.		e samples received with adequate holding for sample prep for all requested analyses?	\boxtimes			
	f. Are there notes about sample condition or holding time issues on the COC? Explain impact.			\boxtimes			
	g.	repo	ere narration or data qualifiers within the ort about sample condition or holding time es? Explain impact.				The collection time on the sample label for BW16TR-015-0.15-0.36 was incorrect. The correct time was 13:55. No data were qualified.
2.	Cali	brat	ion				
	Ques	tion		Yes	No	N/A	Comments
	a.	calib	he report narrative or data qualifiers indicate oration problems for any analyses? If yes, ain the data impact.				

3	R	lan	ıks
.) .	\mathbf{L}		r. 1

iii.

Are all samples in the preparation batch also

3.	Blar	Blanks										
	Ques	stion		Yes	No	N/A	Comments					
	а.		any of the analyses contain samples for field ip blanks?									
		If yes, are there target analytes present above the reporting limit?										
		ii.	If yes, are the same compounds also present in the samples? Explain possible impact.			\boxtimes						
	b.		method blanks for any analyses contain target ytes above the reporting limit?				A low-level concentration of TOC (88.8 mg/kg) was detected in Method blank 386204.					
		i.	If yes, are the same compounds present in the samples?									
		ii.	Is the amount of target analyte in the blank more than 1/10 th of that in the sample(s)? Explain the possible impact on sample results.		\boxtimes		Sample results were > 10 times the blank concentration.					
1	Suri	roga	tes									
4.	Ques		103	Yes	No	N/A	Comments					
	а.											
	b.	Are	Are the lab recovery limits specified on the report?			\boxtimes						
		i.	Do the lab limits seem reasonable when compared with the suggested guidelines in the MPCA QC Policy?									
	C.		there surrogates outside lab limits? (These uld have a data qualifier)			\boxtimes						
		i.	If yes, are the surrogates above the lab limits?									
		ii.	Below the lab limits?			\boxtimes						
		iii.	Explain what this could mean for the affected samples.									
5.	Lab	orat	ory Control Sample/Laboratory Co	ontro	I San	nple	Duplicate (LCS/LCSD)					
	Ques		<u> </u>	Yes	No	N/A	Comments					
	a.	Are there LCS/LCSD samples present for the reported analyses? (An LCS alone is acceptable if there is an Matrix Spike/Matrix Spike Duplicate [MS/MSD] or sample/sample dup for precision.)		\boxtimes								
		i.	If so, do the lab limits seem reasonable compared to the suggested guidelines in the MPCA QC Policy?									
	b.											
		i.	If yes, are the analytes above the lab limits?									
		ii	Below the lab limits?		П	\square						

 \boxtimes

		flagge	ed for the same analyte(s)?							
	iv.		in what this could mean for the ed samples.			\boxtimes				
Mat	rix S	pike	/Matrix Spike Duplicate/Sai	mple D	le Duplicate (MS/MSD/Dup)					
Question					No	N/A	Comments			
a.			lytical methods used require an MS D? If no, skip to 6.b.							
	i.		the required matrix spikes been ared and reported?							
	ii.	If no, as to	is there and explanation in the report why?							
	iii.		ne lab process an alternate spiked le (such as LCSD) instead?		\boxtimes		MS/MSDs were performed.on sample BW16TR-011-0.60-0.85.			
	iv.	Are th	ne lab limits specified on the report?							
	V.									
	vi.	Are there compounds outside the lab limi		? 🗆	\boxtimes					
		1.	If yes, are the analytes above the la limits?							
		2.	Below the lab limits?							
		3.	Is the source sample also flagged for compounds outside lab limits?	or 🔲						
b.		Is a sample duplicate reported for the analytical method(s)? If no, skip to 6.c.					RPDs discussed apply to MS/MSDs.			
	i.	Is the RPD for the duplicate pair within the lab limits?								
	ii.	If no, has the associated source sample been flagged?								
C.	What is the impact of failed QC on this project?					\boxtimes				
Method Detection Limits/Report Limits										
Question				Yes	No	N/A	Comments			
a.	clea	rly liste	ng and/or method detection limits d on the report for all analyses? (may led quantitation limits)	′						

Additional comments on report:

- (1) No blind field duplicates were collected with the TOC samples in this SDG.
- (2) Level II reports were reviewed, so calibrations and raw data were not reviewed.

TTY 651-282-5332 or 800-657-3864 • Available in alternative formats www.pca.state.mn.us • 651-296-6300 • 800-657-3864 n-ean2-11h • 10/20/11 Page 3 of 3

March 17, 2017

Nancy McDonald Bay West Inc 5 Empire Drive Saint Paul, MN 55103

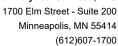
RE: Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Dear Nancy McDonald:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Oyeyemi Odujole for Lori Castille lori.castille@pacelabs.com (612)607-6402 Project Manager

Enclosures

cc: Paul Raymaker, Bay West Jeff Smith, Pace Analytical Services, Inc

CERTIFICATIONS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Montana Certification IDs

150 N. 9th Street, Billings, MT 59101

A2LA Certification #: 3590.01

EPA Region 8 Certification #: 8TMS-L

Idaho Certification #: MT CERT0040

North Dakota Dept. Of Health #: R-209

Washington Department of Ecology #: C993

Nevada Certificate #: MT00012

Minnesota Dept of Health Certification #: 030-999-442

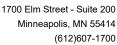

Virginia Minnesota Certification ID's

315 Chestnut Street, Virginia, MN 55792 Minnesota Dept of Health Certification #: 027-137-445
Alaska Certification UST-107 North Dakota Certification: # R-203

Alaska Certification UST-107 Wisconsin DNR Certification # : 998027470
California Certification #2973 WA Department of Ecology Lab ID# C1007
California Certification #2973 Nevada DNR #MN010842015-1

Alaska Certification #MN01084 Oklahoma Department of Environmental Quality

Arizona Department of Health Certification #AZ0785 California Certification #2973



SAMPLE SUMMARY

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365379001	BW16TR-011-0.60-0.85	Solid	10/07/16 13:10	10/07/16 19:35
10365379002	BW16TR-012-0.0-0.15	Solid	10/07/16 13:20	10/07/16 19:35
10365379003	BW16TR-014-0.0-0.15	Solid	10/07/16 13:30	10/07/16 19:35
10365379004	BW16TR-014-0.15-0.38	Solid	10/07/16 13:35	10/07/16 19:35
10365379005	BW16TR-015-0.0-0.15	Solid	10/07/16 13:50	10/07/16 19:35
10365379006	BW16TR-015-0.15-0.36	Solid	10/07/16 13:55	10/07/16 19:35

SAMPLE ANALYTE COUNT

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10365379001	BW16TR-011-0.60-0.85	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V
10365379002	BW16TR-012-0.0-0.15	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V
10365379003	BW16TR-014-0.0-0.15	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V
10365379004	BW16TR-014-0.15-0.38	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V
10365379005	BW16TR-015-0.0-0.15	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V
10365379006	BW16TR-015-0.15-0.36	ASTM D422	WT1	27	PASI-MT
		EPA 9060A	KRV	5	PASI-V

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Method: ASTM D422

Description: ASTM D422 Grain Size/Hydrom.

Client: Bay West, Inc.

Date: March 17, 2017

General Information:

6 samples were analyzed for ASTM D422. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

(612)607-1700

PROJECT NARRATIVE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Method: EPA 9060A

Description: Total Organic Carbon Quad

Client: Bay West, Inc.

Date: March 17, 2017

General Information:

6 samples were analyzed for EPA 9060A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 97596

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379001,10365383012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MSD (Lab ID: 386209)

Mean Total Organic Carbon

QC Batch: 97885

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 10365379003,10365945003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 387933)
 - · Mean Total Organic Carbon

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-011-0.60-0.85 Lab ID: 10365379001 Collected: 10/07/16 13:10 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	ΓM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	100	%			1		10/20/16 09:00		
Sieve #20	100	%			1		10/20/16 09:00		
Sieve #40	100	%			1		10/20/16 09:00		
Sieve #60	100	%			1		10/20/16 09:00		
Sieve #140	99	%			1		10/20/16 09:00		
Sieve #200	98	%			1		10/20/16 09:00		
Hydrometer 1 Passing	70.5	%			1		10/20/16 09:00		
Hydrometer 2 Passing	61.9	%			1		10/20/16 09:00		
Hydrometer 3 Passing	44.9	%			1		10/20/16 09:00		
Hydrometer 4 Passing	37.7	%			1		10/20/16 09:00		
Hydrometer 5 Passing	30.6	%			1		10/20/16 09:00		
Hydrometer 6 Passing	22.1	%			1		10/20/16 09:00		
Hydrometer 7 Passing	15.0	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0258				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0174				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0113				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0083				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0061				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0031				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0013				1		10/20/16 09:00		
otal Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	10600	mg/kg	5810	930	1		10/19/16 10:16	7440-44-0	
Total Organic Carbon	53600	mg/kg	2520	403	1		10/19/16 10:25	7440-44-0	
otal Organic Carbon	54200	mg/kg	3470	555	1		10/19/16 10:33	7440-44-0	
Total Organic Carbon	13500	mg/kg	3810	609	1		10/19/16 10:40	7440-44-0	
Mean Total Organic Carbon	33000	mg/kg	3900	624	1		10/19/16 10:40	7440-44-0	

ANALYTICAL RESULTS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-012-0.0-0.15 Lab ID: 10365379002 Collected: 10/07/16 13:20 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	ΓM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	99	%			1		10/20/16 09:00		
Sieve #20	99	%			1		10/20/16 09:00		
Sieve #40	98	%			1		10/20/16 09:00		
Sieve #60	98	%			1		10/20/16 09:00		
Sieve #140	97	%			1		10/20/16 09:00		
Sieve #200	96	%			1		10/20/16 09:00		
Hydrometer 1 Passing	69.0	%			1		10/20/16 09:00		
Hydrometer 2 Passing	65.5	%			1		10/20/16 09:00		
Hydrometer 3 Passing	52.9	%			1		10/20/16 09:00		
Hydrometer 4 Passing	42.2	%			1		10/20/16 09:00		
Hydrometer 5 Passing	35.0	%			1		10/20/16 09:00		
Hydrometer 6 Passing	20.7	%			1		10/20/16 09:00		
Hydrometer 7 Passing	13.5	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0290				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0187				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0115				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0085				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0062				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0032				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0014				1		10/20/16 09:00		
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	10900	mg/kg	3350	536	1		10/19/16 12:01	7440-44-0	
Total Organic Carbon	30200	mg/kg	2650	423	1		10/19/16 12:08	7440-44-0	
otal Organic Carbon	27700	mg/kg	2590	415	1		10/19/16 12:15	7440-44-0	
Total Organic Carbon	9260	mg/kg	2700	431	1		10/19/16 12:23	7440-44-0	
Mean Total Organic Carbon	19500	mg/kg	2820	451	1		10/19/16 12:23	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-014-0.0-0.15 Lab ID: 10365379003 Collected: 10/07/16 13:30 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	TM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	100	%			1		10/20/16 09:00		
Sieve #20	100	%			1		10/20/16 09:00		
Sieve #40	100	%			1		10/20/16 09:00		
Sieve #60	100	%			1		10/20/16 09:00		
Sieve #140	99	%			1		10/20/16 09:00		
Sieve #200	97	%			1		10/20/16 09:00		
Hydrometer 1 Passing	57.4	%			1		10/20/16 09:00		
Hydrometer 2 Passing	43.8	%			1		10/20/16 09:00		
Hydrometer 3 Passing	36.0	%			1		10/20/16 09:00		
Hydrometer 4 Passing	30.2	%			1		10/20/16 09:00		
Hydrometer 5 Passing	28.2	%			1		10/20/16 09:00		
Hydrometer 6 Passing	18.5	%			1		10/20/16 09:00		
Hydrometer 7 Passing	12.7	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0314				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0210				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0124				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0090				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0064				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0032				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0014				1		10/20/16 09:00		
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	8230	mg/kg	3260	522	1		10/21/16 13:52	7440-44-0	
Total Organic Carbon	34100	mg/kg	1700	272	1		10/21/16 13:59	7440-44-0	
otal Organic Carbon	21700	mg/kg	1960	313	1		10/21/16 14:07	7440-44-0	
Total Organic Carbon	21100	mg/kg	1960	314	1		10/21/16 14:14	7440-44-0	
Mean Total Organic Carbon	21300	mg/kg	2220	355	1		10/21/16 14:14	7440-44-0	M1

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-014-0.15-0.38 Lab ID: 10365379004 Collected: 10/07/16 13:35 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	ΓM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	100	%			1		10/20/16 09:00		
Sieve #20	100	%			1		10/20/16 09:00		
Sieve #40	100	%			1		10/20/16 09:00		
Sieve #60	100	%			1		10/20/16 09:00		
Sieve #140	99	%			1		10/20/16 09:00		
Sieve #200	97	%			1		10/20/16 09:00		
Hydrometer 1 Passing	31.7	%			1		10/20/16 09:00		
Hydrometer 2 Passing	31.7	%			1		10/20/16 09:00		
Hydrometer 3 Passing	22.8	%			1		10/20/16 09:00		
Hydrometer 4 Passing	19.5	%			1		10/20/16 09:00		
Hydrometer 5 Passing	17.2	%			1		10/20/16 09:00		
Hydrometer 6 Passing	11.7	%			1		10/20/16 09:00		
Hydrometer 7 Passing	7.3	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0316				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0200				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0123				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0089				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0064				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0032				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0014				1		10/20/16 09:00		
otal Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
otal Organic Carbon	26900	mg/kg	2720	435	1		10/21/16 15:21	7440-44-0	
Total Organic Carbon	27600	mg/kg	2490	398	1		10/21/16 15:28	7440-44-0	
otal Organic Carbon	11400	mg/kg	2450	392	1		10/21/16 15:36	7440-44-0	
Total Organic Carbon	19900	mg/kg	2470	396	1		10/21/16 15:43	7440-44-0	
Mean Total Organic Carbon	21400	mg/kg	2530	405	1		10/21/16 15:43	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-015-0.0-0.15 Lab ID: 10365379005 Collected: 10/07/16 13:50 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Results reported on a wet-weight	Dusis		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	TM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	100	%			1		10/20/16 09:00		
Sieve #20	100	%			1		10/20/16 09:00		
Sieve #40	100	%			1		10/20/16 09:00		
Sieve #60	99	%			1		10/20/16 09:00		
Sieve #140	98	%			1		10/20/16 09:00		
Sieve #200	90	%			1		10/20/16 09:00		
Hydrometer 1 Passing	76.1	%			1		10/20/16 09:00		
Hydrometer 2 Passing	66.9	%			1		10/20/16 09:00		
Hydrometer 3 Passing	44.9	%			1		10/20/16 09:00		
Hydrometer 4 Passing	35.8	%			1		10/20/16 09:00		
Hydrometer 5 Passing	30.3	%			1		10/20/16 09:00		
Hydrometer 6 Passing	21.1	%			1		10/20/16 09:00		
Hydrometer 7 Passing	15.6	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0282				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0187				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0119				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0087				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0063				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0032				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0014				1		10/20/16 09:00		
otal Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	16200	mg/kg	2470	394	1		10/24/16 06:39	7440-44-0	
Total Organic Carbon	28000	mg/kg	1970	315	1		10/24/16 06:46		
otal Organic Carbon	28600	mg/kg	1860	297	1		10/24/16 06:55	7440-44-0	
Total Organic Carbon	16100	mg/kg	1880	302	1		10/24/16 07:02	7440-44-0	
Mean Total Organic Carbon	22200	mg/kg	2040	327	1		10/24/16 07:02	7440-44-0	

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Sample: BW16TR-015-0.15-0.36 Lab ID: 10365379006 Collected: 10/07/16 13:55 Received: 10/07/16 19:35 Matrix: Solid

Results reported on a "wet-weight" basis

Results reported on a wet-weight	busis		Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
ASTM D422 Grain Size/Hydrom.	Analytical	Method: AS	ΓM D422						
Sieve 3.0"	100	%			1		10/20/16 09:00		
Sieve 2.0"	100	%			1		10/20/16 09:00		
Sieve 1.5"	100	%			1		10/20/16 09:00		
Sieve 1.0"	100	%			1		10/20/16 09:00		
Sieve 0.75"	100	%			1		10/20/16 09:00		
Sieve 0.375"	100	%			1		10/20/16 09:00		
Sieve #4	100	%			1		10/20/16 09:00		
Sieve #10	100	%			1		10/20/16 09:00		
Sieve #20	100	%			1		10/20/16 09:00		
Sieve #40	100	%			1		10/20/16 09:00		
Sieve #60	100	%			1		10/20/16 09:00		
Sieve #140	99	%			1		10/20/16 09:00		
Sieve #200	96	%			1		10/20/16 09:00		
Hydrometer 1 Passing	56.7	%			1		10/20/16 09:00		
Hydrometer 2 Passing	51.4	%			1		10/20/16 09:00		
Hydrometer 3 Passing	40.7	%			1		10/20/16 09:00		
Hydrometer 4 Passing	34.0	%			1		10/20/16 09:00		
Hydrometer 5 Passing	28.7	%			1		10/20/16 09:00		
Hydrometer 6 Passing	18.0	%			1		10/20/16 09:00		
Hydrometer 7 Passing	12.7	%			1		10/20/16 09:00		
Hydrometer 1 Particle Size(mm)	0.0287				1		10/20/16 09:00		
Hydrometer 2 Particle Size(mm)	0.0189				1		10/20/16 09:00		
Hydrometer 3 Particle Size(mm)	0.0117				1		10/20/16 09:00		
Hydrometer 4 Particle Size(mm)	0.0086				1		10/20/16 09:00		
Hydrometer 5 Particle Size(mm)	0.0063				1		10/20/16 09:00		
Hydrometer 6 Particle Size(mm)	0.0032				1		10/20/16 09:00		
Hydrometer 7 Particle Size(mm)	0.0014				1		10/20/16 09:00		
Total Organic Carbon Quad	Analytical	Method: EPA	A 9060A						
Total Organic Carbon	17300	mg/kg	2760	442	1		10/28/16 14:10	7440-44-0	
Total Organic Carbon	34000	mg/kg	2860	458	1		10/28/16 14:18	7440-44-0	
Total Organic Carbon	16200	mg/kg	2660	426	1		10/28/16 14:25	7440-44-0	
Total Organic Carbon	25800	mg/kg	2740	439	1		10/28/16 14:32	7440-44-0	
Mean Total Organic Carbon	23300	mg/kg	2760	441	1		10/28/16 14:32	7440-44-0	

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

QC Batch: 97596 Analysis Method: EPA 9060A

QC Batch Method: EPA 9060A Analysis Description: 9060 TOC Average

Associated Lab Samples: 10365379001, 10365379002

METHOD BLANK: 386204 Matrix: Solid

Associated Lab Samples: 10365379001, 10365379002

Blank Reporting Parameter Units Result Limit MDL Analyzed Qualifiers

Mean Total Organic Carbon mg/kg 88.8J 301 48.2 10/19/16 20:22

LABORATORY CONTROL SAMPLE: 386205

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

 Mean Total Organic Carbon
 mg/kg
 5820
 4490
 77
 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386206 386207

MS MSD 10365379001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual

Mean Total Organic Carbon mg/kg 33000 44700 45700 83900 74700 114 91 70-130 12 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 386208 386209

MS MSD 10365383012 Spike MS MS MSD Spike MSD % Rec Max % Rec Parameter Units RPD Qual Result Conc. Conc. Result Result % Rec Limits RPD

Mean Total Organic Carbon mg/kg 42500 31600 31100 68700 60100 83 57 70-130 13 25 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

QC Batch: 97885 Analysis Method: EPA 9060A

QC Batch Method: EPA 9060A Analysis Description: 9060 TOC Average

Associated Lab Samples: 10365379003, 10365379004, 10365379005

METHOD BLANK: 387929 Matrix: Solid

Associated Lab Samples: 10365379003, 10365379004, 10365379005

Blank Reporting
Parameter Units Result Limit MDL Analyzed

Mean Total Organic Carbon mg/kg ND 302 48.3 10/21/16 08:33

LABORATORY CONTROL SAMPLE: 387930

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Mean Total Organic Carbon mg/kg 5820 4930 85 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387931 387932

MS MSD 10365945003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual

Mean Total Organic Carbon mg/kg 25700 37600 36100 65200 62600 105 102 70-130 4 25

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 387933 387934

MS MSD 10365379003 Spike MS MSD MS MSD Spike % Rec Max Parameter Units % Rec **RPD** RPD Qual Result Conc. Conc. Result Result % Rec Limits Mean Total Organic Carbon 21300 21800 22500 30700 39500 43 81 70-130 25 25 M1 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

J160139 SLR Sediment AOC Project:

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

QC Batch: 98471

QC Batch Method: **EPA 9060A**

Associated Lab Samples: 10365379006 Analysis Method: EPA 9060A

Analysis Description: 9060 TOC Average

390620 METHOD BLANK: Matrix: Solid

Associated Lab Samples: 10365379006

Blank Reporting MDL Parameter Limit Qualifiers Units Result Analyzed Mean Total Organic Carbon ND 301 48.2 10/28/16 13:33 mg/kg

LABORATORY CONTROL SAMPLE: 390621

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mean Total Organic Carbon 82 mg/kg 5820 4780 49-151

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390622 390623

MS MSD 10365379006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 31300 32100 56900 62700 107 70-130 10 25 Mean Total Organic Carbon 23300 123 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 390624 390625

MS MSD 10367134006 MS MSD MS MSD Spike Spike % Rec Max % Rec Parameter Units **RPD** RPD Result Conc. Conc. Result Result % Rec Limits Qual Mean Total Organic Carbon 34600 46600 48400 68800 87300 73 109 70-130 24 25 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-MT Pace Analytical Services - Montana
PASI-V Pace Analytical Services - Virginia

ANALYTE QUALIFIERS

Date: 03/17/2017 09:41 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

(612)607-1700

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: J160139 SLR Sediment AOC

Pace Project No.: 10365379

Date: 03/17/2017 09:41 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365379001	BW16TR-011-0.60-0.85	ASTM D422	442044		
10365379002	BW16TR-012-0.0-0.15	ASTM D422	442044		
10365379003	BW16TR-014-0.0-0.15	ASTM D422	442044		
10365379004	BW16TR-014-0.15-0.38	ASTM D422	442044		
10365379005	BW16TR-015-0.0-0.15	ASTM D422	442044		
10365379006	BW16TR-015-0.15-0.36	ASTM D422	442044		
10365379001	BW16TR-011-0.60-0.85	EPA 9060A	97596		
10365379001	BW16TR-011-0.60-0.85	EPA 9060A	97656		
10365379002	BW16TR-012-0.0-0.15	EPA 9060A	97596		
10365379002	BW16TR-012-0.0-0.15	EPA 9060A	97656		
10365379003	BW16TR-014-0.0-0.15	EPA 9060A	97885		
10365379003	BW16TR-014-0.0-0.15	EPA 9060A	97886		
10365379004	BW16TR-014-0.15-0.38	EPA 9060A	97885		
10365379004	BW16TR-014-0.15-0.38	EPA 9060A	97886		
10365379005	BW16TR-015-0.0-0.15	EPA 9060A	97885		
10365379005	BW16TR-015-0.0-0.15	EPA 9060A	97886		
10365379006	BW16TR-015-0.15-0.36	EPA 9060A	98471		
0365379006	BW16TR-015-0.15-0.36	EPA 9060A	98634		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Cardian A		9.00						1			•	1					
Required Client Information:	ë	Section B Required Project Information:	Informat	ion:		_	Section C Invoice Infor	c ormation:			Sec IOU	Section D EQuIS Information:			.==	1036,5379	7
Company: Bay West, LLC	СС	Report To:	Nanc	Nancy McDonald	naid		Attention:		Accounts Payable	Payable	Faci	Facility_Name: St. Louis Riv	St. Louis River Sediment Areas of Concern	овш Бада		7	Γ
Address: 5 Empire Drive	ive	Copy To: Paul Raymaker	-Sayma	žē.			Company Name:	Name:	Bay W	Bay West, LLC	E L	Facility_Code: St Louis River Sed	iver Sed	-	~	5	
St. Paul, MN 55103							Address:		5 Empire Drive	3 Drive	Faci	Facility_ID: 547023		* 503		"	
ä	nmcdonald@baywest.com	Purchase Order No.:		108002			Lab Quote Reference	чебителся:	300	3000017136	gr.	Subfacility_code:				SLR-TR	
Phone:	651-291-3483	Project Name:	SLR	Sedime	SLR Sediment AOCs		Lab Project Manager	Manager:	Oyeye	Oyeyemi Odujole	40				Site Location		Τ
Requested Due Date/TAT:	: Standard	Project Number:	J160139	139											STATE	¥ •	
-										3 T		R	Requested Analysis				
Se Required (Section E Required Client Information MA	Valid Matrix Codes MATRIX CODE			Collection	tion		Prese	Preservatives		(Jefer						
Sample Location ID (sys_loc_code)	de ID le_∞de)	Drinking Water DW Waste Waller W Soul/Solid P Oil SO Winpe OL Air Tissue AR Other OT	MATRIX CODE	SAMPLE TYPE (G=GRAB C=COMP)	DATE	əmiT	Unpreserved	HCI HNO ³ H ⁵ 80 ⁴	HO _B N _E O _S S _S BN	Methanol Other	TOC (SW-846 9060A Quad Burn) Grain Size (ASTM D422 w/ hydrom					Comments	
Ex. BW15MLW-005	BW14MLW-005-0-0.15	.5	လွ	9	3/12/15	1204					-					100	
1 BW16TR-011	BW16TR-011-0.60-0.85	85	SO	9	10,7716	1310	2 2				1					000	
2 BW16TR-012	BW16TR-012-0.0-0.15	5	8	Ú	1077/16	1320	2 2				1					43	٦
3 BW16TR-014	BW16TR-014-0.0-0.15	2	ક્ર	Ŋ	10/7/16	1330	2 2			1 + + () + 1	1					500	
4 BW16TR-014	BW16TR-014-0.15-0.38	38	ß	U	10/7/16	1335	2 2			. 4: 7 . 7 .	-					ب رض ب	
5 BW16TR-015	BW16TR-015-0.0-0.15	0	S	ø	10/7/16	1350	2 2			2.3	-					3	
6 BW16TR-015	BW16TR-015-0.15-0.36	36	S	ט	10/7/16	1355	2 2			1 b.,	-					306	
1										\$ 777 to 200	+						
ω σ ₁			工				-	+		19.4 (4.1	-						
10							-										
11										11 Sept. 15							
12	oriental control	Č		—[X	100 A 100 A	1		1									
HINGK	COMMENS OF			1000	10 C		1 2			4		NO.	3140	Samuel Communication of the Co	avo .	INCE CONDITIONS	1
Reference Subcontractor Order Form signed by Bay	Reference Subcontractor Goods andfor Services Purchase Order Form signed by Bay West on 9119116	A KE	到想	Musson Utrue P	Colon	<u> </u>	(0) LI		4/1/1/tena	4	10 T	5	61/2/0)	1555	7.3	セナ	
Page		<u></u>					CEA		12	5			31/2/01	GEW!	82	39looO bi	ct (Y/N)
18 of 4					SAMPLER PRINT Name	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER:	ATTURE	Š	Muss	son	7. 7.				qmaT (D°)	ceived on li	ejul eəldwe
l 1					SIGNATURE of SAMPL	of SAMPLER	0	2	Mrs		TE Signe	DATE Signed (MM/DD/YY):	9]/1/01				62

Face Analytical*

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Occupany	C		Project	# WO#:10365379
Courier: Dead by Dups	<u>- (</u>		1:4	**************************************
Courier: ☐Fed EX ☐UPS ☐ ☐Commercial ☐Face ☐SpeeDee ☐	USPS Other:	∟ւ	lient	
Tracking Number:		•		10365375
Custody Seal on Cooler/Box Present? Yes No	;	Seals Inta	act?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	Non	e 🔲 (Other:	Temp Blank? ✓ Yes ☐ No
Thermometer	180	e of Ice:	□We	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 2,9,2,8 Cooler Temp Corr		: 3.1	3,0	Biological Tissue Frozen? ☐Yes ☐No ☑N/A
Temp should be above freezing to 6°C				te and Initials of Person Examining Contents: BC 10 10
USDA Regulated Soil (N/A, water sample)				
Did samples originate in a quarantine zone within the United S MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	ates: AL, A	AR, AZ, CA	, FL, GA, Flyes	ID, LA. Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
	lated Soil	Checklis		-Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Z∕Ŷes	□No	□N/A	1.
Chain of Custody Filled Out?	"□Yes	□No	□N/A	2.
Chain of Custody Relinquished?	✓Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	□N/A	4.
Samples Arrived within Hold Time?	√☐Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	No	□N/A	6.
Rush Turn Around Time Requested?	□Yes	ØNo	□N/A	7:
Sufficient Volume?	ZÎYes	∐No	□n/a	8.
Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	□ /es	□No	□N/A	.:
Containers Intact?	✓Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	∐Yes	□No	∏⁄N/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	. □∕∕_ s	ØNo	□N/A	12. ID AWINTR-015-0.16-0.36 has incorpor
-Includes Date/Time/ID/Analysis Matrix:	13 C	10/7/	'≀ \	time on label, should be "1752-11
All containers needing acid/base preservation have been				13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
checked? All containers needing preservation are found to be in	∐Yes	□No	ØN/A	Sample #
compliance with EPA recommendation?		—	⊏ 7	
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease,	∐Yes	□No	ØÑ/A	Initial when Lot # of added
DRO/8015 (water) DOC	∐Yes	□No	⊠ N/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No	[ZÎN/A	14.
Trip Blank Present?	Yes	□No	N/A	15.
Trip Blank Custody Seals Present?	Yes	□No	ØN/A	
Pace Trip Blank Lot # (if purchased):	 ·		-	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? ☐ Yes ☐ No
Person Contacted:				Date/Time:
Comments/Resolution:				
- I OPTI	1			10/10/16

Intra-Regional Chain of Custody

Pace Analytical "

LAB USE ONLY Z 9 Due Date: 10/17/2016 Samples Intact Y Comments Requested Analysis Owner Received Date: 10/7/2016 Y or (N 6830 Received on Ice × × × × × ASTM D422 Date/Time Preserved Containers Other mswilled Z Workorder Name: J160139 SLR Sediment AOC Matrix Solid Solid Solid Solid Solid Solid Custody Seal (Y) or Pace Analytical Billings MT Received By 10/7/2016 13:55 10365379006 10365379002 10365379003 10365379004 10365379005 150 N Ninth Street Billings, MT 59101 Phone (406)254-7226 10365379001 Lab ID 10/10/16 1250 10/7/2016 13:35 10/7/2016 13:10 10/7/2016 13:20 10/7/2016 13:30 10/7/2016 13:50 Date/Time Date/Time Collect ပ MANGETAN Pace Sample Type Cooler Temperature on Receipt UA PS PS PS PS PS PS Pace Analytical Minnesota 1700 Elm Street Workorder: 10365379 Released By Minneapolis, MN 55414 BW16TR-011-0.60-0.85 BW16TR-014-0.15-0.38 BW16TR-015-0.15-0.36 BW16TR-012-0.0-0.15 BW16TR-014-0.0-0.15 BW16TR-015-0.0-0.15 Phone (612)607-1700 Sample ID Lori Castille Received at Report To: Suite 200 **Transfers** Item | 2

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Page 1 of

Pace Analytical

hold, incorrect preservative, out of temp, incorrect containers)

Document Name:

Sample Condition Upon Receipt Form

Document No.:

F-MT-C-184-Rev.10

Document Revised: 04Aug2016 Page 1 of 1

Issuing Authority:
Pace Montana Quality Office

Courier: See Ex UPS Commercial Pace Tracking Number: 4751 5820	USPS Other:	Cli	Project #:	16365379
Custody Seal on Cooler/Box Present? Yes	lo Seals I	ntact?	Eves	No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bag	s Non	ie 🔲	Other:	Temp Blank? ☐Yes 🖻 Ño
Thermometer Used: ☐ 160285052 ☐ 140279186 ☐ NA	Type of Ice	e: Dv	/et 🗌	Blue None Samples on ice, cooling process has begun
Cooler Temp Read: WA			Dat	te and Initials of Person Examining Contents: 10/11 W.+
Cooler Temp Corrected:				Biological Tissue Frozen? Yes No
Temp should be above freezing to 6°C				Comments:
Chain of Custody Present?	Tyes	□No	□N/A	1.
Chain of Custody Freschit?	Tyes	□No	□N/A	2.
Chain of Custody Pilica Out:	: Xes	□ No	□N/A	3.
Sampler Name and Signature on COC?	□Yes		□N/A	4.
Samples Arrived within Hold Time?	The state of the s	No		
Short Hold Time Analysis (<72 hr)?	Xes	□ No	□N/A	5.
AT LINE STORES SANCTON STORES	Yes	₽Ño	□N/A	6.
Rush Turn Around Time Requested? Sufficient Volume?	Yes	DA:	□N/A	7.
	- Ves	□No	□N/A	8.
Correct Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	Yes	No.	□N/A	
Containers Intact?	Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	DIN/A	11. Note if sediment is visible in the dissolved container.
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix: 52	∰Yes	□No	□N/A	12.
All containers needing acid/base preservation have been checked?	□Yes	□No	DK/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation? $(HNO_3,H_2SO_4,HCI<2;NaOH>9Sulfide,NaOH>12Cyanide)$	□Yes	□No	Ø*√A	NA
Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water)	□Yes	Ďįvo		Lot # of added Initial when completed: preservative:
Headspace in VOA Vials (>6mm)?	Yes	□No	₩/A	14.
Trip Blank Present?	□Yes	□No	QN/A	15.
Trip Blank Custody Seals Present?	Yes	□No	DAVA	737
Pace Trip Blank Lot # (if purchased):		L .15	941	
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:				Field Data Required? Yes No Date/Time:
Project Manager Review: Low Ca				Date: 10/11/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

			`
ŀ	5	_	
	\subsetneq	2	
	•	F	
	۲	~	
) 	l
	C	_)
	2	N X	l
÷,		_)

PM: CLJ

Due Date: 10/21/16

CLIENT: PACE MPLS

Page 22 of 41

Coole	3	· -	Transfers	#100 240 240 240 240 240 240 240 240 240 2	6 B	б	4	3 B	2 B	<u> </u>	3	Lori Castille Pace Analyt 1700 Elm S Suite 200 Minneapolis Phone (612	Report To	Work
Cooler Temperature on Receipt	4		rs Released By		BW16TR-015-0.15-0.36	BW16TR-015-0.0-0.15	BW16TR-014-0.15-0.36	BW16TR-014-0.0-0.15	BW16TR-012-0.0-0.15	BW16TR-011-0.60-0.85	Sample ID	Lori Castille Pace Analytical Minnesota 1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone (612)607-1700		Workorder: 10365379
ceipt 2,3 °C		10	Da		PS 10/7/2016 13:55	PS 10/7/2016 13:50	PS 10/7/2016 13:35	PS 10/7/2016 13:30	PS 10/7/2016 13:20	PS 10/7/2016 13:10	Sample Collect Type Date/Time			Workorder Name: J
Custody Seal (y	III PO CIÓN	洭	Date/Time Received By		6 13:55 10365379006	6 13:50 10365379005	6 13:35 10365379004	6 13:30 10365379003	6 13:20 10365379002	6 13:10 10365379001	ne Lab ID	Pace Analytical Virginia MN 315 Chestnut Street Virginia, MN 55792 Phone (218)742-1042	Subcontract To	Workorder Name: J160139 SLR Sediment AOC
or N			Y		Solid 1	Solid 1	Solid 1	Solid 1	Solid 1	Solid 1	Mart Victorian Control of Control	a MN Preserved Containers		
Received on Ice 🗭	16-1476	OHIMITIAL POP	Date/Time		×	×	×	×	×	×	TOC	Containers SOGO quad	TOTAL STANSON CONTRACTOR OF THE PROPERTY OF TH	Owner Received Date:
or N	,	ŏ		シスペース (1) 1 (1) (1) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4									Requested Analysis	10///2016
Samples Intact (V or				Comments			the state of the s		The state of the s				alysis	Results Requested By:
Y or N										And the second s	LAB USE ONLY	-		sy: 10/21/2016

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

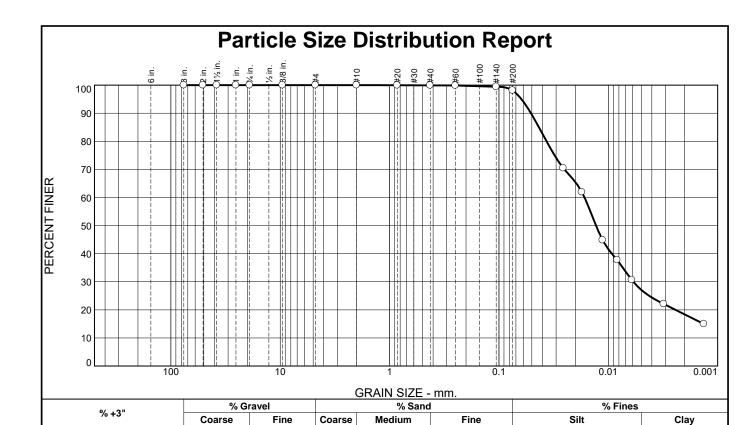
Pace Analytical

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-VM-C-001-Rev.09

Document Revised: 23Feb2015


Page 1 of 1

Issuing Authority:

Pace Virginia, Minnesota Quality Office

Page 23 of 41

Sample Condition Client Name: Upon Receipt 0 - 00 - 40 11			Project i	1076786
Upon Receipt Pace - MIV				W0#:1276786
Courier: Fed Ex UPS	USPS		Client	
☐Commercial ☐Pace	Other			
Tracking Number:				1276786
Custody Seal on Cooler/Box Present?	No	Seals I		Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: 🗓 Bubble Wrap 🗓 Bubble B	ags 🔲 N	one [Other:_t	Temp Blank? Yes No
nermometer Used: 🖟 140792808	Type of	Ice:]Wet [Blue None Samples on ice, cooling process has beg
Cooler Temp Read °C: 2 Cooler Temp emp should be above freezing to 6°C Correction Fac		c: 2	.3 Date and	Biological Tissue Frozen? Yes No Market Initials of Person Examining Contents:
			<u></u>	Comments: W 10-12-16
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	L∕_iYes	□No	N/A	2.
Chain of Custody Relinquished?	☐Yes	No	□N/A	3.
Sampler Name and Signature on COC?	. ∐Yes	ØNo □No	□N/A	4.
Samples Arrived within Hold Time?		No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes		□N/A	6.
Rush Turn Around Time Requested? Sufficient Volume?	Yes	ZNo □No	□N/A	7.
Correct Containers Used?		□No	□N/A	8.
-Pace Containers Used?	ØYes ØYes	□No	□N/A	9.
Containers Intact?	✓ ✓ Yes	No □No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	<u>∠∠i res</u> Yes	□No		
Sample Labels Match COC?	X+es	No □No	N/A □N/A	11. Note if sediment is visible in the dissolved containers.12.
,	51-	□ IAC	□\\/A	
-Includes Date/Time/ID/Analysis Matrix:				See pH log for results and additional preservation
All containers needing acid/base preservation will be checked and documented in the pH logbook.	□Yes	□No	N/A	documentation
Headspace in Methyl Mercury Container	□Yes	□No	N/A	13.
Headspace in VOA Vials (>6mm)?	Yes	□No	ĎN/A	14.
Trip Blank Present?	□Yes	□No	[□N/A	15.
Trip Blank Custody Seals Present?	□Yes	□No	☑N/A	
Pace Trip Blank Lot # (if purchased):	b			
LIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:	·			ate/Time:
Comments/Resolution:				
			-	1- 00000-00000-0010-0-
	 ~	····		
ECAL WAIVER ON FILE Y N		TEM	PERATU	RE WAIVER ON FILE Y N
	Δ			
roject Manager Review:	111			Date: 10/12/16

0

-	TEST RESULT	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	98		
0.0258 mm.	70		
0.0174 mm.	62		
0.0113 mm.	45		
0.0083 mm.	38		
0.0061 mm.	31		
0.0031 mm.	22		
0.0013 mm.	15		
* (no spec	ification provide	d)	

	Material Description	<u>on</u>
silt		
A++o	rhora Limits (ASTM	D 4319)
PL= NP	rberg Limits (ASTM LL= NV	Pl=
	Classification	
USCS (D 2487)=	ML AASHTO (I	M 145)= A-4(0)
	Coefficients	
D₉₀= 0.0510 D₅₀= 0.0129	D₈₅= 0.0431 D₃₀= 0.0059	D₆₀= 0.0165 D₁₅= 0.0013
D ₁₀ =	C _u =	C _C =
	Remarks	
Date Received: 1		ested: 10/20/16
Tested By: \frac{1}{2}	Will Thomas	
Checked By: I	Rhonda Johnson	
Title: I	Lab Manager	

71

2

Location: BW16TR-011-0.60-0.85 **Sample Number:** 10365379-1

0

Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No:

Date Sampled: 10/7/16

Figure

27

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-011-0.60-0.85 Sample Number: 10365379-1 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Sieve	Test	Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
686.24	580.62	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
70.32	0.00	#20	0.02	0.00	100
		#40	0.04	0.00	100
		#60	0.04	0.00	100
		#140	0.29	0.00	99
		#200	0.95	0.00	98

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample = 70.32

Automatic temperature correction

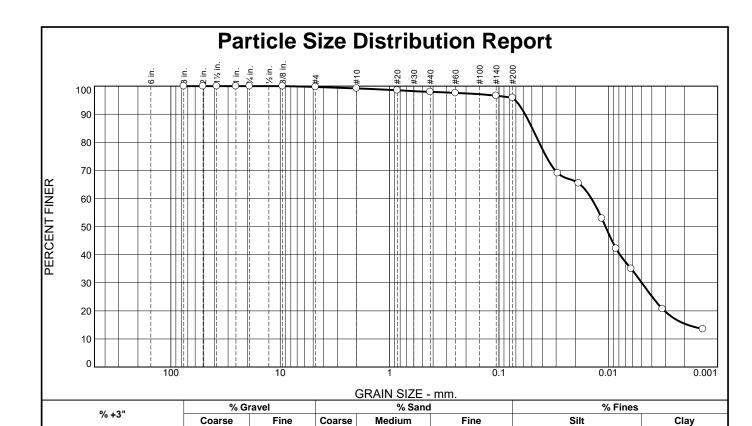
Composite correction (fluid density and meniscus height) at 20 deg. C = -8

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	58.0	49.5	0.0140	58.0	6.8	0.0258	70.5
5.00	18.0	52.0	43.5	0.0140	52.0	7.8	0.0174	61.9
15.00	18.0	40.0	31.5	0.0140	40.0	9.7	0.0113	44.9
30.00	18.0	35.0	26.5	0.0140	35.0	10.6	0.0083	37.7
60.00	18.0	30.0	21.5	0.0140	30.0	11.4	0.0061	30.6
250.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0031	22.1
1440.00	18.0	19.0	10.5	0.0140	19.0	13.2	0.0013	15.0
			Pace Ar	nalytical	Service	s, Inc		

Page 25 of 41


Fractional Components

Cobbles		Gravel Sand Fines				Sand				
Copples	Coarse	Fine	Total	Coarse Medium Fine Total			Silt	Clay	Total	
0	0	0	0	0	0	2	2	71	27	98

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0013	0.0024	0.0059	0.0093	0.0129	0.0165	0.0367	0.0431	0.0510	0.0622

Fineness
Modulus
0.01

Pace Analytical Services, Inc. _____

TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
3	100								
2	100								
1.5	100								
1	100								
.75	100								
.375	100								
#4	100								
#10	99								
#20	99								
#40	98								
#60	98								
#140	97								
#200	96								
0.0290 mm.	69								
0.0187 mm.	65								
0.0115 mm.	53								
0.0085 mm.	42								
0.0062 mm.	35								
0.0032 mm.	21								
0.0014 mm.	14								
* (no spe	cification provide	d)							

0

0

0

	Material Descript	tion
silt		
Atte	erberg Limits (ASTI	M D 4318)
PL= NP	LL= NV	Pl=
USCS (D 2487)=	Classification ML AASHTO	<u>1</u> (M 145)= A-4(0)
D ₉₀ = 0.0577 D ₅₀ = 0.0106 D ₁₀ =	Coefficients D ₈₅ = 0.0496 D ₃₀ = 0.0049 C _u =	D ₆₀ = 0.0143 D ₁₅ = 0.0019 C _c =
	Remarks	
Date Received:		Tested: 10/20/16
Tested By:	Will Thomas	
Checked By:	Rhonda Johnson	
Title:	Lab Manager	

66

Location: BW16TR-012-0.0-0.15 Sample Number: 10365379-2

Pace Analytical Services, Inc.

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No:

2

Date Sampled: 10/7/16

Figure

30

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-012-0.0-0.15 Sample Number: 10365379-2 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
829.58	574.43	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.77	0.00	100
		#10	1.31	0.00	99
55.38	0.00	#20	0.36	0.00	99
		#40	0.33	0.00	98
		#60	0.23	0.00	98

Hydrometer Test Data

0.00

0.00

97

96

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 99

Weight of hydrometer sample =55.38 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140 #200

Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

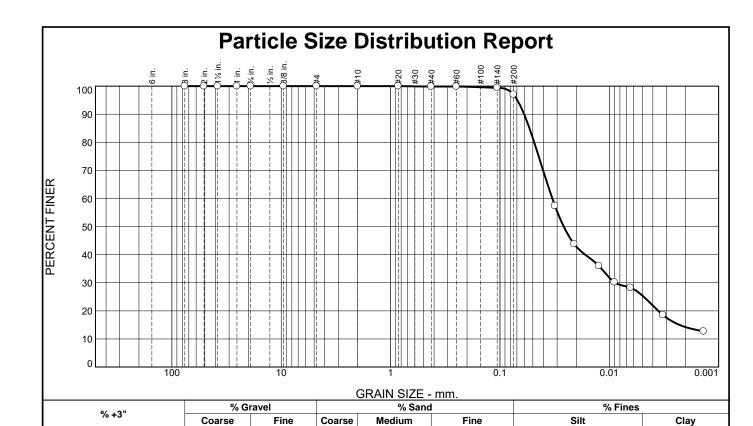
Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	47.0	38.5	0.0140	47.0	8.6	0.0290	69.0
5.00	18.0	45.0	36.5	0.0140	45.0	8.9	0.0187	65.5
15.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0115	52.9
30.00	18.0	32.0	23.5	0.0140	32.0	11.0	0.0085	42.2
60.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0062	35.0
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	20.7
1440.00	18.0	16.0	7.5	0.0140	16.0	13.7	0.0014	13.5
			Pace Ar	nalytical	Service	es, Inc		

0.53

0.41

Hydrometer Test Data (continued)

Eff. **Elapsed** Temp. Actual Corrected Diameter Percent Time (min.) (deg. C.) Reading Reading K Rm Depth (mm.) Finer


Fractional Components

Cobbles		Gravel Sand Fines					Sand			
Copples	Coarse	Fine	Total	Coarse Medium Fine Total			Silt	Clay	Total	
0	0	0	0	1	1	2	4	66	30	96

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0019	0.0031	0.0049	0.0078	0.0106	0.0143	0.0430	0.0496	0.0577	0.0708

Fineness Modulus 0.09

Pace Analytical Services, Inc. _

0

TEST RESULTS (ASTM D422)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
3	100								
2	100								
1.5	100								
1	100								
.75	100								
.375	100								
#4	100								
#10	100								
#20	100								
#40	100								
#60	100								
#140	99								
#200	97								
0.0314 mm.	57								
0.0210 mm.	44								
0.0124 mm.	36								
0.0090 mm.	30								
0.0064 mm.	28								
0.0032 mm.	19								
0.0014 mm.	13								

0

Material Description							
silt							
Δ++	erberg Limits (ASTM D 4318)						
PL= NP	LL= NV PI=						
	Classification						
USCS (D 2487)=	ML AASHTO (M 145)= A-4(0)						
	Coefficients						
D₉₀= 0.0601 D₅₀= 0.0261	D₈₅= 0.0537						
D ₁₀ = 0.0201	C _u = C _c =						
Remarks							
Date Received:	10/7/16 Date Tested: 10/20/16						
Tested By:							
		-					
	Rhonda Johnson	-					
Title:	Lab Manager						

72

Location: BW16TR-014-0.0-0.15
Sample Number: 10365379-3

Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

3

Date Sampled: 10/7/16

25

GRAIN SIZE DISTRIBUTION TEST DATA

Sieve Test Data

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-014-0.0-0.15 Sample Number: 10365379-3 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
657.30	565.75	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
51.49	0.00	#20	0.00	0.00	100
		#40	0.07	0.00	100
		#60	0.00	0.00	100

Hydrometer Test Data

0.00

0.00

99

97

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =51.49 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#140

#200

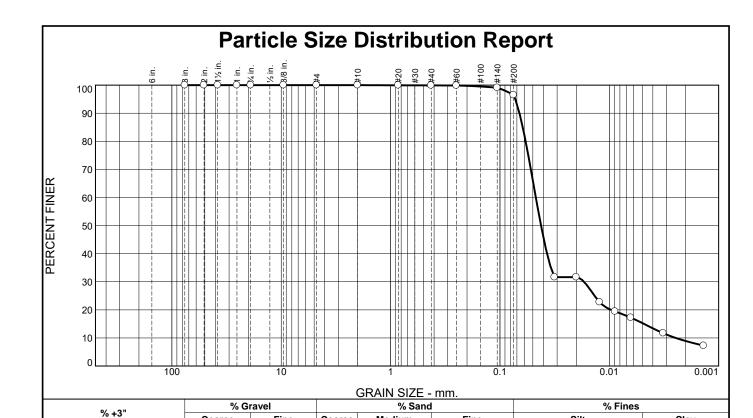
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	18.0	38.0	29.5	0.0140	38.0	10.1	0.0314	57.4	
5.00	18.0	31.0	22.5	0.0140	31.0	11.2	0.0210	43.8	
15.00	18.0	27.0	18.5	0.0140	27.0	11.9	0.0124	36.0	
30.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0090	30.2	
60.00	18.0	23.0	14.5	0.0140	23.0	12.5	0.0064	28.2	
250.00	18.0	18.0	9.5	0.0140	18.0	13.3	0.0032	18.5	
1440.00	18.0	15.0	6.5	0.0140	15.0	13.8	0.0014	12.7	
	Pace Analytical Services, Inc								

0.23

1.25


Fractional Components

Cobbles	Gravel				Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	0	3	3	72	25	97	

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0023	0.0036	0.0088	0.0166	0.0261	0.0332	0.0486	0.0537	0.0601	0.0692

Fineness Modulus
0.01

Pace Analytical Services, Inc.

	TEST RESULTS	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	97		
0.0316 mm.	32		
0.0200 mm.	32		
0.0123 mm.	23		
0.0089 mm.	19		
0.0064 mm.	17		
0.0032 mm.	12		
0.0014 mm.	7.3		

Coarse

0

Fine

Coarse

0

Medium

Fine

	Material Descrip	<u>tion</u>				
silt						
Att	erberg Limits (AST	M D 4318)				
PL= NP	LL= NV	PI=				
USCS (D 2487)=	Classification ML AASHTO					
	Coefficients					
D₉₀= 0.0663 D₅₀= 0.0421	D₈₅= 0.0619 D₃₀= 0.0170 C_u= 19.02	D₆₀= 0.0469 D₁₅= 0.0048				
D ₁₀ = 0.0025	$C_{u} = 19.02$	C _c = 2.50				
	Remarks					
Date Received:	10/7/16 Date	Tested: 10/20/16				
Tested By:	Will Thomas					
Checked By:	Rhonda Johnson					
Title:	Lab Manager					

Silt

82

Clay

15

Location: BW16TR-014-0.15-0.38
Sample Number: 10365379-4

Pace Analytical Services, Inc.

(no specification provided)

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

Date Sampled: 10/7/16

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-014-0.15-0.38 Sample Number: 10365379-4 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
987.32	589.81	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
90.18	0.00	#20	0.05	0.00	100
		#40	0.03	0.00	100
		#60	0.04	0.00	100
		#140	0.69	0.00	99

Hydrometer Test Data

0.00

97

Sieve Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =90.18

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

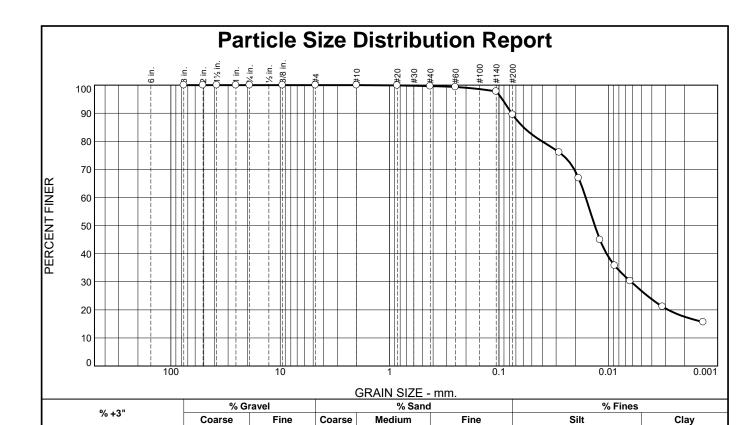
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	
2.00	18.0	37.0	28.5	0.0140	37.0	10.2	0.0316	31.7	
5.00	18.0	37.0	28.5	0.0140	37.0	10.2	0.0200	31.7	
15.00	18.0	29.0	20.5	0.0140	29.0	11.5	0.0123	22.8	
30.00	18.0	26.0	17.5	0.0140	26.0	12.0	0.0089	19.5	
60.00	18.0	24.0	15.5	0.0140	24.0	12.4	0.0064	17.2	
250.00	18.0	19.0	10.5	0.0140	19.0	13.2	0.0032	11.7	
1440.00	18.0	15.0	6.5	0.0140	15.0	13.8	0.0014	7.3	
	Pace Analytical Services, Inc								

2.34

....,,


Fractional Components

Cobbles		Gravel		Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	3	3	82	15	97

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
	0.0025	0.0048	0.0096	0.0170	0.0371	0.0421	0.0469	0.0582	0.0619	0.0663	0.0724

Fineness Modulus	c _u	cc
0.01	19.02	2.50

_____ Pace Analytical Services, Inc. _____

0

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	99		
#140	98		
#200	90		
0.0282 mm.	76		
0.0187 mm.	67		
0.0119 mm.	45		
0.0087 mm.	36		
0.0063 mm.	30		
0.0032 mm.	21		
0.0014 mm.	16		

0

silt	Material Description
PL= NP USCS (D 2487)=	erberg Limits (ASTM D 4318) LL= NV PI= Classification ML AASHTO (M 145)= A-4(0)
D ₉₀ = 0.0765 D ₅₀ = 0.0133 D ₁₀ =	$\begin{array}{c cccc} \textbf{Coefficients} & & & & \\ \textbf{D_{85}} = & 0.0596 & & \textbf{D_{60}} = & 0.0161 \\ \textbf{D_{30}} = & 0.0062 & & \textbf{D_{15}} = \\ \textbf{C_{u}} = & & \textbf{C_{c}} = \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$
Date Received: Tested By:	Will Thomas
	Rhonda Johnson Lab Manager

63

10

* (no specification provided)

0

Location: BW16TR-015-0.0-0.15 **Sample Number:** 10365379-5 **Date Sampled:** 10/7/16

Pace Analytical Services, Inc.

Client: Bay West, Inc.
Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

27

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-015-0.0-0.15 Sample Number: 10365379-5 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will Thomas

Checked By: Rhonda Johnson

Test Date: 10/20/16

Title: Lab Manager

			Sie	ve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
683.51	571.55	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
54.62	0.00	#20	0.06	0.00	100
		#40	0.14	0.00	100
		#60	0.16	0.00	99
		#140	0.85	0.00	98

Hydrometer Test Data

0.00

90

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =54.62

Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

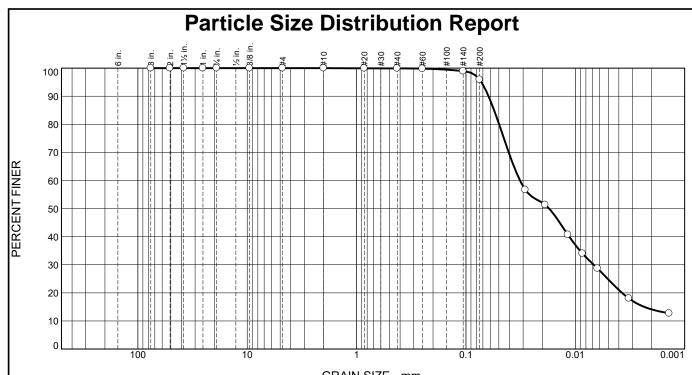
Meniscus correction only = 0.0Specific gravity of solids = 2.65Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	50.0	41.5	0.0140	50.0	8.1	0.0282	76.1
5.00	18.0	45.0	36.5	0.0140	45.0	8.9	0.0187	66.9
15.00	18.0	33.0	24.5	0.0140	33.0	10.9	0.0119	44.9
30.00	18.0	28.0	19.5	0.0140	28.0	11.7	0.0087	35.8
60.00	18.0	25.0	16.5	0.0140	25.0	12.2	0.0063	30.3
250.00	18.0	20.0	11.5	0.0140	20.0	13.0	0.0032	21.1
1440.00	18.0	17.0	8.5	0.0140	17.0	13.5	0.0014	15.6

4.51

___ Pace Analytical Services, Inc. ___


Fractional Components

Cobbles		Gravel		Sand				Fines		
Copples	Coarse Fine Total		Coarse	Medium	Fine	Total	Silt	Clay	Total	
0	0	0	0	0	0	10	10	63	27	90

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
			0.0028	0.0062	0.0104	0.0133	0.0161	0.0403	0.0596	0.0765	0.0933

Fineness
Modulus
0.02

Pace Analytical Services, Inc.

			(GRAIN SIZE -	· mm.			
0/ - 21	% G	ravel	% Sand			% Fines	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0	0	0	0	0	4	71	25	

	TEST RESULT	S (ASTM D422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3	100		
2	100		
1.5	100		
1	100		
.75	100		
.375	100		
#4	100		
#10	100		
#20	100		
#40	100		
#60	100		
#140	99		
#200	96		
0.0287 mm.	57		
0.0189 mm.	51		
0.0117 mm.	41		
0.0086 mm.	34		
0.0063 mm.	29		
0.0032 mm.	18		
0.0014 mm.	13		

Material Description
silt
Attorborg Limits (ASTM D 4249)
Atterberg Limits (ASTM D 4318) PL= NP
Classification
USCS (D 2487)= ML AASHTO (M 145)= A-4(0)
Coefficients
$\mathbf{D_{90}} = 0.0621$ $\mathbf{D_{85}} = 0.0552$ $\mathbf{D_{60}} = 0.0321$
D ₅₀ = 0.0173
Remarks
Komarko
Date Received: 10/7/16 Date Tested: 10/20/16
Tested By: Will Thomas
Checked By: Rhonda Johnson
Title: Lab Manager

(no specification provided)

Pace Analytical Services, Inc.

Client: Bay West, Inc
Project: J160139 SLR Sediment AOC

Billings, MT

Project No: Figure

GRAIN SIZE DISTRIBUTION TEST DATA

10/25/2016

Client: Bay West, Inc

Project: J160139 SLR Sediment AOC Location: BW16TR-015-0.15-0.36 Sample Number: 10365379-6 Material Description: silt Sample Date: 10/7/16

Date Received: 10/7/16 PL: NP LL: NV

USCS Classification: ML AASHTO Classification: A-4(0)

Grain Size Test Method: ASTM D422

Tested By: Will ThomasTest Date: 10/20/16Checked By: Rhonda JohnsonTitle: Lab Manager

			Sie	ve Test Dat	a
Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
954.72	568.99	3	0.00	0.00	100
		2	0.00	0.00	100
		1.5	0.00	0.00	100
		1	0.00	0.00	100
		.75	0.00	0.00	100
		.375	0.00	0.00	100
		#4	0.00	0.00	100
		#10	0.00	0.00	100
76.69	0.00	#20	0.05	0.00	100
		#40	0.02	0.00	100
		#60	0.06	0.00	100
		#140	0.69	0.00	99

Hydrometer Test Data

0.00

96

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 100

Weight of hydrometer sample =76.69 Automatic temperature correction

Composite correction (fluid density and meniscus height) at 20 deg. C = -8

#200

Meniscus correction only = 0.0Specific gravity of solids = 2.56Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.294964 - 0.164 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	К	Rm	Eff. Depth	Diameter (mm.)	Percent Finer
2.00	18.0	51.0	42.5	0.0144	51.0	7.9	0.0287	56.7
5.00	18.0	47.0	38.5	0.0144	47.0	8.6	0.0189	51.4
15.00	18.0	39.0	30.5	0.0144	39.0	9.9	0.0117	40.7
30.00	18.0	34.0	25.5	0.0144	34.0	10.7	0.0086	34.0
60.00	18.0	30.0	21.5	0.0144	30.0	11.4	0.0063	28.7
250.00	18.0	22.0	13.5	0.0144	22.0	12.7	0.0032	18.0
1440.00	18.0	18.0	9.5	0.0144	18.0	13.3	0.0014	12.7

2.31

_ Pace Analytical Services, Inc. __

Fractional Components

Cabbles	Gravel				Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0	0	0	0	0	0	4	4	71	25	96

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.0023	0.0037	0.0068	0.0114	0.0173	0.0321	0.0497	0.0552	0.0621	0.0722

Fineness
Modulus
0.01

_____ Pace Analytical Services, Inc. _____

Appendix E Classical Oneway ANOVA Statistics Tests

June 2017 BWJ160749

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					neway ANO				-			
2	Dat	e/Time of Co	omputation	ProUCL 5.1	4/28/2017 12	2:51:38 PM						
3			From File	Copy of The	omson Fish S	Stats v1_0_b	.xls					
4		Ful	I Precision									
5	Trophic Level 2 Species											
6	Trophile Level 2 Opecies											
7	Total Moreury											
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	3	0.102	0.0171	2.9200E-4					
11			boulder	6	0.0635	0.00831	6.9100E-5					
12	C	Frand Statist	ics (All data)	9	0.0763	0.0221	4.8675E-4					
13												
14		Clas	sical One-W	ay Analysis	of Variance							
15		Source	SS	DOF	MS	V.R.(F Stat	P-Value					
16	Betwe	en Groups	0.00296	1	0.00296	22.33	0.00215					
17	Wit	hin Groups	9.2950E-4	7	1.3279E-4							
18		Total	0.00389	8								
19												
20	Poo	oled Standar	d Deviation	0.0115								
21	R-Sq 0.761											
22												
23							re are signifi		ices in			
24							cted level of					
25	A p-value >	0.05 (or oth	er selected I	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	us groups ar	e comparabl	e.	
26												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1				Classical C	Dneway ANC	OVA						
2	Date/Time of Computation ProUCL 5.14/28/2017 12:52:04 PM											
3	From File Copy of Thomson Fish Stats v1_0_b.xls											
4	Full Precision OFF											
5	Trophic Level 2 Species											
6	Tropino Lovoi 2 Opodios											
7		Methyl I	Mercury									
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	3	104.7	9.238	85.33					
11			boulder	6	72.83	19.97	399					
12	G	rand Statisti	cs (All data)	9	83.44	22.89	524					
13				1								
14		Class	sical One-W	ay Analysis	of Variance	Table						
15		Source	SS	DOF	MS	V.R.(F Stat)	P-Value					
16	Betwe	en Groups	2027	1	2027	6.551	0.0376					
17	With	nin Groups	2166	7	309.4							
18		Total	4192	8								
19			11	1								
20	Poo	led Standard	d Deviation	17.59								
21			R-Sq	0.483								
22												
23	Note: A p-va	alue <= 0.05	(or some ot	her selecte	d level) sugg	ests that thei	re are signifi	icant differer	ices in			
24	mean/media	n character	istics of the	various gro	ups at 0.05 c	or other selec	ted level of	significance				
25	A p-value >	0.05 (or oth	er selected I	evel) sugge	sts that mea	ın/median ch	aracteristics	of the variou	us groups ar	e comparabl	e.	
26												

	Α	В	С	D	E	F	G	Н		J	K	L	
1				Classical O	neway ANO	VA							
2	Date/Ti	me of Co	mputation	ProUCL 5.1	6/20/2017 1	0:45:27 AM							
3			From File	Thomson fi	sh Stats_b.x	ls							
4		Full	Precision	OFF									
5				_									
6	Trophic I	Level 2	2 Species	S									
7		TEQ	Fish1										
8													
9			Group	Obs	Mean	SD	Variance						
10			thomson	4	0.727	0.325	0.105						
11			boulder	6	0.152	0.171	0.0291						
12	Gran	d Statisti	cs (All data)	10	0.382	0.373	0.139						
13													
14		Class	ical One-Wa	y Analysis o	of Variance 1								
15	:	Source	SS	DOF	MS	V.R.(F Stat	P-Value						
16	Between (Groups	0.793	1	0.793	13.74	0.00598						
17	Within	Groups	0.462	8	0.0577								
18		Total	1.255	9									
19													
20	Pooled	Standard	d Deviation	0.24									
21			R-Sq	0.632									
22	22												
23	=	ote: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in											
24	mean/median cl												
25	A p-value > 0.05	or othe	r selected le	vel) sugges	ts that mean	/median cha	racteristics of	the various	groups are	comparable.			
26													

	Α	В	С	D	Е	F	G	Н	l	J	K	L
1				Classical O	neway ANO	VA						
2	Da	te/Time of Co	omputation	ProUCL 5.1	16/20/2017 1	0:45:53 AM						
3			From File	Thomson fi	sh Stats_b.x	ls						
4		Ful	l Precision	OFF								
5	Troph	ic Level 2	2 Specie	s								
6												
7		TEQ	HH2									
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	4	0.733	0.296	0.0875					
11			boulder	6	0.155	0.178	0.0316					
12	(Grand Statist	ics (All data)	10	0.386							
13												
14					of Variance 1							
15		Source	SS	DOF	MS	V.R.(F Stat	P-Value					
16		een Groups	0.802	1	0.802	15.26	0.0045					
17	Wi	thin Groups	0.42	8	0.0526							
18		Total	1.223	9								
19												
20	Po	oled Standar		0.229								
21			R-Sq	0.656								
22												
23			-				are significa		s in			
24							ed level of sig					
25	A p-value >	0.05 (or othe	er selected le	vel) sugges	ts that mean	/median cha	racteristics of	the various (groups are o	comparable.		
26												

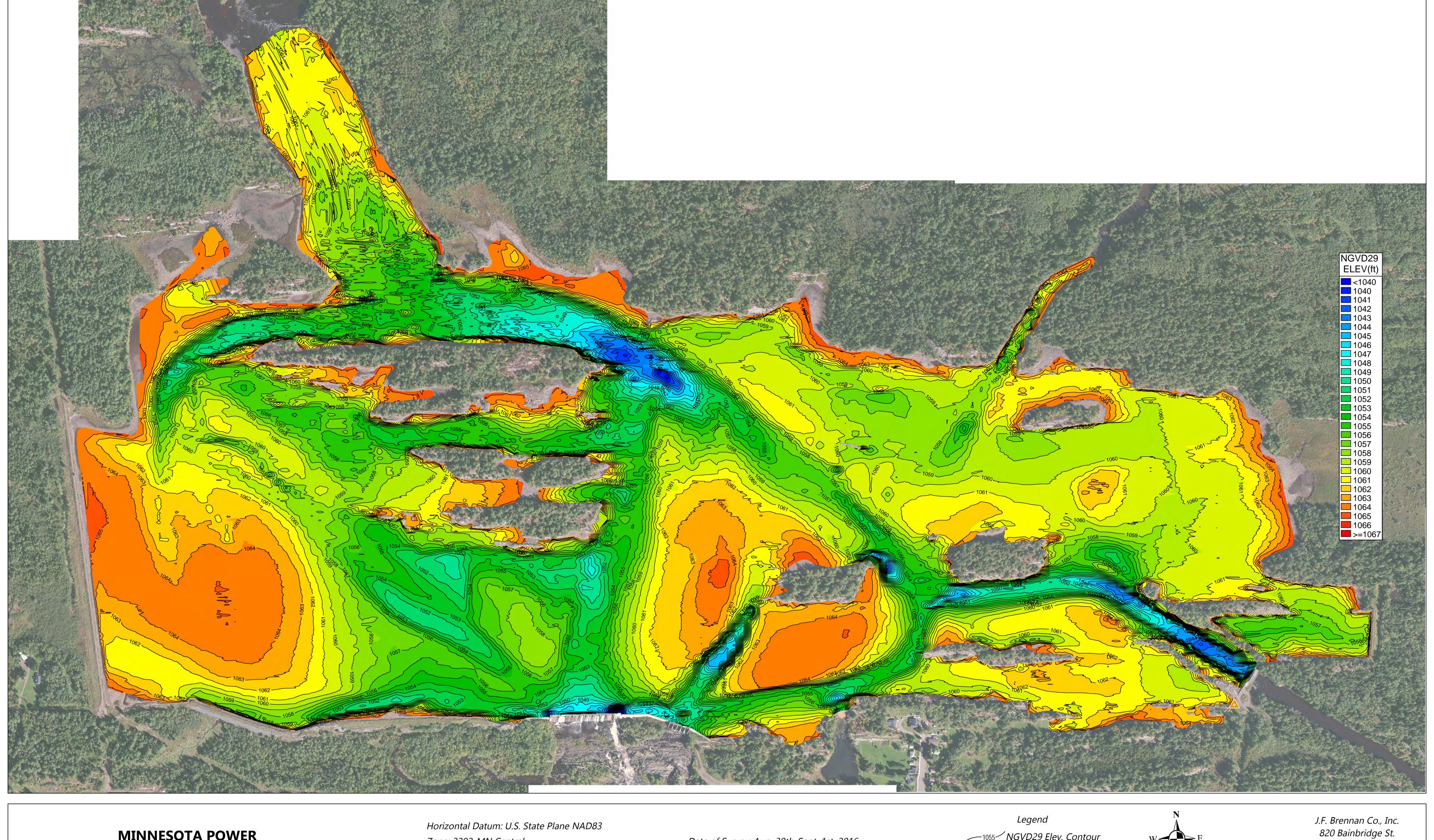
	Α	В	С	D	Е	F	G	Н	I	J	K	L
1				Classical C	Dneway ANC	VA						
2	Da	te/Time of Co	omputation	ProUCL 5.1	14/28/2017 1	2:49:08 PM						
3			From File	Copy of Th	omson Fish S	Stats v1_0_a	.xls					
4		Ful	I Precision	OFF								
5	Ε.,	anhia Lau	ral 2 Cna	oico								
6	11	ophic Lev	vei 3 Spe	cies								
7		Total N	Mercury									
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	8	0.108	0.059	0.00348					
11			boulder	5	0.0726	0.00451	2.0300E-5					
12	(Grand Statist	ics (All data)	13	0.0945	0.0486	0.00236					
13												
14		Clas	sical One-W	ay Analysis	of Variance	Table						
15		Source	SS	DOF	MS	V.R.(F Stat)	P-Value					
16	Betwe	een Groups	0.00388	1	0.00388	1.745	0.213					
17	Wi	thin Groups	0.0245	11	0.00222							
18		Total	0.0284	12								
19												
20	Po	oled Standar	d Deviation	0.0472								
21			R-Sq	0.137								
22												
23		value <= 0.05							nces in			
24		an character										
25	A p-value >	0.05 (or oth	er selected I	evel) sugge	sts that mea	n/median ch	aracteristics	of the vario	us groups a	ire comparab	le.	
26												

	А	В	С	D	E	F	G	Н		J	K	L
1				Classical C	neway ANO	VA						
2	Dat	e/Time of Co	omputation	ProUCL 5.1	14/28/2017 1	2:49:32 PM						
3			From File	Copy of The	omson Fish S	Stats v1_0_a	.xls					
4		Ful	I Precision	OFF								
5	Tron	ship Love	el 3 Spec	ioo								
6	110	JIIIC Leve	er 3 Spec	162								
7		Methyl	Mercury									
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	8	103.4	54.04	2920					
11			boulder	5	60.8	9.731	94.7					
12	G	Frand Statist	ics (All data)	13	87	46.9	2200					
13												
14			sical One-Wa									
15		Source	SS	DOF	MS	V.R.(F Stat) P-Value					
16		en Groups	5577	1	5577	2.947	0.114					
17	Wit	hin Groups	20819	11	1893							
18		Total	26396	12								
19												
20	Pod	oled Standar	d Deviation	43.5								
21			R-Sq	0.211								
22												
23	Note: A p-va		ices in									
27							cted level of s					
25	A p-value >	0.05 (or oth	er selected l	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	us groups ar	e comparabl	e	
26												

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1				Classical C	Oneway ANC	OVA						
2	Dat	te/Time of Co	omputation	ProUCL 5.1	16/20/2017 1	0:41:57 AM						
3			From File	Thomson fi	sh Stats_a.x	ls						
4		Ful	l Precision	OFF								
5	Tarak	- 1 1 (0.0									
6	Tropn	ic Level (3 Species	3								
7		TEQ	Fish1									
8												
9			Group	Obs	Mean	SD	Variance					
10			thomson	9	0.393	0.241	0.0581					
11			boulder	5	0.0578	0.00993	9.8694E-5					
12	(Grand Statist	ics (All data)	14	0.273	0.252	0.0636					
13				1	1			ı.				
14		Class	sical One-W	ay Analysis	of Variance	Table						
15		Source	SS	DOF	MS	V.R.(F Stat)	P-Value					
16	Betwe	en Groups	0.362	1	0.362	9.321	0.01					
17	Wit	hin Groups	0.466	12	0.0388							
18		Total	0.827	13								
19					•							
20	Poo	oled Standar	d Deviation	0.197								
21			R-Sq	0.437								
22												
23						ests that the			nces in			
24	mean/media	an character	istics of the	various gro	ups at 0.05 c	or other selec	ted level of	significance				
25	A p-value >	0.05 (or oth	er selected I	evel) sugge	ests that mea	ın/median ch	aracteristics	of the vario	us groups a	are comparab	le.	
26												

	Α	В	С	D	Е	F	G	Н	l	J	K	L	
1				Classical C	Dneway ANO	VA							
2	Dat	te/Time of Co	omputation	ProUCL 5.1	16/20/2017 10	0:43:01 AM							
3			From File	Thomson fi	sh Stats_a.xl	ls							
4		Ful	I Precision	OFF									
5	-		0.0	_									
6	Troph	nc Level	3 Specie	S									
7		TEQ	HH2										
8													
9			Group	Obs	Mean	SD	Variance						
10			thomson	9	0.394	0.239	0.0572						
11			boulder	5	0.0556	0.0111	1.2359E-4						
12	C	Grand Statist	ics (All data)	14	0.273	0.252	0.0635						
13													
14			sical One-W	ay Analysis	of Variance	Table							
15		Source	SS	DOF	MS	V.R.(F Stat)	P-Value						
16	Betwe	een Groups	0.368	1	0.368	9.62	0.00916						
17	Wit	hin Groups	0.458	12	0.0382								
18		Total	0.826	13									
19													
20	Pod	oled Standar	d Deviation	0.195									
21			R-Sq	0.445									
22													
23	-					ests that the	_		nces in				
24		ean/median characteristics of the various groups at 0.05 or other selected level of significance p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.											
25	A p-value >	0.05 (or oth	er selected l	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	us groups ai	re comparab	le.		
26													

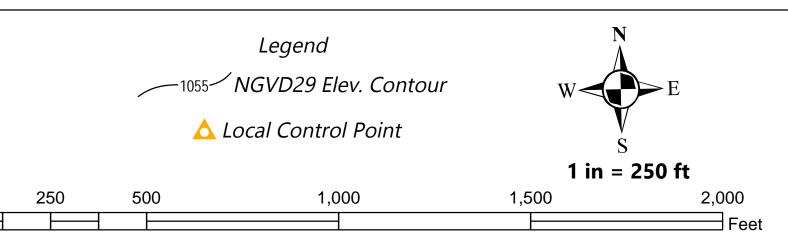
	Α	В	С	D	Е	F	G	Н		J	K	L	
1				Classical O	neway ANO	VA							
2	Date	e/Time of Co	omputation	ProUCL 5.1	4/28/2017 1:	2:46:10 PM							
3			From File	Copy of Tho	mson Fish S	Stats v1_0.xl	S						
4		Ful	I Precision	OFF									
5	Trop	hic Leve	l 4 Speci	es									
6													
7		Total N	Mercury										
8		Croup Obs Mean SD Variance											
9	Group Obs Mean SD Variance												
10			thomson	2	0.118	0.0735	0.00541						
11			boulder	3	0.113	0.0162	2.6133E-4						
12	G	rand Statist	ics (All data)	5	0.115	0.0386	0.00149						
13													
14			Some group	s have < 3 o	bservations	ANOVA Res	sults based o	n such data	sets may no	ot be reliable			
15			Υ	ou may war	nt to perform	ANOVA wit	hout groups	with too few	observation	S.			
16													
17							re are signifi		ices in				
18							cted level of s						
19	A p-value >	0.05 (or oth	er selected I	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	us groups ar	e comparabl	e.		
20													


	Α	В	С	D	E	F	G	Н		J	K	L	
1				Classical C	neway ANO	VA							
2	Date	e/Time of Co	omputation	ProUCL 5.1	4/28/2017 1:	2:47:02 PM							
3			From File	Copy of The	omson Fish S	Stats v1_0.xl	S						
4		Ful	I Precision	OFF									
5	Tronk	oio Lovol	1 Coopie	00									
6	Порі	iic Level	4 Speci	55									
7		Methyl	Mercury										
8		Croup Obs Moon SD Variance											
9			Group	Obs	Mean	SD	Variance						
10			thomson	2	139	86.27	7442						
11			boulder	3	130	10	100						
12	G	rand Statist	ics (All data)	5	133.6	43.99	1935						
13													
14			Some group	s have < 3 c	bservations	ANOVA Re	sults based o	n such data	sets may no	ot be reliable			
15			Υ	'ou may wai	nt to perform	ANOVA wit	hout groups	with too few	observation	S.			
16													
17	Note: A p-va	Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in											
18		nean/median characteristics of the various groups at 0.05 or other selected level of significance											
19	A p-value >	0.05 (or oth	er selected I	evel) sugge	sts that mea	n/median ch	aracteristics	of the variou	us groups ar	e comparabl	e.		
20													

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
1				Classical C	neway ANC	OVA							
2	Date	e/Time of Co	•		6/20/2017 1	0:41:22 AM							
3			From File	Thomson fis	sh Stats.xls								
4		Ful	l Precision	OFF									
5	Troph	nic Level	4 Specie	es									
6								1			1		
7		TEQ	Fish1										
8													
9			Group	Obs	Mean	SD	Variance						
10			thomson	2	0.271	0.0345	0.00119						
11			boulder	4	0.0897	0.0518	0.00268						
12	G	Frand Statisti	cs (All data)	6	0.15	0.103	0.0106						
13													
14		,	Some group	s have < 3 c	bservations	ANOVA Res	sults based o	on such data	sets may no	ot be reliable	٠.		
15			Υ	'ou may war	nt to perform	ANOVA wit	hout groups	with too few	observation	S.			
16													
17	Note: A p-va	alue <= 0.05	(or some ot	her selected	l level) sugg	ests that the	re are signifi	cant differen	ces in				
18	mean/media	ın character	istics of the	various grou	ıps at 0.05 o	or other selec	ted level of	significance					
19	A p-value >	p-value > 0.05 (or other selected level) suggests that mean/median characteristics of the various groups are comparable.											
20													
21													
22													

	Α	В	С	D	Е	F	G	Н	I	J	K	L	
1				Classical C	neway ANC	OVA							
2	Date	e/Time of Co	omputation	ProUCL 5.1	6/20/2017 1	1:01:48 AM							
3			From File	Copy of The	omson fish S	tats v1_0.xls	S						
4		Ful	I Precision	OFF									
5	Trophic	Level 4	Species										
6													
7		TEQ	HH2										
8													
9			Group	Obs	Mean	SD	Variance						
10		0.32379	0178571431	1	0.324	N/A	N/A						
11		0.27297	8000000003	1	0.273	N/A	N/A						
12		0.1758	5163636364	1	0.176	N/A	N/A						
13		0.079677	5466666768	1	0.0797	N/A	N/A						
14		0.051291	8999999974	1	0.0513	N/A	N/A						
15		0.047514	0500000013	1	0.0475	N/A	N/A						
16	G	rand Statist	ics (All data)	6	0.159	0.119	0.0142						
17													
18		:	• •				sults based o				٠.		
19			١	'ou may wai	nt to perform	ANOVA wit	thout groups	with too few	observation	S.			
20													
21	-	Note: A p-value <= 0.05 (or some other selected level) suggests that there are significant differences in											
22							cted level of						
23	A p-value >	0.05 (or oth	er selected l	evel) sugge	sts that mea	ın/median ch	naracteristics	of the variou	us groups ar	e comparabl	e.		
24													

Appendix D


2016 Minnesota Power Thomson Reservoir Bathymetry

MINNESOTA POWER THOMSON RESERVOIR - THOMSON, MN **SINGLE-BEAM BATHYMETRIC SURVEY**

Zone: 2202-MN Central Horizontal Units: U.S. Survey Feet Vertical Datum: NGVD29 Vertical Units: U.S. Survey Feet

Date of Survey: Aug. 30th-Sept. 1st, 2016 Location of Survey: Thomson, MN Survey Crew: JD, MW

La Crosse, WI 54603 (608)-784-7173

Appendix E

Focused Feasibility Study Alternatives Technical Memorandum

TECHNICAL MEMORANDUM

To: Heidi Bauman – Minnesota Pollution Control Agency

From: Bay West LLC

Subject: Remediation and Cleanup Goals of Dioxin Sediment Sites Outside of St. Louis River

(SLR) Area of Concern (AOC) and Potential Remedial Action Objectives (RAOs) and

Focused Feasibility Study Alternatives

Date: January 2016

Project: SLR AOC – Scanlon and Thomson Reservoir Sites

1.0 INTRODUCTION

One of the contaminant groups present in the St. Louis River (SLR) Area of Concern (AOC) is polychlorinated dibenzo-p-dioxins (dioxins) and polychlorinated dibenzofurans (furans). While furans are not dioxins, strictly speaking, some of the furan congeners have dioxin-like qualities and, therefore, the two compound groups are often referred to jointly as dioxins. Dioxins are highly toxic and can cause cancer, reproductive and developmental problems, and damage to the immune system, and they can interfere with hormones. Dioxins are a concern in sediments since they are persistent organic pollutants that can be taken up by benthic organisms and concentrated in the food chain through bioaccumulation to levels that adversely affect aquatic organisms, aquatic-dependent wildlife species, and human health.

Based on the initial information presented in the 2013 Sediment Characterization Report (LimnoTech, 2013), the Minnesota Pollution Control Agency (MPCA) asked Bay West LLC (Bay West) to research how the dioxins/furans have been addressed at other sediment sites across the U.S. to evaluate potential dioxins/furans remediation options for SLR AOC Scanlon and Thomson Reservoirs Sediment Assessment Areas (SAAs). Both reservoirs are owned and operated by Minnesota Power (http://www.mnpower.com/) for the generation of hydroelectric power and do not serve as a source of drinking water. The Thomson reservoir is accessible to the public and there is significant recreational use by the public including kayaking, rafting, and canoeing. There appears to very limited access and public use of the Scanlon reservoir area because of its proximity to the Sappi Paper mill and the adjacent Cloquet reservoir.

This document also presents a current conceptual site model, conclusions, and recommendations. The recommendations section presents potential remedial action objectives (RAOs) and alternatives to be carried forward into each Focused Feasibility Study (FFS). Detailed outlines for the four potential alternatives for the Thomson Reservoir and Scanlon Reservoir are also attached. This Technical Memorandum will be used as an attachment to the FFSs.

2.0 METHODS AND DATA SOURCES

To meet the MPCA's request, Bay West reviewed information under the National Priorities List (NPL), the U.S. Environmental Protection Agency (USEPA) impaired water bodies, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA; otherwise known as Superfund) programs. There are currently 60 sites listed in the NPL database (http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm) under sediment (contaminated media)

and dioxin (contaminant group) search criteria. As of the 2014 reporting period, the USEPA list of impaired water bodies includes 561 sites where dioxins are listed as an impairment cause (http://iaspub.epa.gov/tmdl waters10/attains nation cy.cause detail 303d?p cause group id=435). The St. Louis River below the Pokegama R. is included on the list of impairments due to dioxins. At least two of the sites in the impaired water body lists are reservoirs.

In addition, there are six Tier 1 Superfund sites that contain dioxins as a contaminant of concern for the site (http://www2.epa.gov/superfund/superfund-contaminated-sediments-list-sediments-sites). Tier 1 Superfund sites are defined as sites where the proposed sediment action will address more than 10,000 cubic yards or 5 acres of contaminated sediment.

3.0 SEDIMENT QUALITY TARGETS AND SEDIMENT SCREENING VALUES

Consensus-based sediment quality guidelines (SQGs) have been developed for use within the SLR AOC. SQGs account for specific compounds and/or contaminant mixtures, and reflect casual rather than strictly correlative effects. SQGs applicable to the SLR AOC include sediment quality targets (SQTs) developed by the MPCA and sediment screening values (SSVs) developed by the Minnesota Department of Health (MDH).

Numerical SQTs, adopted for use in the SLR AOC to protect benthic invertebrates, can be used throughout Minnesota as benchmark values for making comparisons to surficial sediment chemistry measurements. Level 1 and Level 2 SQTs for the protection of sediment-dwelling organisms are available for 8 trace metals, 13 individual PAHs, total PAHs (all 13 priority PAHs), total PCBs, and 10 organochlorine pesticides. In addition, Level 1 and Level 2 SQTs for constituents of interest (COI)s polychlorinated dibenzo-p-dioxins/dibenzo furans (PCDD/F) were adopted for the protection of fish, as insufficient information is available for sediment-dwelling organisms. PCDD/F SQT values are comparable to PCDD/F toxic equivalents (TEQ) units calculated using 1998 toic equivalency factor (TEF) values for fish. SQTs are highly useful when evaluating risk for a specific compound or a group of compounds (i.e., total PCBs and total PAHs). Contaminant concentrations below the Level 1 SQTs are unlikely to have harmful effects on sediment-dwelling organisms (i.e., benthic invertebrates). Contaminant concentrations above the Level 2 SQTS are more likely to result in harmful effects to benthic invertebrates (MPCA, 2007). A qualitative comparison value midway between the Level 1 SQTs and Level 2 SQTs (i.e., midpoint SQT) is used as conservative criteria to identify, rank, and prioritize sedimentassociated contaminants within the SLR AOC.

Sediment Screening Values (SSVs) provide a human health-based toxicity value related to sediment for the SLR and specifically developed for the U.S. Steel Superfund site. The SSVs are a tool for screening contaminated sediments for potential impacts to human health. Chemical concentrations in water-covered sediments at or below the SSVs are considered safe for the general public; however, chemical concentrations in sediments exceeding the SSVs should not be considered unsafe because the SSVs were developed using conservative measures of site-specific exposure, bioavailability, and toxicity. Any exceedance of these values suggests that site-specific conditions need to be evaluated prior to concluding that contaminated sediments may impact health. Furthermore, the SSVs are not intended to be used as sediment cleanup values (MDH, 2013).

4.0 FILE REVIEW RESULTS FROM COMPARABLE DIOXIN SITES

Many of the dioxin-impacted sediment sites reviewed by Bay West resulted from industrial facilities such as bleached chemical pulp and paper mills, wood preserving facilities, and coal fired power plants, where compound-specific sediment cleanup criterion was only developed for the most pervasive contaminant present such as polynuclear aromatic hydrocarbons (PAHs) or polychlorinated biphenyls (PCBs) rather than dioxins. **Table 1** below presents the sites that Bay West reviewed, which have established either action levels (ALs), cleanup levels (CULs) or remedial goals (RGs) for dioxins. **Table 1** includes SQTs and SSVs for comparison. **Table 1** does not account for potential differences in risk exposure pathways and receptors such as humans versus benthic organisms.

Table 1 – Site-Specific Promulgated Dioxin Values

						SLR AOC SQGs			
Site Name	Water Body	State	USEPA Region	Sample Matrix	Contaminant*	SQT Level 1 (ppt)	Midpoint SQT(ppt)	SQT Level 2 (ppt)	SSV (ppt)
St. Louis River Area of Concern	St. Louis River	MN	5	Sediment	PCDD/F TEQ	0.85	11.18	21.5	0.02
							Cleanup	Criteria	
						AL (ppt)	CUI (ppt		RG (ppt)
Cantuadala Manau	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Fish	2,3,7,8-dioxin	NA	NA		2.2
Centredale Manor Restoration Project	Woonasquatucket River	RI	1	1 1511	PCDD/F TEQ	NA	NA		44
				Sediment	2,3,7,8-dioxin	NA	15		NA
Love Canal	Black and Bergholtz Creeks	NY	2	Sediment	2,3,7,8-dioxin	1,000	1,00	0	NA
Passaic River	Passaic River	NJ	2	Sediment	Dioxin	NA	NA		7.1 ^a
Former	Lower Roanoke	NC	4	Fish	Dioxin (TEQ)	NA	NA		3
Weyerhaeuser Company Wood	River	140	7	Sediment	Dioxin (TEQ) ^c	NA	Un-kno	own	NA
Treating Plant	Welch Creek Area	NC		Sediment	Dioxin (TEQ) ^c	NA	1,00	0	NA
Allied Paper, Inc./ Portage Creek/ Kalamazoo River	Portage Creek	МІ	5	Sediment	Dioxin (TEQ) ^c	NA	NA		Hot spot removal ^b
Tittabawassee/ Saginaw River and Bay Site	Tittabawassee River	МІ	5	Sediment	Dioxin	NA	NA		Hot spot removal ^b
Romaine Creek Portion of Minker/Stout/ Romaine Creek NPL Site	Romaine Creek	МО	7	Sediment and soil	2,3,7,8-dioxin	NA	1,00	0	NA
McCormick & Baxter Creosote Co.	Old Mormon Slough	CA	9	Sediment	Dioxin (TEQ) ^d	21	21		NA
Commencement Bay, Near Shore/Tide Flats	Puget Sound, Olympic View Resource Area (NTCRA)	WA	10	Sediment	Dioxin/furan	20	20		NA
Lockheed West Seattle	Puget Sound, Harbor Bay	WA	10	Sediment	Dioxin/furan (TEQ)	NA	2		NA

Table 1 – Site-Specific Promulgated Dioxin Values

							SLR AOC	SQGs	
Site Name	Water Body	State	USEPA Region	Sample Matrix	Contaminant*	SQT Level 1 (ppt)	Midpoint SQT(ppt)	SQT Level 2 (ppt)	SSV (ppt)

Table modified from USEPA website http://www2.epa.gov/superfund/superfund-contaminated-sediments-list-sediments-sites.

EC – Engineering controls

EMNR – Enhanced Monitored Natural Recovery

IC – Institutional controls

TEQ - Toxic Equivalents

NTCRA - Non-Time Critical Removal Action

PCDD/F TEQ – polychlorinated dibenzo-p-dioxins and dibenzofurans toxic equivalency

Table 1 is not all inclusive, as not all record of decision (ROD) or consent decree documents for dioxin-impacted sites could be located for review; however, **Table 1** shows the range of ALs, CULs, and/or RGs that have been promulgated for dioxin-impacted sites located across the U.S. The ALs, CULs, and RGs in **Table 1** were developed using site specific receptors and EPA guidance at the time of the record of decision which changed between the earliest site (love canal) and the more recent sites (Lockheed West Seattle).

5.0 SLR AOC SQGS VS. AL, CUL, AND RG

The MPCA dioxin SQT Level 1, mid-point, and Level 2 values in nanograms toxic equivalency per kilogram (ng TEQ/kg; referred to in this document as ppt) are 0.85 ppt, 11.18 ppt and 21.5 ppt, respectively, as shown in Table 1. The Level 2 MCPA dioxin SQT values match the AL and CUL for several sites listed in Table 1, such as the McCormick & Baxter Creosote Co. and the Commencement Bay Near Shore/Tide Flats sites (CommBay; Table 1). The Level 2 MCPA dioxin SQT values are less stringent than the CUL for the Centredale Manor Restoration Project (15 ppt), the CUL for Lockheed West Seattle site (2 ppt), and the preliminary remediation goal (PRG) for the Passaic River site (7.1 ppt). The Level 2 MCPA dioxin SQT values are more stringent than the CUL for Former Weyerhaeuser Company Wood Treating Plant, Love canal, and Romaine Creek Portion of the Minker/Stout/Romaine Creek NPL Sites, which all have CULs of 1,000 ppt. One interesting observation is the different CULs for CommBay and Lockheed sites, which are located in the Puget Sound within 25 miles of each other, and under the same State and USEPA Region 10 jurisdictions. At CommBay, 20 ppt TEQ was selected as the CUL based on the Washington State standards (sediment quality objectives [SQOs]), while at Lockheed West, risks from consumption of seafood were below natural background so the background number was used to set the CUL at 2 ppt TEQ (Table 1).

The SSV developed by MDH is 0.02 in 2,3,7,8-TCDD equivalents (referred to as ppt in this document), as shown in **Table 1**. The MDH Public Health Consultation document that presents the SSVs and discusses their development, acknowledges that the SSV for dioxins is likely less than background concentrations and that local or regional background concentrations may be used as more reasonable site-specific SSVs; however, background concentrations in the SLR AOC were not available at the time of publication. The SSV for dioxins is at least two orders of magnitude less than cleanup criteria reviewed by Bay West; therefore, the SSV for dioxins is not

BWJ150329 4 January 2016

^{*} Other contaminants are also present, the specific wording for dioxins in the regulatory documents preserved

^a Preliminary Remedial Goal

^b AL/CUL/RG not established, rather the effects of hot spot removal will be monitored via long-term biological indicators

^c TEQ based on WHO fish, WHO Mammalian & WHO Avian TEFs^d TEQ based on USEPA International TEFs

comparable to promulgated cleanup criteria and requires further evaluation for use in the SLR AOC and will not be discussed further in this document. SQGs for the protection of human health due to dioxin contamination in the SLR AOC should be further evaluated when background concentrations in the SLR AOC are available.

6.0 RESERVOIR FILE REVIEW RESULTS

Contamination has been assessed in Scanlon and Thomson Reservoirs in various sampling events conducted by the MPCA, USEPA, and Minnesota Power between 1995 and 2014; however, dioxins were only assessed in studies conducted in 1992, 2011, and 2014. In order to make comparisons between the reservoirs and other dioxin-impacted sites around the country, Bay West reviewed available dioxin data. Bay West also reviewed a 2011 Minnesota Power report for Thomson Reservoir that addressed mercury, as trends in mercury concentrations may also be applicable to dioxin concentration trends (Minnesota Power, 2011). This section discusses the results of file data reviews.

6.1 Dioxins

The use of elemental chlorine, and its resulting chemical byproducts, in wood pulp bleaching operations is known to be a common source of environmental dioxin contamination. The 1996 Preliminary Contaminant Assessment of the Thomson, Forbay, and Fond Du Lac Reserviors report (MPCA, 1996) identified the Sappi paper mill (formerly Potlatch) and the Conwed facilities in Cloquet, Minnesota as possible contaminants sources to the St. Louis River. Industrial sources of dioxin to the SLR was significantly reduced, if not eliminated, in 1979 when the paper mill and Conwed facility connected their waste water to the newly opened Western Lake Superior Sanitary District waste water treatment plant (WLSSD).

6.1.1 Thomson Reservoir

According to the 2013 Sediment Characterization Report (LimnoTech, 2013), dioxins were analyzed in eight samples collected at depths ranging from 4 to 280 centimeters (cm) at only one sample location in Thomson Reservoir. Dioxin concentrations exceeded the MPCA Level 2 sediment quality target (SQT) in two samples collected between 184 and 200 cm, with a maximum detection of 27 ppt TEQ using fish TEFs (all dioxin values from Thomson and Scanlon reservoirs referenced in this document were calculated using fish TEFs).

According to the 2015 Site Characterization Report (EA Engineering, Science, and Technology, Inc. [EA], 2015), dioxin concentrations exceed the Level 2 SQT at 10 locations (out of 23 locations) dispersed relatively evenly throughout the Thomson Reservoir with a maximum concentration of 374.29 ppt TEQ. Sediment samples collected from Thomson and Scanlon Reservoirs during this investigation were collected from 0 to approximately 75 cm.

6.1.2 Scanlon Reservoir

According to the 2013 Sediment Characterization Report (LimnoTech, 2013), dioxins were analyzed in three sediment sample locations in Scanlon Reservoir; however, only one sample location exceeded the MPCA Level 2 SQT with a maximum detection of 135.4 ppt TEQ.

According to the 2015 Site Characterization Report (EA, 2015), dioxin concentrations in Scanlon Reservoir exceed the Level 2 SQT in 4 locations (out of 13 locations) primarily located in the eastern arm of the reservoir with a maximum concentration of 349.8 ppt TEQ. The 2014 dioxin results appeared to show that the highest dioxin concentrations are found in low energy areas of

BWJ150329 5 January 2016

each reservoir; however, a hydrodynamic model has not been prepared for the reservoirs. Historical sediment core results may not be comparable to each other.

6.2 Mercury

In 2011, Minnesota Power conducted sampling in Thomson Reservoir to evaluate whether mercury deposits within the reservoir remain intact and, therefore, were not eroding into downstream areas (Minnesota Power, 2011). The study provides some evidence that Monitored Natural Recovery (MNR) may be occurring within the reservoir. The 2011 Sediment report depth trends indicated that over a 17-year period (1994 - 2011) average mercury concentrations in the top 50-cm declined for five of the six locations sampled. The 1994 and 2011 sediment profile analyses showed that the highest concentrations of mercury occurred lower in the sediment profile for three of the six samples, suggesting that those mercury deposits remain intact. Additionally, the two sediment sample locations located furthest downstream on the SLR to Forebay channel displayed sedimentation patterns that suggest that a natural capping mechanism may be occurring. Although the remaining three sediment samples had the highest relative mercury concentrations in the same sediment profile in 2011 compared to 1994, the mercury concentrations in those horizons were considerably lower in the 2011 sediment cores. A decrease in the highest concentrations suggests that the historically high mercury deposits are either being blended with low-mercury sediments, or are being dispersed throughout the reservoir.

A fish consumption advisory is currently in effect for the SLR AOC based on the occurrence of mercury in fish tissue at concentrations that have been deemed unsafe for the consumption by sensitive populations, such as pregnant women and children under the age of 15 years old (MDH, 2014). While not currently intended to prevent exposure to dioxin-impacted fish, the fish consumption advisory may prevent the consumption of fish that have been adversely affected by dioxin contamination; however, in order to mitigate exposure to dioxin-contaminated fish, the fish consumption advisory would likely require revision to incorporate specific species and meal consumption rates specific to dioxins.

7.0 DIOXIN LEVELS IN SLR AOC RESERVOIRS VS. AL, CUL, AND RG

Predicated upon the screening information presented in the 2013 Sediment Characterization Report (LimnoTech, 2013), nine dioxin detections in Thomson Reservoir exceeded the MPCA Level 2 SQT with a maximum detection of 374.2 ppt. Four dioxin detections in Scanlon Reservoir exceeded the MPCA Level 2 SQT with a maximum detection of 349.8 ppt. These maximum detection values are greater than all CULs in **Table 1** with the exception of the 1,000 ppt CUL established for the former Weyerhaeuser Company Wood Treating Plant, Love Canal, and Romaine Creek Portion of Minker/Stout/Romaine Creek NPL Sites.

BWJ150329 6 January 2016

Table 2 - Reservoir Dioxin Statistics vs. SQTs, AL, CUL, and RG Ranges

Reservoir Statistics					
Statistic	Thomson				
Mean	29.08	30.27			
Median	6.97	6.34			
Standard Deviation	66.67	68.28			
Range	349.39	339.77			
Minimum	0.14	0.19			
Maximum	349.53	339.96			
95% UCL	64.42 ^a	56.86 ^b			
95-95 UTL	230.6 ^c	176.4 ^d			
Number of Results	53	26			
Number of Level 1 SQT Exceedances (0.85)	47	23			
Level 1 SQT Percent of Samples	89%	88%			
Number of Midpoint SQT Exceedances (11.81)	19	10			
Midpoint SQT Exceedance Percent of Samples	36%	38%			
Number of Level 2 SQT Exceedance (21.5)	13	7			
Level 2 SQT Exceedance Percent of Samples	25%	27%			
Number of SSV Exceedances (0.02)		26			
SSV Exceedance Percent of Samples	100%	100%			
Table 1 Ranges	Min	Max			
AL	20	1,000			
CUL	2	1,000			
RG	3	44			

Notes:

All values are parts per trillion (ppt) unless otherwise noted

All dioxin values calculated with wildlife toxic equivalence factors (TEFs), with the exception of statistics relating to SSVs, which were calculated using 2005 WHO TEFs

- a ProUCL calculated 95% H-UCL
- b ProUCL calculated 95% Adjusted Gamma UCL
- c ProUCL calculated 95% UTL with 95% Coverage
- d ProUCL calculated 95% HW Approx. Gamma UTL with 95% Coverage
- AL Action Level
- CUL Cleanup Level
- RG Remediation Goal
- UCL upper confidence level
- UTL upper tolerance level

8.0 DIOXIN RESPONSE MEASURES

Table 3 lists the various means of site remediation that have been applied to the listed sites. Many of these sites have other contaminants present besides dioxins that contribute to the overall selection of the site's remedy. The most aggressive remedy appears to be the approach for the Lower Passaic River, which consists of the bank-to-bank dredging of 43 million cubic yards (yd³) of sediment, followed by the bank-to-bank capping of 8.3 river miles with a 2-foot-thick sand cover. The least aggressive approach is for the Former Weyerhaeuser Company Wood Treating Plant, which includes Enhanced Monitored Natural Recovery (EMNR) of an 18-acre area with a 6-inch sand cover and MNR of 14.3 river miles.

Table 3 – Dioxin Site Geomorphic Settings and Remedial Option Applied

Site Name	General Waterbody Settings	Sediment Co- Contaminants	Max Dioxin (ppt)	Remedy
Centredale Manor Restoration Project, Woonasquatucket River	The Woonasquatucket flows for 16 miles, with various levels of anthropogenic alterations. The stream is channelized in heavily developed areas to the Rising Sun Dam. Downstream of the dam, the stream is tidal and bordered by palustrine emergent and scrub shrub wetland habitat in the undeveloped stretches.	Hexa- and tri- chlorophene, PCBs, and pesticides	15,000	Excavate 156k yd ³ , thin layer cover over remaining contaminated sediment in the river
Love Canal	Man-made canal (filled) storm sewer lines, plus the neighboring Bergholz and Black Creeks	Trichlorophenols	650,000	Excavate 24-34k yd ³ creek sediment, 1k yd ³ sewer sediment, backfill and cap
Lower Passaic River	The Lower Passaic river consists of the 17-mile tidal portion of the Passaic River from Dundee Dam (located at RM17.4) to the confluence with Newark Bay at RM0. The Lower Passaic is channelized and maintained for navigation.	PCB mixtures, PAH compounds, DDT2, mercury, lead	37,900	Dredge 43M yd ³ , cap 8.3 miles
Weyerhaeuser Company Wood Treating Plant	The lower Roanoke was a meandering stream until the construction of several dams in the 1950s and 1960s that impacted stream flow. Presently, the lower Roanoke is not a naturally meandering channel; however, it is impacted by tidal and seiche events.	Mercury, chromium, copper, zinc, and volatile organic compounds (VOCs)	224	MNR 14.3 river miles
	Welch Creek has frequent meanders especially in Lower Creek. The base flow of the creek is 10 to 29 cubic feet per second (cfs). Flow reversals are due to lunar tide and wind events.		4,080	Thin cover EMNR 18 acres
Allied Paper, Inc./ Portage Creek/ Kalamazoo River	The Kalamazoo River drains an approximately 2,000-square-mile watershed including nearly 400 miles of tributaries. The Kalamazoo is a meandering, generally shallow river with several dams that impact flow, some channelization for flood control, and some relatively free-flowing segments. Portage Creek originates in Portage, Michigan, and enters the Kalamazoo River at Kalamazoo, Michigan. The Site includes approximately 80 miles of the lower portion of the River and the lower 3 miles of the Creek.	PCBs	252	Excavation, MNR, ICs, and ECs

Table 3 - Dioxin Site Geomorphic Settings and Remedial Option Applied

Site Name	General Waterbody Settings	Sediment Co- Contaminants	Max Dioxin (ppt)	Remedy
Tittabawassee/ Saginaw River and Bay Site	The Tittabawassee/Saginaw Rivers are generally free-flowing, meandering, relatively shallow streams that are prone to flash-flooding. Naturally formed levee deposits are located along the banks in many areas of river. Levees consist primarily of very fine sand to sand, in stratified deposits that correspond to flood events. Postindustrial age levees and banks were formed more recently and are located closer to the channel (when both are present) than the pre-industrial age levees and banks, based on contaminant levels in the levees. The in-channel surface sediment is dominated by sands and gravels, and ranges in thickness from 0 to 12 feet.	PCBs	140,000	Excavation, Cap, ICs, and ECs
Minker/Stout/ Romaine Creek NPL Site	Minker/Stout/Romaine is a small, intermittent stream that flows primarily during periods of heavy precipitation and runoff, resulting in both floodplain and in-channel geomorphic characteristics.	2,3,7,8-dioxin	>20,000	Excavation 28,420 tons of soil and sediment
McCormick & Baxter Creosote Co.	The Old Mormon Slough is a heavily altered back bay that connects to the Stockton Deepwater Channel.	Pentachloro- phenol (PCP), PAHs (constituents of creosote), arsenic, chromium, and copper	1.35	Bank stabilization (phase I), Cap 8.8 acres (phase 2) and MNR
Commencement Bay, Near Shore/ Tide Flats	The near shore tidal flats extend 1,000 feet offshore into Commencement Bay. Water depths are up to approximately 300 feet deep. Strong, tidally generated currents are characteristic of the area.	Metals	Could not be deter- mined via online search	Dredge 11,500 tons and 1-acre cap
Lockheed West Seattle	The former Lockheed shipyard No. 2 is connected and influenced by the Lower Duwamish waterway and its tides. The narrow shoreline includes numerous pilings and pier structures.	PCBs	14	EMNR 28.4 acre

9.0 CURRENT CONCEPTUAL SITE MODEL

Reducing surface sediment concentrations or chemical bioavailability is the primary goal of sediment remediation processes. The deposition of cleaner sediment that buries and isolates contaminants of concern (COCs) below the upper bioturbation layer reduces risk of chemical exposure to benthic receptors and to humans through ingestion of contaminated fish or shellfish or by direct contact. A model developed by Beak Consultants predicted that sediment deposition rates in Thomson Reservoir would be on the order of less than one millimeter/year (Beak, 1992). During the Thomson, Forbay, and Fond Du Lac primary contaminant assessment in 1992, sediment deposit rates calculated from one core in the Thomson Reservoir resulted in estimated sedimentation rates from 1954-1964 and 1964-1992 as 2.8 ± 0.8 and 5.0 ± 0.2 cm/year, respectively. As part of the primary contaminant assessment, an attempt was made to corroborate the core-based deposition rates estimated for Thomson Reservoir by setting out

sediment traps during the summer of 1993; however, many of the traps were found to contain nesting organisms, such as fish and crayfish and therefore, sediment accumulation in the traps could not be quantified (MPCA, 1996). Because the MPCA primary contaminant assessment sedimentation rates rely on only a single data point, the rates are likely unreliable; however, the 1993 Beak sediment accumulation estimates indicate that MNR may be a viable component of the selected remedy. The predesign investigation proposed in the remedial alternatives recommended in **Section 11** will evaluate a wider distribution of sediment cores to further evaluate the resuspension effects of the major flood events that occurred in 1999 and 2012 and the robustness of future sediment and COC stability.

Industrial sources up river from the Scanlon and Thomson reservoirs likely began contributing contaminants to the SLR as early as 1900s. Prior to 1979, the primary effluent dischargers to the St. Louis River, upstream of the reservoirs, were the City of Cloquet, the USG Corporation (formerly Conwed), and the Sappi paper Mill (formerly the Potlatch Northwest Paper Division facility). In 1979 the industrial waste water from the paper mill, which has been in operation since 1898, was connected to the WLSSD eliminating the Mill's contaminant contribution to the St. Louis River.

Dioxin analysis was not conducted for the paper mill effluent during the period of direct discharge into the St. Louis River. However, in 1987 the paper mill's effluent and in WLSSD influent were analyzed for 2,3,7,8-TCDD due to increasing concerns over dioxin contamination in the St. Louis River (Poe, 1989). The 1987 dioxin results provide an indication of pre-1979 loads into the St. Louis River. The concentration of TCDD in suspended solids from WLSSD influent (260 ng/kg) was approximately one-half that in suspended solids from Potlatch effluent (620 ng/kg). The approximately 50% decrease between the paper mill's effluent and the WLSSD influent corresponds well since nearly half the inflow into WLSSD was from the paper mill at the time of the sampling (J. Stollenwerk, MPCA Regional Water Quality Specialist, personal communication with 1996 preliminary assessment authors).

Based on the previous SLR, Thomson Reservoir, and industrial COC source investigations the current site conceptual model is that the Thomson and Scanlon reservoirs have retained significant levels of dioxin and its associated sediment transferred into the reservoirs. The cycle of high water events, such as the 1999 and 2012 floods, have re-suspended dioxin and associated sediment from the main river and reservoir flow channels and likely caused deposition in the less energetic areas within the reservoirs. Industrial sources of dioxin and other COCs has been significantly reduced, if not eliminated, beginning in the early 1970's with only dioxin background levels now entering the river and reservoir systems. Sediment accumulating in the reservoirs have gradually covered the highest levels of COC; however, major flooding events appear to have scoured much of the dioxin laden sediment from the main reservoir flow paths and redeposited it in the less energetic areas.

10.0 CONCLUSIONS

SQGs developed for the SLR AOC include SQTs, which were developed for the protection of sediment-dwelling benthic organisms, and SSVs, which were developed for the protection of human health. While the dioxin SQTs are comparable to other dioxin-contaminated sites throughout the country, the dioxin SSV is not comparable. The dioxin SSV is two orders of magnitude less than any of the cleanup criteria reviewed in this document and is likely less than background concentrations. In order to ensure the protection of human health due to dioxins contamination in the SLR AOC, the dioxin SSV should be further evaluated after background concentrations in the SLR AOC become available.

ALs, CULs, and RGs for dioxin-contaminated sites throughout the country are within the range of the MPCA Level 2 SQT which was developed for use in the SLR AOC, including Thomson and Scanlon Reservoirs. Studies conducted in 1992, 2011, and 2014 indicate that dioxin contamination is present at concentrations that exceed the MPCA Level 2 SQT for dioxins; therefore, remedial action in the reservoirs may be necessary and dioxin contamination cleanup alternatives in the reservoirs require additional examination.

The 2011 mercury study for Thomson Reservoir indicates that MNR may be a viable remedial option for the reservoir. MNR relies on natural physical, chemical, and biological processes that transform, isolate, or remove contaminants until they no longer pose a risk to receptors. MNR relies on a natural decrease in sediment contamination and a reduction in bioavailability or toxicity of chemicals following accretion of clean suspended sediment. Natural processes that contribute to MNR may include sediment burial, sediment erosion or dispersion, and contaminant degradation, precipitation, adsorption, and/or transformation. The demonstration of MNR processes together with the long-term observation of contaminant concentrations reductions in fish tissue, sediments, and water provide multiple lines of evidence to validate the selection of a MNR remedy. The predesign investigation will evaluate a wider distribution of sediment cores to further evaluate the resuspension effects of the major flood events that occurred in 1999 and 2012 and the robustness of future sediment and COC stability.

Enhanced MNR (EMNR) enhances ongoing natural recovery processes, while minimizing effects on the aquatic environment. EMNR consists of an engineered amendment, such as placement of a thin-layer sand cover and introduction of reactive amendments such as activated carbon (AC). Thin-layer (typically 15 to 30 cm) covers are not intended to completely isolate the affected sediment, as in a conventional isolation capping remedy. Instead, the thin-layer cover provides a top layer of cleaner sediment, which reduces surface chemical concentrations so that benthic organisms can colonize the sediment. This layer also accelerates the process of physical isolation, which continues over time with additional natural sediment deposition.

Based on Bay West's review of the above dioxin-impacted sites, a presumed remedial approach for the SLR AOC reservoir sites is not apparent. Additional information would be highly beneficial to further evaluate which remedial approach (e.g., MNR, EMNR, "hot spot" sediment removal, and/or capping) is most appropriate for the reservoir sites.

11.0 RECOMMENDATIONS

All of the potential remedial approaches require continued refinement of the current site conceptual model and the understanding of the sediment fate and transport within its system, as well as the contaminant source, to select the long term viability of the selected remedy. For example, capping, EMNR, or sediment armoring may be less desirable than dredging due to the loss of water capacity for hydroelectric generation. Currently Minnesota Power does not conduct regular dredging events and dredging has not occurred in the recent past indicating that the major flooding event in 1999 and 2012 has not significantly increased reservoir sediment levels. Many of the reservoirs' physical characteristics such as bathymetry, sediment slope, shore line, and water body infrastructure (e.g., underwater utilities, debris, piers, pilings, and docks) are known and do not pose as a potential disqualifier for any of the potential remedial options.

Remedy selection and implementation would require a full evaluation of MNR processes present in the SLR reservoirs; therefore, the following information may be needed to support or confirm previous assessments for the FFSs and/or remedy design documents:

- Assessment of depositional/erosional environment of the reservoirs:
 - o Sediment traps, erosion pins, and evaluations of existing bathymetric data; and
 - Hydrodynamic evaluations that include flow measurements and the anthropogenic effects of the hydroelectric dam operations;
 - Hydrodynamic modeling
- Contaminant risk assessments:
 - o Biodegradation and bioavailability; and
 - Exposure pathway risk assessment;
- Suitability of various designs;
 - o TOC, sediment redox potential, pH, etc.
 - Amendment/Sequestering Agent possibilities for EMNR

Bay West understands that, due to MPCA budget limitations and time constraints, additional investigation and data collection may not be feasible prior to preparing FFSs for these two reservoir sites. Based on this assumption and the information contained in this memo, Bay West recommends the following:

- 1. The MPCA review and approve remedial action objectives (RAOs) to be carried forward into each FFS. **Potential** RAOs include:
 - Minimize or remove exposure to sediment contaminants that bioaccumulate in the food chain and contribute to fish consumption advisories.
 - Minimize or remove exposure of the benthic organisms to contaminated sediments above sediment cleanup goals.
 - Preserve water depth to enable the current and/or planned use of the reservoir.
 - Enhance aquatic habitat, if conditions allow, in a manner that contributes to the removal of beneficial use impairments.
- 2. The MPCA review and approve potential alternatives to be carried forward into the FFSs for the Thomson and Scanlon reservoirs. **Potential** alternatives include:
 - Alternative 1: No Action. This alternative does not include any treatment or engineering controls. The No Action Alternative does include long-term monitoring and institutional controls.
 - Alternative 2: Monitored Natural Recovery (MNR). MNR may be used in areas
 that have accumulated sufficient clean natural cover material over elevated
 COCs. This option should only be considered in depositional areas that have low
 potential for erosion, or if erosion is controlled by an appropriate armor material.
 Monitoring to ensure that protectiveness will be required.
 - Alternative 3A/B: Enhanced Monitored Natural Recovery (EMNR) may comprise
 a thin layer cover without (Alternative 3A) or with (Alternative 3B) reactive
 amendments. Common sediment cover amendments include, but are not limited
 to, activated carbon, aqua-block, apatite, and zeolite. Monitoring will be required
 to ensure protectiveness. EMNR will target areas that exceed the level 2 SQT

within the top 50 centimeter sediment depth (or depth defined in future by Eco-Risk and/or Human Health Risk parameters).

 Alternative 4: Monitored Natural Recovery coupled with Dredging hotspots above midpoint SQTs. The concentration of dioxin exceeding the level 2 SQT within the upper bioturbation layer (i.e. the upper 30 cm) would be permanently removed via dredging for off site disposal at a MPCA approved facility. Dredging will target areas that exceed the level 2 SQT depth within the top 50 centimeter sediment depth (or depth defined in future by Eco-Risk and/or Human Health Risk parameters).

A detailed outlines for the four potential alternatives listed above as they apply to the Thomson Reservoir and Scanlon Reservoir are provided in **Attachment A** and **Attachment B**, respectively. Screening of potential technologies incorporated into these Alternatives, and screening of the alternatives themselves, will be performed as part of the FFS for each reservoir. While the pending feasibility studies for the two reservoirs will present remedial alternatives, further development and refinement of the selected alternatives is likely following the evaluation of the predesign investigation results. Post predesign investigation remedy refinements may include the dimensions and overall area for EMNR covers or dredging, revision of the analytical program, and sediment and/or dredge material processing approaches. Remedial selection and implementation will be in concert with future Minnesota Power reservoir maintenance projects necessary for the operation of the hydroelectric generation operations at Scanlon and Thomson Reservoirs and in compliance with the various SLR AOC/Thomson Reservoir State and Federal Stakeholders.

BWJ150329 13 January 2016

12.0 REFERENCES AND WEBSITE LINKS

Allied Paper, Inc./Portage Creek/Kalamazoo River Administrative Record: http://semspub.epa.gov/src/collection/05/AR62420

Beak Consultants, LTD. 1992. Estimation of suspended solids loadings in the lower St. Louis River system.

Centredale Manor Restoration Project Online Administrative Record:

http://semspub.epa.gov/src/collection/01/AR62265

Commencement Bay, Near Shore/Tide Flats Website:

http://cumulis.epa.gov/supercpad/SiteProfiles/index.cfm?fuseaction=second.scs&id=1000981

EA Engineering, Science, and Technology, Inc., 2015. Site Characterization Report Assessment of Contaminated Sediment, St. Louis River Site Characterization, St. Louis River and Bay Area of Concern, Duluth, Minnesota. February.

LimnoTech. 2013. St. Louis River Area of Concern, Sediment Characterization: Final Report. July 11.

Lockheed West Seattle Superfund Website:

2013 ROD: http://semspub.epa.gov/work/10/690142.pdf

Love Canal Website:

http://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0201290&msspp=med

McCormick & Baxter Creosote Co. USEPA Region 9 Super fund site overview Website: http://yosemite.epa.gov/r9/sfund/r9sfdocw.nsf/vwsoalphabetic/McCormick+&+Baxter+Creosoting+Co.

Minker/Stout/Romaine Creek NPL Website:

1987 Record of Decisions (ROD): http://semspub.epa.gov/work/07/40260873.pdf

1990 Explanation of Significant Differences (ESD):

http://semspub.epa.gov/work/07/2074595.pdf

1999 ROD: http://semspub.epa.gov/work/09/46674.pdf 2005 ESD: http://semspub.epa.gov/work/09/2078699.pdf

Minnesota Department of Health (MDH). 2013. Public Health Consultation, Updated Huyman Health Screening Values for St. Louis River Sediment: US Steel Site, Duluth, St. Louis County, Minnesota. April.

MDH. 2014. Fish Consumption Guidelines for Women Who Are or May become Pregnant and Children Under Age 15, Rivers. March.

Minnesota Pollution Control Agency (MPCA). 1996. Preliminary Contaminant Assessment of the Thomson, Forbay, and Fond du Lac Reservoirs. April.

MPCA. 2007. Guidance for the Use and Application of Sediment Quality Targets for the Protection of Sediment-Dwelling Organisms in Minnesota. February.

Minnesota Power. 2011. 2011 Thomson Reservoir Sediment Sampling. December 19.

Lower Passaic River Website:

http://www.ourpassaic.org/

BWJ150329 14 January 2016

Poe, D. 1989. Legislative Commission on Minnesota Resources (LCMR) Dioxin database, Ver.1.1. Chemical Toxicology Research Center, University of Minnesota-Duluth.

Superfund Dioxin (contaminant) & Sediment (media) Search Results Website: http://cumulis.epa.gov/supercpad/cursites/srchrslt.cfm?start=1&CFID=16282474&CFTOKEN=5 http://cumulis.epa.gov/supercpad/cursites/srchrslt.cfm?start=1&CFID=16282474&CFTOKEN=5 http://cumulis.epa.gov/supercpad/cursites/srchrslt.cfm?start=1&CFID=16282474&CFTOKEN=5

Tittabawassee/Saginaw River and Bay Site Summary Website: http://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0503250

Weyerhaeuser Company Wood Treating Plant Website:

http://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0403156

OU-2 ROD (Roanoke River): http://semspub.epa.gov/work/04/10588779.pdf OU-4 ROD (Welch Creek): http://semspub.epa.gov/work/04/10520261.pdf

BWJ150329 15 January 2016

Attachment A

Thomson Reservoir FFS Alternatives Outline

Alternative 1: No Action: Minimal Long Term Monitoring to track COC trends.

- Sampling letter work plan
- Sediment monitoring at the 22 current sampling locations. At each location samples will be collected from two sample depths for a total of 44 samples.
 - Dioxin (EPA 8290A)
 - o Selected metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
- A total of 10 sampling events on years 1, 2, 3, 4, 5, 10, 15, 20, 25, & 30
- A total of 10 Institutional Control (IC) site reviews
- A total of 10 Sampling & IC Results letter
- Seven bathymetric surveys years 0, 5, 10, 15, 20, 25, & 30
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 2: Monitoring Natural Recovery (MNR):</u> Demonstration and tracking of natural process that are having a positive effect on sediment COCs and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 24 current and 12 additional sampling locations. The baseline event is to define the extent to which MNR is occurring and to provide the basis and justification for the selected remedy.
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - 108 Sediment locations (3 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - Hq
 - DOC & TOC (EPA 9060A)
 - 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
 - o 36 Surface water locations 1 sample at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - Bathymetric survey of entire reservoir area or designated AOCs
- Predesign Results Report
- MNR Implementation Work Plan
- MNR Implementation sampling event

- 72 Sediment locations (2 sample depth at 36 locations) The actual number of chemical parameters and sample locations for analysis will be based on the predesign sampling results and will be scaled up/down to be able to effectively evaluate the progress of the selected remedy)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
- 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
- o 36 Surface water locations (1 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling annually through year 30
- Annual MNR progress reports & Institutional Control (IC) site reviews Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 3A: MNR & Enhanced Monitoring Natural Recovery (EMNR):</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment COCs and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 24 current and 12 additional sampling locations
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 108 Sediment locations (3 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060A)
 - o 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
 - o 36 Surface water locations (1 sample at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - o Bathymetric survey of entire reservoir area or designated AOCs

BWJ150329 A-2 January 2016

- Predesign Results Report
- MNR/EMNR Remedy Implementation Work Plan
 - Identification of contiguous laydown area for contractor logistical support operations
 - o Identification for the subaqueous clearance of debris that would adversely affect the deployment of a RCM mat installation
 - Identification of a waste management plan for the preparation and offsite T&D of removed subaqueous objects (ie., trees, snags, tires, etc.)
- EMNR Implementation
 - Construct upland staging area
 - o Import 81,000 yd3 of clean sand from an upland borrow
 - o Place 6 in sand cover over 86 acres
 - Assume 1,500 yd3 sand/day = ~ 54 work days plus mob/demob
 - o Conduct construction oversight
 - Conduct quality assurance activities
- EMNR construction report
- MNR/EMNR post implementation sampling event
 - o 72 Sediment locations (2 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
 - 36 Surface water locations (1 sample at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling years 3-10, 12, 14, 16, 18, 20, 25, and year 30
- 16 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 3B: MNR & EMNR with reactive cover material:</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 24 current and 12 additional sampling locations
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 108 Sediment locations (3 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap

- pH
- DOC & TOC (EPA 9060A)
- 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
- 36 Surface water locations (1 sample at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- o Bathymetric survey of entire reservoir area or designated AOCs
- Predesign Results Report
- MNR/EMNR Remedy Implementation Work Plan
 - Identification of contiguous laydown area for contractor logistical support operations
 - o Identification for the subaqueous clearance of debris that would adversely affect the deployment of a RCM mat installation
 - Identification of a waste management plan for the preparation and offsite T&D of removed subaqueous objects (ie., trees, snags, tires, etc.)
- EMNR Implementation
 - Construct upland staging area
 - o Import 78,000 yd3 of clean sand from an upland borrow
 - o Place 6 in sand cover over 86 acres
 - Assume 1,500 yd3 sand/day = ~ 52 work days plus mob/demob
 - Conduct construction oversight
 - Conduct quality assurance activities
- MNR/EMNR Remedy Implementation Work Plan
- EMNR Implementation
 - o Construct upland staging area
 - Import 78,000 yd3 of clean sand from an upland borrow location and reactive material
 - o Place 6 in sand cover and reactive reagent over 86 acres
 - Assume 1,500 yd3 sand/day = ~ 52 work days plus mob/demob
 - Conduct quality assurance activities
- EMNR construction report
- MNR/EMNR post implementation sampling event (year 2)
 - o 72 Sediment locations (2 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Sediment trap
 - **H**q ■
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
 - 36 Surface water locations (1 sample from 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)

BWJ150329 A-4 January 2016

- o 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling years 3-5, 7, 9, 12, 15, 20, 25, and year 30
- 12 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 4: MNR & Dredging:</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 24 current and 12 additional sampling locations
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 108 Sediment locations (3 sample depth at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060A)
 - o 24 Sediment locations (3 samples from 8 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
 - o 36 Surface water locations (1 sample at 36 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - Bathymetric survey of entire reservoir area or designated AOCs
- Secure representative sediment samples for bench-scale dewaterability testing
- Determination of dredge plan, cut elevations (cut to "clean" for a depth then
 potentially cap), quantity determinations, availability of contiguous laydown areas for
 sediment dewatering, treated excess dredge water discharges criteria (i.e., NPDES),
 final dewatered sediment disposal location (near/far/truck/train T&D), potential
 Beneficial Use Designation (BUD) of sediments (i.e., topsoil manufacturing).
- Predesign Results Report
- MNR & Dredging Remedy Implementation Work Plan
- MNR & dredge Implementation
 - o Construct upland staging area
 - Hydraulically dredge 1 ft over 50 acres
 - Dewater dredged sediment, treat contact water, and dispose of dewatered sediment at landfill
 - o Conduct construction oversight and quality assurance activities
 - Assume 2k yd3 sediment/day = ~ 50 work days plus mob/demob
 - Conduct Dredging oversight
 - Conduct QA/QC sampling to demonstrate dredging activities achieved
- Dredge completion report
- MNR & Dredge post implementation sampling event

BWJ150329 A-5 January 2016

- o 36 Sediment locations (2 sample depth at 18 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
- 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
- o 18 Surface water locations (1 sample from 18 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- o 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling year 3,5, 7, 9, 12, 15, 20, 25, and year 30
- 11 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

BWJ150329 A-6 January 2016

Attachment B

Scanlon Reservoir FFS Alternatives Outline

Alternative 1: No Action: Minimal Long Term Monitoring to track COC trends.

- Sampling letter work plan
- Sediment monitoring at the 13 current sampling locations. At each location samples will be collected from two sample depths for a total of 26 samples.
 - Dioxin (EPA 8290A)
 - o Selected metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
- A total of 10 sampling events on years 1, 2, 3, 4, 5, 10, 15, 20, 25, & 30
- A total of 10 Institutional Control (IC) site reviews
- A total of 10 Sampling & IC Results letter
- Seven bathymetric surveys years 0, 5, 10, 15, 20, 25, & 30
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 2: Monitoring Natural Recovery (MNR):</u> Demonstration and tracking of natural process that are having a positive effect on sediment COCs and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 13 current and 7 additional sampling locations. The baseline event is to define the extent to which MNR is occurring and to provide the basis and justification for the selected remedy. At each location samples will be collected from three sample depths.
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 60 Sediment samples (3 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060A)
 - 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
 - 20 Surface water locations (1 sample at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - o Bathymetric survey of entire reservoir area or designated AOCs
- Predesign Results Report
- MNR Implementation Work Plan

- MNR Implementation sampling event
 - 40 Sediment locations (2 sample depth at 20 locations) The actual number of chemical parameters and sample locations for analysis will be based on the predesign sampling results and will be scaled up/down to be able to effectively evaluate the progress of the selected remedy)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - o 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
 - o 20 Surface water locations (1 sample from 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - o 8 Bathymetric surveys (every 5 years Plus after two major flooding events)
- Repeat above sampling annually through year 30
- Annual MNR progress reports & Institutional Control (IC) site reviews

Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 3A: MNR & Enhanced Monitoring Natural Recovery (EMNR):</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment COCs and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 13 current and 7 additional sampling locations. The baseline event is to define the extent to which MNR is occurring and to provide the basis and justification for the selected remedy. At each location samples will be collected from three sample depths.
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 60 Sediment locations (3 samples from 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - bH
 - DOC & TOC (EPA 9060A)
 - o 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Toxicity/bio accumulation
 - Fish tissue
 - Benthic community
 - Sediment slope/sediment loading engineering assessment

BWJ150329 B-2 January 2016

- o 20 Surface water locations (1 sample at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- Bathymetric survey of entire reservoir area or designated AOCs
- Predesign Results Report
- MNR/EMNR Remedy Implementation Work Plan
 - Identification of contiguous laydown area for contractor logistical support operations
 - Identification for the subaqueous clearance of debris that would adversely affect the deployment of a RCM mat installation
 - Identification of a waste management plan for the preparation and offsite T&D of removed subaqueous objects (i.e., trees, snags, tires, etc.)
- EMNR Implementation
 - o Construct upland staging area
 - o Import ~5,000 yd3 of clean sand from an upland borrow
 - o Place 6 in sand cover over 6 acres
 - o Conduct construction oversight
 - Conduct quality assurance activities
- EMNR construction report
- MNR/EMNR post implementation sampling event
 - o 40 Sediment locations (2 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
 - o 20 Surface water locations (1 sample at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- 8 Bathymetric surveys (every 5 years Plus after two major flooding events)
- Repeat above sampling years 3-10, 12, 14, 16, 18, 20, 25, and year 30
- 16 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 3B: MNR & EMNR with reactive cover material:</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 13 current and 7 additional sampling locations. The baseline event is to define the extent to which MNR is occurring and to provide the basis and justification for the selected remedy. At each location samples will be collected from three sample depths.

BWJ150329 B-3 January 2016

- Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
- o 60 Sediment locations (3 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - Hg
 - DOC & TOC (EPA 9060A)
- 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - Fish tissue
 - Benthic community
 - Sediment slope/sediment loading engineering assessment
- o 20 Surface water locations (1 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- o Bathymetric survey of entire reservoir area or designated AOCs
- Predesign Results Report
- MNR/EMNR Remedy Implementation Work Plan
 - Identification of contiguous laydown area for contractor logistical support operations
 - Identification for the subaqueous clearance of debris that would adversely affect the deployment of a RCM mat installation
 - Identification of a waste management plan for the preparation and offsite T&D of removed subaqueous objects (i.e., trees, snags, tires, etc.)
- EMNR Implementation
 - Construct upland staging area
 - o Import 5,000 yd3 of clean sand from an upland borrow
 - o Place 6 inch sand cover over 6 acres
 - Assume 1,500 yd3 sand/day = ~ 4 work days plus mob/demob
 - o Conduct construction oversight
 - Conduct quality assurance activities
- MNR/EMNR Remedy Implementation Work Plan
- EMNR Implementation
 - o Construct upland staging area
 - Import 5,000 yd3 of clean sand from an upland borrow location and reactive material
 - o Place 6 inch sand cover and reactive reagent over 6 acres
 - Assume 1,500 yd3 sand/day = ~ 4 work days plus mob/demob
 - Conduct quality assurance activities
- EMNR construction report
- MNR/EMNR post implementation sampling event (year 2)
 - o 34 Sediment locations (2 sample depth at 17 locations)
 - Dioxin (EPA 8290A)

- Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
- o 12 Sediment locations (2 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - Hq
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
- o 17 Surface water locations (1 sample at 17 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
- o 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling years 3-5, 7, 9, 12, 15, 20, 25, and year 30
- 12 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

<u>Alternative 4: MNR & Dredging:</u> Demonstration and tracking of natural process and EMNR cover that are having a positive effect on sediment and biological indicators

- Predesign Investigation Work Plan
- Predesign Investigation at 13 current and 7 additional sampling locations. The baseline event is to define the extent to which MNR is occurring and to provide the basis and justification for the selected remedy. At each location samples will be collected from three sample depths.
 - Determination of the remedy selection impact on reservoir operations by Minnesota Power and current public use.
 - o 60 Sediment locations (3 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - PCBs (EPA 8082A)
 - PAH 17 list (EPA 8270D SIM)
 - Grain size (ASTM D422 w/ hydrometer)
 - Sediment trap
 - Hq
 - DOC & TOC (EPA 9060A)
 - o 18 Sediment locations (3 samples from 6 locations that are > SQT 2)
 - Sediment trap
 - Fish tissue
 - Benthic community
 - Sediment slope/sediment loading engineering assessment
 - o 20 Surface water locations (1 sample depth at 20 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - o Bathymetric survey of entire reservoir area or designated AOCs
- Secure representative sediment samples for bench-scale dewaterability testing
- Determination of dredge plan, cut elevations (cut to "clean" for a depth then potentially cap), quantity determinations, availability of contiguous laydown areas for sediment dewatering, treated excess dredge water discharges criteria (i.e., NPDES),

BWJ150329 B-5 January 2016

final dewatered sediment disposal location (near/far/truck/train T&D), potential Beneficial Use Designation (BUD) of sediments (i.e., topsoil manufacturing).

- Predesign Results Report
- MNR & Dredging Remedy Implementation Work Plan
- MNR & dredge Implementation
 - Construct upland staging area
 - Hydraulically dredge 1 ft. over 6 acres ~10,000 yd3
 - Dewater dredged sediment, treat contact water, and dispose of dewatered sediment at landfill
 - Conduct construction oversight and quality assurance activities
 - Assume 2k yd3 sediment/day = ~ 5 work days plus mob/demob
 - Conduct Dredging oversight
 - Conduct QA/QC sampling to demonstrate dredging activities achieved
- Dredge completion report
- MNR & Dredge post implementation sampling event
 - 20 Sediment locations (2 sample depth at 10 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - 15 Sediment locations (3 samples from 5 locations that are > SQT 2)
 - Sediment trap
 - pH
 - DOC & TOC (EPA 9060)
 - Fish tissue
 - Benthic community
 - o 10 Surface water locations (1 sample from 10 locations)
 - Dioxin (EPA 8290A)
 - Select Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) (EPA 6020A/7471B)
 - Water quality parameters (pH, DO, temp, Sp. Cond, ORP)
 - 8 Bathymetric survey (every 5 years Plus after two major flooding events)
- Repeat above sampling year 3,5, 7, 9, 12, 15, 20, 25, and year 30
- 11 MNR progress reports & Institutional Control (IC) site reviews
- Six 5-year review reports years 5, 10, 15, 20, 25, & 30

BWJ150329 B-6 January 2016

Appendix F

Draft Benchscale Treatability Testing Report, February 2020

February 2020 Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota

Contract Number: W912P4-16-D-0001

Benchscale Treatability Testing Report

Prepared for U.S. Army Corps of Engineers – Detroit District

February 2020 Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota

Contract Number: W912P4-16-D-0001

Benchscale Treatability Testing Report

Prepared for

U.S. Army Corps of Engineers – Detroit District 447 Michigan Avenue Detroit, Michigan 48226

Prepared by

Anchor QEA-Baird Joint Venture 290 Elwood Davis Road, Suite 340 Liverpool, New York 13088

TABLE OF CONTENTS

1	Intr	oductio	on	
	1.1	Repor	t Organization	
	1.2	Treata	ability Testing Purpose and Objectives	1
2	Mat	erials a	and Methods	3
	2.1	Sampl	le Collection	3
		2.1.1	Sediment	3
		2.1.2	Activated Carbon	3
	2.2	Sampl	le Selection	2
		2.2.1	Sediment Data Treatment	2
		2.2.2	Sample Screening	
	2.3	Treata	ability Study Design	
	2.4	Sedim	nent Batch Preparation	6
	2.5	LDPE I	Passive Sampling	7
		2.5.1	Preparation of LDPE Sheets	7
		2.5.2	Deployment and Retrieval	8
		2.5.3	Data Analysis	
3	Lab	oratory	y Data Quality Assessment	12
	3.1	Qualit	y Assurance/Quality Control	12
		3.1.1	LDPE Passive Sampler Data	12
	3.2	Data \	Validation	12
4	Res	ults		14
	4.1	Bulk S	ediment Results	14
	4.2	Sedim	nent Porewater Results	14
		4.2.1	Performance Reference Compounds	14
		4.2.2	Dioxin/Furan Concentrations and AC Performance	18
5	Sun	nmary a	and Recommendations	22
6	Refe	erences	S	23

i

TABLES	
Table 1	Total Dioxin/Furan TEQ and Carbon Concentrations in PDI Samples5
Table 2	Sediment Batch Test Design Scenarios6
Table 3	Log K _{ow} and Calculated Log K _{PE-W} of the Target Dioxin/Furan Congeners and PRCs10
Table 4	Fraction of Equilibrium of the PRCs (f _{e-PRC}) Achieved in Set 1 LDPE Samplers and Set 2 LDPE Samplers15
Table 5	Linear Regression Between the Fraction of Equilibrium of the PRCs (f _{e,PRC}) and the Log of the LDPE-Water Partitioning Coefficient (Log K _{PE-W}) in Set 1 and Set 2 LDPE Samplers
Table 6	Estimated Fraction of Equilibrium of the Target Dioxin/Furan Congeners (f _{e-PRG}) in Set 1 LDPE Samplers and Set 2 LDPE Samplers17
Table 7	Reductions of Bioavailable TEQ Concentrations Measured in Sediment Porewater in Set 1 after 60 Days and in Set 2 after 97 Days of AC Amendment
Table 8	Reductions of TEQ Concentrations in LDPE Passive Samplers after 60 Days (Set 1) and 97 Days (Set 2) of AC Amendment
FIGURES	
Figure 1	Dioxin/Furan TEQ Congener Distribution in Site Sediment Samples
Figure 2	Set 1 Dioxin/Furan Congener TEQ Profiles in the Sediment Porewater – SR-2019-04
Figure 3	Set 2 Dioxin/Furan Congener TEQ Profiles in the Sediment Porewater – SR-2019-04
Figure 4	Set 1 Dioxin/Furan Congener TEQ Profiles in the Sediment Porewater – SR-2019-06
Figure 5	Set 2 Dioxin/Furan Congener TEQ Profiles in the Sediment Porewater – SR-2019-06
Figure 6	Set 1 Dioxin/Furan TEQ Concentration Profile in Passive Samplers – SR-2019-04
Figure 7	Set 2 Dioxin/Furan TEQ Concentration Profile in Passive Samplers – SR-2019-04
Figure 8	Set 1 Dioxin/Furan TEQ Concentration Profile in Passive Samplers – SR-2019-06
Figure 9	Set 2 Dioxin/Furan TEQ Concentration Profile in Passive Samplers – SR-2019-06
Figure 10	Set 1 Percent Reduction in Passive Sampler Dioxin/Furan TEQ Concentration by Congener – SR-2019-04
Figure 11	Set 2 Percent Reduction in Passive Sampler Dioxin/Furan TEQ Concentration by Congener – SR-2019-04
Figure 12	Set 1 Percent Reduction in Passive Sampler Dioxin/Furan TEQ Concentration by Congener – SR-2019-06
Figure 13	Set 2 Percent Reduction in Passive Sampler Dioxin/Furan TEQ Concentration by Congener – SR-2019-06

APPENDICES

Appendix A Congener Distributions

Appendix B Fraction of Equilibrium Regressions

Appendix C Data Validation Reports

Appendix D Effect of K_{ow} on Reduction in Sampler Uptake

ABBREVIATIONS

13C carbon-13μm micrometer

AC activated carbon
ASTM ASTM International

cm centimeter

dioxin/furan polychlorinated dibenzo dioxin and furan
DSR Pre-Remedial Design Data Summary Report
EGL Environmental Geochemistry Laboratory
EPA U.S. Environmental Protection Agency

fe fraction of equilibrium

f_{e,PRC} fraction of PRC equilibrium
GAC granular activated carbon

HOC hydrophobic organic contaminant

HPLC high-performance liquid chromatography

JV Anchor QEA-Baird Joint Venture

KM Kaplan-Meier

K_{ow} octanol-water partitioning coefficientK_{PE-W} LDPE-water partitioning coefficient

LDPE low-density polyethylene

 $\begin{array}{ccc} mg & milligram \\ NA & not available \\ NaN_3 & sodium azide \\ NC & not calculated \end{array}$

ng/g nanograms per gram

OCDD octachlorodibenzo-p-dioxin
OCDF octachlorodibenzofuran
PAC powdered activated carbon

PDI pre-remedial design investigation

PDI Workplan Pre-Remedial Design Investigation Workplan

PE polyethylene

pg/L picograms per liter

PRC performance reference compound
QA/QC quality assurance/quality control
QAPP Quality Assurance Project Plan
RPD relative percent difference

SC soot carbon

SGS SGS North America Inc.
Site Scanlon Reservoir Site
TEF toxic equivalency factor

TEQ toxic equivalent

TOC total organic carbon

Treatability Report Benchscale Treatability Testing Report
Treatability Testing Benchscale Treatability Testing Workplan

Workplan

USACE U.S. Army Corps of Engineers

1 Introduction

This Benchscale Treatability Testing Report (Treatability Report) has been prepared by the Anchor QEA-Baird Joint Venture (JV), on behalf of the U.S. Army Corps of Engineers (USACE), Detroit District, as required under the USACE Contract Number W912P4-16-D-0001. This Treatability Report describes the methodology and results from a treatability study for amendment application to contaminated sediment at the Scanlon Reservoir (Site) of the St. Louis River located in Scanlon, Minnesota. The treatability study was conducted to evaluate the effectiveness of activated carbon (AC) to reduce the bioavailability of polychlorinated dibenzo dioxins and furans (dioxins/furans) in surface sediments at the Site. Sediment sampling procedures and minor deviations from the Pre-Remedial Design Investigation Workplan (PDI Workplan; JV 2019a) are presented in the Pre-Remedial Design Data Summary Report (DSR; JV 2019b). Treatability testing was performed in Anchor QEA, LLC's Environmental Geochemistry Laboratory (EGL) in Portland, Oregon, in accordance with the Benchscale Treatability Testing Workplan (Treatability Testing Workplan; JV 2019c). Sample analyses were performed by SGS North America Inc. (SGS) in Wilmington, North Carolina.

1.1 Report Organization

This Treatability Report is organized into six sections as follows:

- Section 1 (this section) presents the report organization and treatability testing purpose and objectives.
- Section 2 presents materials and methods utilized for treatability testing, including laboratory set-up, sample collection, sample preparation, sampling procedures, sampling frequency, and initial characterization analyses.
- Section 3 discusses the laboratory data quality assessment, including quality assurance/quality control (QA/QC), data validation, and data completeness.
- Section 4 briefly summarizes the results of this study.
- Section 5 provides a summary and recommendations for future evaluations.
- Section 6 is a list of references cited in this document.

1.2 Treatability Testing Purpose and Objectives

As described in the Treatability Testing Workplan (JV 2019c), the *Final Focused Feasibility Study* (Bay West 2017) identified dioxins/furans as the primary contaminants of concern for the Scanlon Reservoir, with concentrations elevated above Minnesota Pollution Control Agency Level II Sediment Quality Targets. Additional investigations by Bay West (2017) indicated that dioxins/furans in Site sediments may bioaccumulate in fish tissue above reference levels. Dioxins/furans are hydrophobic organic contaminants (HOCs) that adsorb strongly to carbonaceous material such as natural organic matter or AC. It has been shown for polychlorinated biphenyls (another group of HOCs) that adsorption to AC is 2 to 3 orders of magnitude stronger compared to natural organic matter

(Gomez-Eyles et al. 2013). Adsorption of dioxins/furans to AC has been shown to significantly reduce sediment porewater concentrations in laboratory-scale studies (Fagervold et al. 2010; Chai et al. 2012) and in a large-scale field study (Cornelissen et al. 2012).

The objective of the treatability testing described in this report was to evaluate the effectiveness of different AC amendments and doses to reduce the bioavailability of dioxins/furans in Site sediments in order to identify optimal amendments for potential application to Scanlon Reservoir. Bioavailability was assessed based on measurements of freely dissolved concentrations of dioxins/furans in sediment porewater using polyethylene (PE) passive samplers in unamended (control) sediments compared with AC-amended sediments. The rationale and methods for carrying out the benchscale treatability testing to assess amendment effectiveness are described in the Treatability Testing Workplan (JV 2019c).

2 Materials and Methods

2.1 Sample Collection

All sediment samples used in the benchscale treatability testing were collected as part of the preremedial design investigation (PDI) sampling effort. Sample acquisition and processing methods are reported in the DSR (JV 2019b) and briefly summarized in Section 2.1.1. Section 2.1.2 describes the selection of the AC amendments.

2.1.1 Sediment

Ten surface sediment (0 to 15 centimeters [cm]) samples were collected from the Site between September 23 and 24, 2019. Six of these samples were collected from areas that previously contained locally elevated surface sediment dioxin/furan concentrations. After collecting the required sample mass at each of the six locations, the samples were homogenized, and aliquots were sent out for the following analyses:

- Dioxins/furans (U.S. Environmental Protection Agency [EPA] Method 1613B)
- Total mercury (EPA Method 7471B)
- Total organic carbon (TOC) (EPA Method 9060A)
- Soot carbon (SC) (EPA Method 9060A [modified])
- Moisture content (ASTM International [ASTM] D2216)
- Atterberg limits (ASTM D4318)
- Particle size (ASTM D422)
- Specific gravity (ASTM D854)
- Total solids (Standard Method 2540)

In addition to laboratory testing, an aliquot of each sediment sample was set aside for benchscale treatability testing, sealed in large Mylar bags, and sent to the EGL, in accordance with the *Quality Assurance Project Plan* (QAPP; Appendix A to the PDI Workplan; JV 2019a), pending the results of laboratory testing. At EGL, an aliquot of each sediment sample was treated with AC and allowed to mix prior to starting the benchscale treatability tests. Sample preparations are described in more detail in Section 2.5.

Following receipt of laboratory testing results, two representative sediment samples were selected for benchscale treatability testing. The sediment sample selection process is described further in Section 2.2.

2.1.2 Activated Carbon

As discussed previously, the objective of the treatability testing was to assess the effectiveness of AC amendments in reducing the bioavailability of dioxins/furans in Site sediments as measured in

porewater. Two AC particle size ranges were evaluated—a silt-sized powdered activated carbon (PAC) and a fine sand-sized granular activated carbon (GAC). Both of the AC amendments tested were bituminous coal-based.

The AC products were sourced from Calgon Carbon and are as follows:

- GAC: Calgon Carbon TOG LF 80x325; 60 U.S. mesh/0.25 millimeter (0.5% weight), 80 U.S. mesh/0.18 millimeter (4% weight), less than 325 U.S. mesh/0.045 millimeter (10% weight)
- PAC: Calgon Carbon VPAC-I; less than 325 U.S. mesh/0.045 millimeter (90% volume)

The basis for selection of these two products is described in more detail in the Treatability Testing Workplan.

2.2 Sample Selection

This section describes the data review process that was used to select the samples for treatability testing following receipt of the data from the PDI sampling effort. In accordance with the Treatability Testing Workplan, two of the six sediment samples submitted for treatability testing were selected following a review of chemical and physical data to select representative samples that span a range of sediment types to assess the performance of AC treatment at the Site. The data review focused primarily on bulk sediment concentrations of dioxins/furans, as well as sediment TOC and SC content.

2.2.1 Sediment Data Treatment

Prior to review of the bulk sediment data, total dioxin/furan toxic equivalents (TEQs) were calculated for the 17 2,3,7,8-substituted dioxins/furans presented in the 2005 World Health Organization toxic equivalency factors (TEFs) for protection of fish, per EPA recommendations (EPA 2010). Total TEQ levels represent the sum of each individual congener concentration multiplied by its respective TEF. Calculated total TEQs are presented in Table 1.

The total dioxin/furan TEQ results presented in this report have been transformed using a variety of data treatment techniques to address the data reported at the analytical laboratory detection limit. Kaplan-Meier (KM) statistics with Efron's adjustments were applied to all samples with reportable detected and non-detected values (Helsel 2009). In instances where a sample had all non-detect values or all non-detect and not reportable values, KM statistics do not apply, and a KM value could not be calculated. In addition to KM statistics, non-detected dioxin/furan congeners are also reported at the analytical laboratory detection limit, as well as substituting a value of zero. These two techniques provide the higher and lower range of possible values for the non-detected value, and therefore, the corresponding total dioxin/furan TEQ results represent the higher and lower range of possible values.

2.2.2 Sample Screening

Representative sediment samples SR-2019-04 and SR-2019-06 were selected to carry forward into benchscale treatability testing. Compared to other samples collected during the PDI, these samples contained relatively higher total TEQ levels, and spanned the general range of TOC and SC content measured at the Site (Table 1). TOC and SC are common, naturally occurring sorbent phases that can affect the bioavailability of dioxins/furans in sediments. The TOC and SC contents of sample SR-2019-04 was generally typical of PDI samples collected from the Site, while sample SR-2019-06 contained the highest TOC and SC contents (8.1% and 2.25%, respectively). These data suggest a greater untreated sediment dioxin/furan sorption potential in sample SR-2019-06 compared to the others, with a corresponding lower potential for sequestration by AC. Thus, sample SR-2019-06 was selected as one of the two treatability testing samples to provide a conservative representation of AC amendment effectiveness.

Figure 1 presents the total dioxin/furan TEQ concentration of each sediment sample collected during the PDI. Individual dioxin/furan congeners plotted against their corresponding fraction of total TEQ are presented in Appendix A. Because congener distributions and "fingerprints" were similar amongst the PDI samples (suggesting a likely common legacy source), fingerprint characteristics did not influence sample screening.

Table 1
Total Dioxin/Furan TEQ and Carbon Concentrations in PDI Samples

Sample	Total TEQ (ng/kg) ¹	TOC (%)	SC (%)
SR-2019-01	0.343 – 1.66	2.2	0.03
SR-2019-02	13.7 – 13.8	4.0	0.14
SR-2019-03	20.1 – 20.2	3.5	0.15
SR-2019-04	62.0 – 62.1	4.6	0.65
SR-2019-05	27.9 – 27.9	4.0	0.53
SR-2019-06	29.4 – 29.4 (19.3 – 19.3)	8.1	2.25

Notes:

Values in **bold** were selected for the benchscale treatability test.

Values in parentheses represent field duplicate sample results.

ng/kg: nanograms per kilogram

2.3 Treatability Study Design

To assess the effectiveness of AC in reducing bioavailable dioxin/furan concentrations in sediment porewater, the selected sediment samples (SR-2019-04 and SR-2019-06) were amended with two

^{1.} Per Section 2.2.1, total dioxin/furan TEQ results are reported with non-detect results set to zero and the analytical laboratory detection limit.

types of AC (PAC and GAC). The PAC amendment was applied at target AC doses of 2% and 4% by dry weight, while the GAC was amended at a target AC dose of 4% by dry weight. An unamended control sample was also prepared in parallel for each sample.

Eight unique sediment batches (4% PAC-amended, 2% PAC-amended, 4% GAC-amended, and control) were prepared. In addition, one duplicate sediment batch for SR-2019-04 was also included to assess the reproducibility of the treatability testing. Therefore, a total of nine sediment batches were assembled (as shown in Table 2).

Table 2
Sediment Batch Test Design Scenarios

Sediment Sample	Amendment	Number of Sediment Batches	Number of Deployed LDPE Strips (Set 1 and Set 2) ¹
	Untreated Control	1	2
	AC 1 – 4% PAC	1	4
SR-2019-04	AC 1 – 4% PAC (Duplicate)	1	4
	AC 2 – 4% GAC	1	4
	AC 1 – 2% PAC	1	4
	Untreated Control	1	2
CD 2010 0C	AC 1 – 4% PAC	1	4
SR-2019-06	AC 2 – 4% GAC	1	4
	AC 1 – 2% PAC	1	4

Note

2.4 Sediment Batch Preparation

The sediment batches were prepared as described in the Treatability Testing Workplan (JV 2019c), with some minor modifications. As stated in the Treatability Testing Workplan, bulk sediment samples were sealed in large Mylar bags and shipped on ice in coolers to EGL. Upon arrival at EGL, bulk sediment samples were homogenized within their original sample containers, and coarse rocks and debris were removed by hand.

Homogenized bulk sediment samples were then transferred to stainless-steel bowls and homogenized further and added to wide-mouth, EPA-certified, pre-cleaned glass jars (1 liter) with Teflon-lined lids. An aliquot of this sediment was removed to measure moisture content using the methods provided in ASTM D2216. The moisture content of each sediment was then used to calculate the mass of high-performance liquid chromatography (HPLC)-grade water containing 200 milligrams per liter sodium azide (NaN₃) needed to be mixed into the sediment to make a slurry with

^{1.} The number (and dimensions) of low-density polyethylene (LDPE) strips was determined after selection of test sediments. This is discussed further in Section 2.5.2.

a weight ratio of 1:2 (dry sediment to water). As stated in the Treatability Testing Workplan, NaN₃, a biocide, was added to inhibit the biodegradation of dioxins/furans during testing. AC was then added to sediment jars according to the target doses outlined in Table 2. The sediment jars were then sealed and loaded onto an orbital shaker table and gently agitated for 30 days before the deployment of low-density polyethylene (LDPE). The sediment jars were also manually shaken approximately once per day to enhance uptake of dioxins/furans onto the AC.

2.5 LDPE Passive Sampling

LDPE passive samplers were used to measure the freely dissolved concentrations of dioxins/furans in sediment porewater. Passive sampling using LDPE is a well-documented approach for measuring the freely dissolved concentrations of HOCs such as dioxins/furans in sediment porewater (EPA et al. 2017). Once deployed, these samplers absorb freely dissolved HOCs from the porewater into the sampler. Passive sampling using LDPE is a continuous sampling process, providing time-averaged concentrations of HOCs in sediment porewater. It should be noted that porewater concentrations reported in this treatability study represent time-averaged concentrations following 31 and 37 days of contact with AC-amended sediments for the Set 1 and Set 2 LDPE samplers, respectively. LDPE sheets are impregnated with isotopically labeled (carbon-13 [13C]) performance reference compounds (PRCs), which are analytically noninterfering, not native to the sediment, and have similar diffusivities and partitioning properties as the target dioxins/furans. Isotropic exchange kinetics are generally assumed in the PRC approach (Ghosh et al. 2014), and the depletion rate of the PRCs during the deployment of the LDPE sheet reflects the uptake rate of a target dioxin/furan. The differences in the uptake rates of dioxin/furan congeners into the LDPE samplers can be estimated by the depletion observed in the PRC concentrations and corrected for differences in the chemical characteristics. The PRCs used in this study were selected to cover a wide range of hydrophobicity of the target dioxins/furans. During deployment, PRCs diffuse out of the LDPE samples as target dioxins/furans diffuse into the LDPE samplers. The fraction of PRC equilibrium (fe,PRC) is determined by dividing the final, post-retrieval concentration by the initial, pre-deployment concentration. The calculated f_{e,PRC} is then used to estimate the fraction of equilibrium (f_e) of the target dioxins/furans, as described in detail in Section 2.5.3.2.

2.5.1 Preparation of LDPE Sheets

The LDPE sheets (25.4 micrometers [µm] thick) used for this study were obtained from Poly-America (Grand Prairie, Texas). LDPE sheets were cut and cleaned, as described in the Treatability Testing Workplan, with minor modifications. Each LDPE sheet was cut so that it was at least 60 milligrams (mg; approximately 5 cm by 5 cm). The LDPE sheets were then cleaned by sequentially soaking in HPLC-grade toluene, hexane, methanol, and water in a glass jar on a shaker table to extract any contaminants that may interfere with subsequent analysis.

Clean LDPE sheets then were spiked with the PRC, which was done by soaking in an 80:20 volume to volume methanol/water mixture containing four different PRCs (¹³C-1,2,7,8-TCDD, ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD) purchased from Wellington Laboratories, Inc. (Guelph, Ontario, Canada) (Booij et al. 2002). The PRCs were selected to cover a wide range of hydrophobicity of the target dioxins/furans and not to interfere with the analysis of target congeners. The LDPE sheets equilibrated with the PRC-spiked solution for 14 days on an orbital shaker table. During the spiking process, methanol in the PRC-spiked solution caused the LDPE sheet to swell (this helps increase the PRC uptake rate). Therefore, after 14 days, all LDPE sheets were removed from the PRC-spiked solution and rinsed with HPLC-grade water for a day to purge methanol from the LDPE strips and reduce the swelling. Following the PRC spiking process, three PRC-spiked LDPE strips were immediately sent to SGS for analysis of the PRCs and dioxin/furan congeners, to assess if any contamination occurred as part of the spiking process (see Section 3 for further discussion on this topic).

The remainder of the LDPE sheets from this batch (Set 1) were deployed in prepared sediment batches. Using the same procedures, a second batch of LDPE sheets (Set 2) were prepared to deploy following the retrieval of Set 1. This process is discussed further in Section 2.5.2.

2.5.2 Deployment and Retrieval

Following receipt of the sediment data, the porewater concentrations were estimated based on general equilibrium partitioning theory (Lohmann 2011) to determine appropriate LDPE masses to detect the target dioxin/furan congeners and not to significantly deplete them in sediment porewater. Four of the 60-mg LDPE strips were deployed in the AC-treated sediment jars (i.e., 2% PAC, 4% PAC, and 4% GAC), while two of the 60-mg LDPE strips were deployed in untreated sediment jars. All Set 1 LDPE strips were deployed on October 25, 2019, and retrieved on November 25, 2019, for a total of 31 days of exposure.

Upon retrieval from the sediment jars, the Set 1 LDPE strips were thoroughly rinsed with HPLC-grade water and blotted dry with Kim wipes to remove water and adhering particles. The LDPE strips were then weighed and stored in EPA-certified, pre-cleaned volatile organic compound vials. Samples were placed in a cooler with ice and shipped for overnight delivery to SGS for analysis. Following retrieval, the Set 2 LDPE strips were deployed into the same sediment batches using the same number of sheets per batch on November 27, 2019 (Table 2). The Set 2 LDPE strips were later retrieved on January 2, 2020, resulting in a total of 37 days of exposure. The procedure described above for rinsing, weighing, and packing the vials was also followed for Set 2.

All results and data analysis are discussed in Section 4.

2.5.3 Data Analysis

This section discusses data analysis associated with the following: calculating freely dissolved porewater concentrations based on measured LDPE concentrations, correcting porewater data for non-equilibrium using the PRCs, and correcting porewater data for sediment depletion.

2.5.3.1 Analysis of Dioxins/Furans in the LDPE Strips

The retrieved LDPE strips were sonicated in toluene three times to extract dioxins/furans at SGS. The extracts were concentrated and analyzed for dioxins/furans by EPA Method 1613B.

2.5.3.2 Calculation of Dioxin/Furan Porewater Concentrations

Freely dissolved porewater dioxin/furan concentrations are calculated using the laboratory-measured LDPE dioxin/furan concentration, the LDPE-water partitioning coefficient (K_{PE-W}), and the f_e achieved within the LDPE strips, as shown in Equation 2-1:

Equation 2-1

$$C_w = \frac{C_{PE}}{K_{PE-W} \times f_e}$$

where:

C_w = Concentration in sediment porewater

C_{PE} = Concentration in LDPE sampler

K_{PE-W} = LDPE-water partitioning coefficient

f_e = Fraction of equilibrium of target dioxins/furans

Published K_{PE-W} values are not available for all target dioxin/furan congeners, but K_{PE-W} values can be predicted from the octanol-water partitioning coefficient (K_{ow}) using a linear regression. Adams et al. (2007) published a regression of the logarithm of measured K_{PE-W} (log K_{PE-W}) against published logarithms of the octanol-water partitioning coefficient (log K_{ow}); this regression is presented as Equation 2-2. Using Equation 2-2, the log K_{PE-W} value for each dioxin/furan congener was calculated based on its log K_{ow} value. The log K_{ow} and calculated log K_{PE-W} values for the target dioxins/furans and PRCs used in the calculation of C_w are presented in Table 3.

Equation 2-2

 $\log K_{PE-W} = 1.13 \times \log K_{OW} - 0.86 \qquad (r^2 = 0.89)$

where:

 K_{PE-W} = LDPE-water partitioning coefficient K_{ow} = Octanol-water partitioning coefficient

Table 3 Log K_{ow} and Calculated Log $K_{\text{PE-W}}$ of the Target Dioxin/Furan Congeners and PRCs

Туре	Congener	Log K _{ow} ¹	Calculated Log K _{PE-W} ²
	2,3,7,8-TeCDD	6.96	7.00
	1,2,3,7,8-PeCDD	7.50	7.59
	1,2,3,4,7,8-HxCDD	7.94	8.11
	1,2,3,6,7,8-HxCDD	7.98	8.16
	1,2,3,7,8,9-HxCDD	8.02	8.20
	1,2,3,4,6,7,8-HpCDD	8.40	8.65
	OCDD	8.60	8.89
	2,3,7,8-TCDF	6.96	6.95
Target Analyte	1,2,3,7,8-PeCDF	6.99	6.99
	2,3,4,7,8-PeCDF	7.50	7.59
	1,2,3,4,7,8-HxCDF	7.94	8.11
	1,2,3,6,7,8-HxCDF	7.57	7.67
	1,2,3,7,8,9-HxCDF	7.76	7.90
	2,3,4,6,7,8-HxCDF	8.02	8.20
	1,2,3,4,6,7,8-HpCDF	8.40	8.65
	1,2,3,4,7,8,9-HpCDF	8.25	8.48
	OCDF	8.60	8.89
	¹³ C-1,2,7,8-TCDD	6.99	7.04
DDC ₀	¹³ C-1,2,4,7,8-PeCDD	7.36	7.46
PRCs	¹³ C-1,2,3,4,6,8-HxCDD	7.77	7.92
	¹³ C-1,2,3,4,6,7,9-HpCDD	8.25	8.46

Notes:

1. Cited from Govers and Krop (1998)

2. Calculated using Equation 2-2 cited from Adams et al. (2007)

OCDD: octachlorodibenzo-p-dioxin OCDF: octachlorodibenzofuran

The f_{e-PRC} of the four PRCs was calculated using the ratio of the final PRC concentration (i.e., following deployment) to the initial PRC concentration, as shown in Equation 2-3. Subsequently, the calculated f_{e,PRC} and log K_{PE-W} values (Table 3) were plotted and a linear regression was developed for each sample as described in Apell et al. (2018) for well-mixed systems (Appendix B). The linear regression and the log K_{PE-W} values of the target compounds were used to calculate the fraction of equilibrium of the target dioxins/furans (f_e,) (Equation 2-4). Finally, f_e was used to calculate the freely dissolved equilibrium porewater concentration (C_w) for each congener using Equation 2-1.

Equation 2-3

$$f_{e,PRC} = 1 - \frac{C_{PRC,final}}{C_{PRC,init}}$$

where:

 $f_{e,PRC}$ = Fraction of equilibrium of PRCs

CPRC,final = Final PRC concentration in LDPE sampler
 CPRC,init = Initial PRC concentration in LDPE sampler

Equation 2-4

$$f_e = a \times log K_{PE-W} + b$$

where:

f_e = Fraction of equilibrium of target dioxins/furans

Kpe-w, prc = LDPE-water partitioning coefficient

a = Slope of linear regression curve (Appendix B)

b = Y-intercept of linear regression curve (Appendix B)

3 Laboratory Data Quality Assessment

3.1 Quality Assurance/Quality Control

3.1.1 LDPE Passive Sampler Data

A method blank, PRC-loaded LDPE passive sampler reproducibility standards, and laboratory duplicates were prepared to assess the data quality of LDPE passive sampling for both Set 1 and Set 2. Details of these QA/QC samples are summarized in the following:

- **Method blank:** A method blank was used to assess background contamination introduced to the LDPE strips during cutting and cleaning. The method blank (a 60-mg LDPE strip) was cut and cleaned with the other LDPE strips, then wrapped with aluminum foil, and stored in an air-tight bag in a refrigerator at 4°C until the other LDPE strips were deployed in the benchscale treatability test. Following the start of the treatability test, the method blank sample was shipped to SGS for analysis. No target or PRC compounds were detected in the method blanks of Set 1 and Set 2.
- Laboratory duplicates: One laboratory duplicate was included in each set (i.e., Set 1 and Set 2) of LDPE sampler deployment in the benchscale treatability test. An additional batch of SR-2019-04 amended with 4% PAC was prepared and LDPE strips were deployed to provide a measure of experimental reproducibility. The relative percent difference (RPD) for the Set 1 sampler uptake for the two identical batches was 25%, and the RPD for the freely dissolved concentrations corrected for the fraction of PRC loss was 4%, both within the QAPP data quality objective. The RPD for the Set 2 sampler uptake was 16% and the RPD for the freely dissolved concentrations corrected for the fraction of PRC loss was 36%, both within the QAPP data quality objective.

3.2 Data Validation

Data quality criteria and data validation procedures are provided in the QAPP. Data from each laboratory package were evaluated and documented in a data validation report by the JV. Data validation reports are provided in Appendix C. All data qualifiers applied to the data during final validation have been incorporated into the database for this project. Most data were acceptable as reported, and all other data were acceptable as qualified. The data qualifier "U" was assigned to various results during validation to indicate the associated numerical value was non-detect at or above the specified limit. The data qualifier "J" was assigned to various results during data validation to indicate the associated numerical value is an estimated concentration. All dioxin/furan data that were qualified by the laboratory as estimated maximum possible concentration were assigned "J" qualifiers to indicate a detected and estimated concentration. Other results were assigned a "J"

qualifier based on a method or technical criterion, as stated in the EPA National Functional Guidelines (EPA 2016) or the QAPP.

Overall, reporting limits were deemed acceptable to meet project objectives and reporting limits, because undetected results were met or below those specified for the project.

4 Results

4.1 Bulk Sediment Results

The results of the TEQ concentrations in the bulk sediments are presented in Table 1. Additional physical parameters such as grain size, plasticity, liquid limits, and specific gravity are presented in Table 1 of the DSR (JV 2019b). The sediments collected for the benchscale treatability test predominately comprised fine to coarse sands and silt (89% to 93%). The clay fraction of the samples ranged from 6.9% to 10%, and gravels were measured in two samples SR-2019-02 (0.1%) and SR-2019-04 (0.4%). The TOC and SC content of the samples are discussed in Section 2.2.2.

As shown in Appendix A, the two predominant TEQ congeners in the PDI sediment samples were 1,2,3,7,8-PeCDD and 1,2,3,4,6,7,8-HpCDF, representing approximately half of the total TEQ. As discussed in Section 2.2, representative samples SR-2019-04 and SR-2019-06 were selected for benchscale treatability testing.

4.2 Sediment Porewater Results

4.2.1 Performance Reference Compounds

Low variability in initial PRC concentrations is a key step in accurately characterizing the fraction of equilibrium of a target dioxin/furan congener. To assess variability, the four ¹³C-labeled dioxin/furan congeners were spiked into QA/QC LDPE samplers, along with the samplers deployed in the treatability test. The initial PRC concentrations in the Set 1 QA/QC samplers (i.e., PRC-loaded LDPE sampler reproducibility standards) had low variability, with a 1.0% to 5.3% coefficient of variation. The initial PRC concentrations in the Set 2 QA/QC samplers had 1.5% to 28.4% coefficient of variation, with only the highest K_{ow} PRC (¹³C-1,2,3,4,6,7,9-HpCDD) having a coefficient of variation above 6%. The increase in variability from Set 1 to Set 2 is likely the result in a smaller number of initial PRC samples (two initial PRC samples in Set 2 as opposed to three initial PRC samples in Set 1). For the Set 2 initial PRC samples, one of the three samples was rejected because the initial concentrations were much lower than those of the other two samples. The sensitivity analysis indicated that rejecting the PRC sample did not change the estimated porewater concentrations of dioxins/furans (less than 5% differences). The two remaining PRC samples were used to calculate the initial PRC concentrations for Set 2.

 f_{e-PRC} was calculated separately for each sediment batch as described in Section 2.5.3. The lower molecular weight PRCs (13 C-1,2,7,8-TCDD and 13 C-1,2,4,7,8-PeCDD) were approximately 100% dissipated from LDPE samplers after 31 and 37 days of deployment in Set 1 and Set 2, respectively. The f_{e-PRC} of the higher molecular weight PRCs (13 C-1,2,3,4,6,8-HxCDD and 13 C-1,2,3,4,6,7,9-HpCDD)

were on average 50% and 15% dissipated in Set 1 and average 83% and 78% dissipated in Set 2, respectively.

On average, higher $f_{e\text{-PRC}}$ were achieved for larger molecular weight PRCs in Set 2 compared to Set 1. The increase in $f_{e\text{-PRC}}$ is likely attributable to the increased variability in the initial PRC results. However, the significant difference in $f_{e\text{-PRC}}$ values, and therefore, the f_e of the target dioxins/furans, did not result in a significant difference between the Set 1 and Set 2 freely dissolved TEQ concentrations (see Table 7 for freely dissolved TEQ concentrations). The fractions of equilibrium of the PRCs for Set 1 and Set 2 are shown in Table 4.

Table 4
Fraction of Equilibrium of the PRCs (f_{e-PRC}) Achieved in Set 1 LDPE Samplers and Set 2 LDPE Samplers

		S	R-2019-04	SR-2019-06					
PRCs	Control	4% PAC	4% PAC (Dup.)	2% PAC	4% GAC	Control	4% PAC	2% PAC	4% GAC
Set 1 (60 Days)									
¹³ C-1,2,7,8-TCDD ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
¹³ C-1,2,4,7,8-PeCDD	0.98	0.98	0.98	0.98	0.98	0.97	0.96	0.96	1.00
¹³ C-1,2,3,4,6,8-HxCDD	0.76	0.50	0.52	0.58	0.58	0.61	0.31	0.33	0.26
¹³ C-1,2,3,4,6,7,9-HpCDD	0.29	0.13	0.21	0.18	0.22	0.21	0.16	0.17	0.00
Set 2 (97 Days)									
¹³ C-1,2,7,8-TCDD ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
¹³ C-1,2,4,7,8-PeCDD	0.98	0.99	0.99	0.99	0.98	0.97	0.97	0.98	0.97
¹³ C-1,2,3,4,6,8-HxCDD	0.93	0.75	0.87	0.90	0.80	0.84	0.77	0.80	0.77
¹³ C-1,2,3,4,6,7,9-HpCDD	0.84	0.63	0.87	0.88	0.67	0.78	0.79	0.81	0.76

^{1.} Indicates a congener with a K_{PE-W} less than that of ¹³C-1,2,4,7,8-PeCDD, and therefore, was applied a fraction of equilibrium value of 1.00.

After calculating f_{e,PRC}, a linear regression between f_{e,PRC} and log K_{PE-W} was developed for each sediment batch (Appendix B), and the fraction of equilibrium of target dioxin/furan congeners in the LDPE samples was estimated for each sediment batch using Equation 2-4 (Appendix B). Because ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from the LDPE samplers in all sediment batches, the other three PRCs were used to develop the linear regression. Not including ¹³C-1,2,7,8-TCDD greatly improved the fit of the linear regression to the dataset, and all target dioxin/furan congeners with K_{PE-W} values smaller than that of ¹³C-1,2,4,7,8-PeCDD (7.46) were assigned an f_{e-PRC} of

1.00. The f_e for the remaining target dioxins/furans were estimated from the linear regression and are presented in Table 5.

Table 5 Linear Regression Between the Fraction of Equilibrium of the PRCs ($f_{e,PRC}$) and the Log of the LDPE-Water Partitioning Coefficient (Log K_{PE-W}) in Set 1 and Set 2 LDPE Samplers

		Linear Regression (Equation 2-4: $f_{e,PRC} = a \times log K_{PE-W} + b$)							
		S	et 1 (60 Day	s)	Set 2 (97 Days)				
Sediment	Amendment	а	b	R²	а	b	R ²		
	Control	-0.69	6.14	0.98	-0.135	1.99	0.992		
	4% PAC	-0.84	7.21	0.99	-0.346	3.54	0.944		
SR-2019-04	4% PAC (Duplicate)	-0.76	6.60	0.98	-0.117	1.84	0.749		
	2% PAC	-0.80	6.92	1.00	-0.107	1.77	0.859		
	4% GAC	-0.75	6.54	0.99	-0.302	3.22	0.975		
	Control	-0.76	6.60	1.00	-0.182	2.31	0.923		
CD 2010 0C	4% PAC	-0.79	6.73	0.86	-0.169	2.19	0.611		
SR-2019-06	2% PAC	-0.77	6.62	0.87	-0.161	2.14	0.665		
	4% GAC	-0.94	7.90	0.91	-0.204	2.46	0.737		

The values of f_e for target compounds calculated from the regression equations for Set 1 and Set 2 are listed in Table 6. To avoid over-correction of the freely dissolved porewater concentrations, a freely dissolved porewater concentration was not calculated for any congener with a calculated f_e of less than 10%. Congeners with an f_e of less than 10% are indicated in Table 6 with a value of "NC" (not calculated). As shown in Equation 2-1, an f_e value of 10% or below results in a correction of greater than 1 order of magnitude. Analytical uncertainty in these data has a much larger effect on the calculated freely dissolved porewater concentration. 1,2,3,4,6,7,8-HpCDD, OCDD (octachlorodibenzo-p-dioxin), 1,2,3,4,6,7,8-HpCDF, and OCDF (octachlorodibenzofuran) were not calculated for SR-2019-04; and 1,2,3,4,6,7,8-HpCDD, OCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, and OCDF were not calculated for SR-2019-06. Freely dissolved equilibrium porewater concentrations for target dioxin/furan congeners with f_e values greater than 0.10 were calculated using Equation 2-1.

Table 6
Estimated Fraction of Equilibrium of the Target Dioxin/Furan Congeners (f_{e-PRG}) in Set 1 LDPE Samplers and Set 2 LDPE Samplers

			SR-20	19-06					
Congeners	Control	4% PAC	SR-2019-04 4% PAC (Duplicate)	2% PAC	4% GAC	Control	4% PAC	2% PAC	4% GAC
Set 1 (60 Days)									
2,3,7,8-TeCDD ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1,2,3,7,8-PeCDD	0.92	0.84	0.84	0.87	0.86	0.87	0.76	0.76	0.74
1,2,3,4,7,8-HxCDD	0.57	0.40	0.45	0.45	0.47	0.47	0.35	0.36	0.25
1,2,3,6,7,8-HxCDD	0.53	0.36	0.41	0.41	0.44	0.44	0.31	0.33	0.21
1,2,3,7,8,9-HxCDD	0.50	0.32	0.38	0.38	0.40	0.40	0.28	0.29	0.17
1,2,3,4,6,7,8-HpCDD	NC	NC	NC	NC	NC	NC	NC	NC	NC
OCDD	NC	NC	NC	NC	NC	NC	NC	NC	NC
2,3,7,8-TCDF ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1,2,3,7,8-PeCDF ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2,3,4,7,8-PeCDF	0.92	0.84	0.84	0.87	0.86	0.87	0.76	0.76	0.74
1,2,3,4,7,8-HxCDF	0.57	0.40	0.45	0.45	0.47	0.47	0.35	0.36	0.25
1,2,3,6,7,8-HxCDF	0.87	0.77	0.78	0.80	0.80	0.80	0.69	0.70	0.67
2,3,4,6,7,8-HxCDF	0.50	0.32	0.38	0.38	0.40	0.40	0.27	0.29	0.17
1,2,3,7,8,9-HxCDF	0.71	0.58	0.61	0.62	0.63	0.63	0.52	0.53	0.45
1,2,3,4,6,7,8-HpCDF	NC	NC	NC	NC	NC	NC	NC	NC	NC
1,2,3,4,7,8,9-HpCDF	0.31	0.10	0.17	0.16	0.20	NC	NC	NC	NC
OCDF	NC	NC	NC	NC	NC	NC	NC	NC	NC
Set 2 (97 Days)									
2,3,7,8-TeCDD ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1,2,3,7,8-PeCDD	0.97	0.91	0.95	0.96	0.93	0.93	0.91	0.92	0.87
1,2,3,4,7,8-HxCDD	0.90	0.73	0.89	0.91	0.77	0.83	0.82	0.84	0.68
1,2,3,6,7,8-HxCDD	0.89	0.72	0.89	0.90	0.76	0.83	0.81	0.83	0.66
1,2,3,7,8,9-HxCDD	0.88	0.70	0.88	0.90	0.74	0.82	0.80	0.82	0.65
1,2,3,4,6,7,8-HpCDD	0.82	0.55	0.83	0.85	0.61	0.74	0.73	0.75	0.48
OCDD	0.79	0.46	0.80	0.82	0.54	0.69	0.69	0.71	0.40
2,3,7,8-TCDF ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1,2,3,7,8-PeCDF ¹	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2,3,4,7,8-PeCDF	0.97	0.91	0.95	0.96	0.93	0.93	0.91	0.92	0.87

		SR-2019-04					SR-2019-06				
Congeners	Control	4% PAC	4% PAC (Duplicate)	2% PAC	4% GAC	Control	4% PAC	2% PAC	4% GAC		
1,2,3,4,7,8-HxCDF	0.90	0.73	0.89	0.91	0.77	0.83	0.82	0.84	0.68		
1,2,3,6,7,8-HxCDF	0.95	0.89	0.94	0.95	0.90	0.91	0.89	0.91	0.84		
2,3,4,6,7,8-HxCDF	0.88	0.70	0.88	0.90	0.74	0.82	0.80	0.82	0.65		
1,2,3,7,8,9-HxCDF	0.92	0.81	0.92	0.93	0.83	0.87	0.85	0.87	0.76		
1,2,3,4,6,7,8-HpCDF	0.82	0.55	0.83	0.85	0.61	0.74	0.73	0.75	0.48		
1,2,3,4,7,8,9-HpCDF	0.85	0.61	0.85	0.87	0.66	0.77	0.76	0.78	0.55		
OCDF	0.79	0.46	0.80	0.82	0.54	0.69	0.69	0.71	0.40		

Notes:

NC: not calculated

4.2.2 Dioxin/Furan Concentrations and AC Performance

KM-transformed sediment porewater total TEQ concentrations in the control and AC-amended sediments were calculated as described in Sections 2.2.1 and 2.5.3 (Table 7). TEQ concentrations in the control and AC-amended sediments for Set 1 and Set 2 samples for SR-2019-04 are presented in Figures 2 and 3, respectively; and for Set 1 and Set 2 samples for SR-2019-06, they are presented in Figures 4 and 5, respectively. As stated in Section 4.2.1, freely dissolved concentrations could not be reliably calculated for 1,2,3,4,6,7,8-HpCDD, OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF in SR-2019-04 and 1,2,3,4,6,7,8-HpCDD, OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF in SR-2019-06.

^{1.} Indicates a congener with a K_{PE-W} less than that of ¹³C-1,2,4,7,8-PeCDD, and therefore, was applied a fraction of equilibrium value of 1.00

Table 7
Reductions of Bioavailable TEQ Concentrations Measured in Sediment Porewater in Set 1 after 60 Days and in Set 2 after 97 Days of AC Amendment

		Set 1 (60 I	Days)	Set 2 (97 Days)			
Sediment	Amendment	Freely Dissolved TEQ (× 10 ⁻⁴ pg/L TEQ) ¹	TEQ Reduction (%)	Freely Dissolved TEQ (× 10 ⁻⁴ pg/L TEQ) ¹	TEQ Reduction (%)		
	Control	86.5 – 106	NA	108 – 109	NA		
SR-2019-04	4% PAC	0.876 – 15.8 (0.982 – 13.5)	99% – 85% (99% – 87%)	0.997 - 12.0 (0.603 - 9.97)	99% – 89% (99% – 91%)		
	2% PAC	4.38 – 18.1	95% – 83%	2.18 – 12.6	98% – 88%		
	4% GAC	10.2 – 27.6	88% – 74%	7.14 – 20.5	93% – 81%		
	Control	30.2 – 49.3	NA	25.2 – 57.2	NA		
CD 2010 0C	4% PAC	0 – 15.0	100% – 70%	0.0631 – 12.3	100% – 79%		
SR-2019-06	2% PAC	0.0315 – 14.5	100% – 71%	0.551 – 11.1	98% – 81%		
	4% GAC	5.07 – 18.3	83% – 63%	1.86 – 14.8	93% – 74%		

Notes:

Values in parentheses represent duplicate sample results.

NA: not available pg/L: picograms per liter

Significant porewater concentration reductions in the amended sediments compared to the controls were observed across both Sets 1 and 2 (Figures 2 through 5).

In Set 1, the calculated freely dissolved porewater total TEQ concentrations in the control sediments ranged from 86.5×10^{-4} to 106×10^{-4} picograms per liter (pg/L) TEQ in SR-2019-04 and from 30.2×10^{-4} to 49.3×10^{-4} pg/L TEQ in SR-2019-06. Reductions in quantified total TEQ porewater concentrations ranged from 74% to 99% in SR-2019-04, and from 63% to 100% in SR-2019-06, with the 4% GAC amendment proving the lowest reductions and the 4% PAC amendment providing the highest reductions for both sediments. However, because freely dissolved concentrations of the few strongly hydrophobic congeners could not be reliably calculated, these reductions are representative of the less hydrophobic congeners.

In Set 2, freely dissolved total TEQ concentrations in the control sediments ranged from 108×10^{-4} to 109×10^{-4} pg/L TEQ for SR-2019-04 and from 25.2×10^{-4} to 57.2×10^{-4} pg/L TEQ for SR-2019-06. Reductions in total TEQ porewater concentrations ranged from 81% to 99% in SR-2019-04, and from 74% to 100% in SR-2019-06, with the 4% GAC amendment proving the lowest reductions and the 4% PAC amendment providing the highest reductions for both sediments. Freely dissolved concentrations were calculated for all congeners in Set 2.

^{1.} Per Section 2.2.1, total dioxin/furan TEQ results are reported with non-detect results set to zero and the analytical laboratory detection limit.

Overall, Set 2 achieved higher TEQ reduction rates than Set 1 for all AC amendments in SR-2019-04 and SR-2019-06. Although 4% GAC achieved the lesser reduction of all amendments, more than 90% reduction was achieved in both SR-2019-04 and SR-2019-06 after 97 days of AC amendment.

To understand the effect of the AC amendments on the more hydrophobic congeners for which freely dissolved concentrations could not be reliably calculated, dioxin/furan congener concentrations in the LDPE samplers were directly compared (Table 8; Figures 6 through 9). Because all sample batches were maintained under the same experimental conditions (i.e., mixing rate, temperature), the uptake kinetics of the congeners by LDPE passive sampler during the study should be similar among the different sediment batches. The figures presented in Appendix D show the percent reduction of individual congeners, measured above the detection limit, plotted against their Log K_{ow}, for SR-2019-04 and SR-2019-06, respectively. These data indicate that the percent reduction, based on passive sampler uptake, decreases with increasing Kow, which is the same trend observed in short-term porewater studies (Fagervold et al. 2010). In this case, it is reasonable to assume that reductions measured in passive sampler uptake are similar to the reductions measured in porewater. For Set 1, total TEQ reductions in the LDPE samplers ranged from 70% to 99%. For Set 2, total TEQ reductions ranged from 73% to 100% (Table 8; Figures 10 through 13). The total TEQ in LDPE sampler TEQ concentration, as shown in Table 8, are two to nine times higher (depending on which type of non-detect treatment is selected) in the 4% GAC amendment compared to the 4% PAC amendment. This would result in the need to apply two to nine times the amount of GAC to achieve the same LDPE TEQ concentrations observed in the 4% PAC amendment. Overall, both the PAC and GAC substantially reduced the dioxin/furan concentrations in each treatability testing batch.

Table 8
Reductions of TEQ Concentrations in LDPE Passive Samplers after 60 Days (Set 1) and 97 Days (Set 2) of AC Amendment

		Set 1 (60 I	Days)	Set 2 (97 Days)		
Sediment	Amendment	Total TEQ in LDPE (ng/g TEQ) ¹	TEQ Reduction (%)	Total TEQ in LDPE (ng/g TEQ) ¹	TEQ Reduction (%)	
	Control	0.402 - 0.432	NA	0.396 – 0.400	NA	
SR-2019-04	4% PAC	0.0241 - 0.0508 (0.00506 - 0.0284)	94% – 88% (99% – 93%)	0.0146 - 0.0392 (0.00195 - 0.0219)	96% – 90% (100% – 95%)	
	2% PAC	0.0521 – 0.0769	87% – 82%	0.0344 – 0.0573	91% – 86%	
	4% GAC	0.0964 – 0.129	76% – 70%	0.0818 - 0.107	79% – 73%	
	Control	0.146 – 0.178	NA	0.165 – 0.200	NA	
CD 2010 06	4% PAC	0.00277 - 0.0286	98% – 84%	0.00207 - 0.0274	99% – 86%	
SR-2019-06	2% PAC	0.00675 - 0.0330	95% – 82%	0.00766 – 0.0291	95% – 85%	
	4% GAC	0.0269 - 0.0473	82% – 74%	0.0191 – 0.0421	89% – 79%	

Notes:

Values in parentheses represent duplicate sample results.

NA: not available

ng/g: nanograms per gram

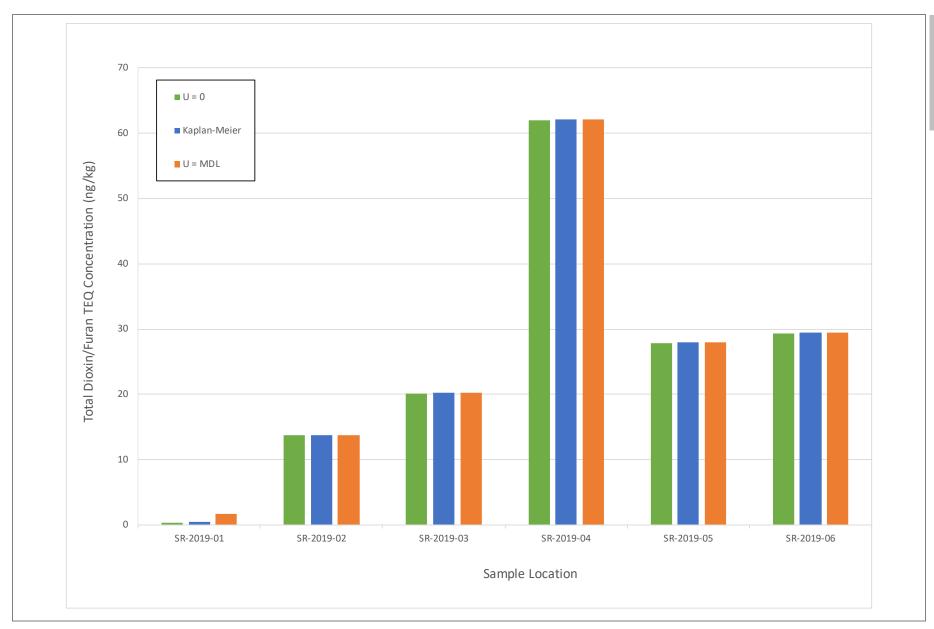
^{1.} Per Section 2.2.1, total dioxin/furan TEQ results are reported with non-detect results set to zero and the analytical laboratory detection limit.

5 Summary and Recommendations

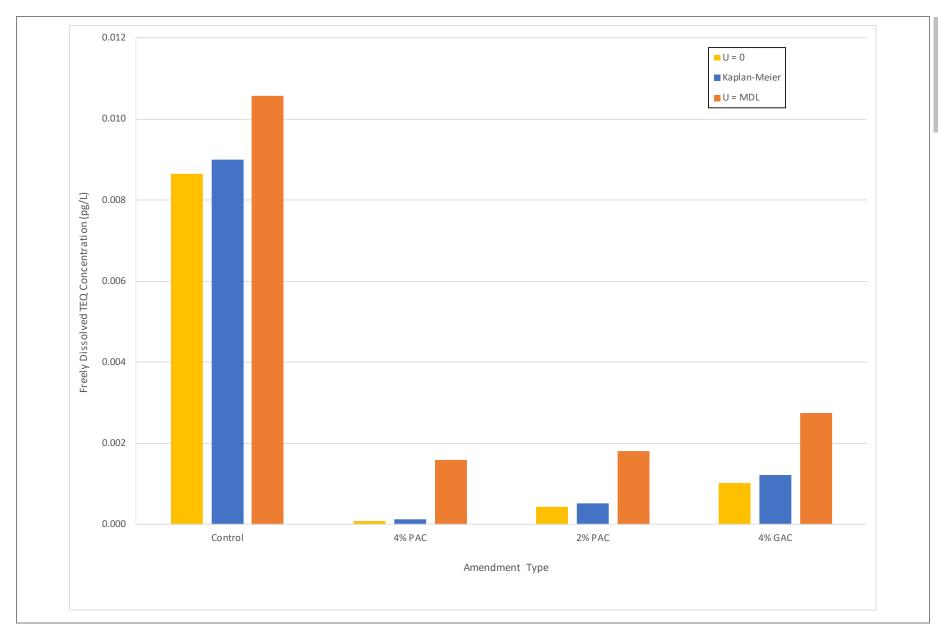
Two different types of AC amendments (PAC at 2% and 4% dose, and GAC at 4% dose) were mixed directly into Site sediments, and continuous agitation was applied to accelerate the uptake kinetics of dioxins/furans by the AC. The continuous agitation enabled the study to produce meaningful results within the project schedule constraints. The goal of the study was to evaluate the effectiveness of the AC amendments at reducing bioavailable concentrations of dioxins/furans. Freely dissolved concentrations of dioxins/furans in the sediment porewater were measured twice by LDPE passive samplers 60 and 97 days after AC amendment. The benchscale testing results are summarized as follows:

- In all the tested conditions, the freely dissolved dioxin/furan concentrations in the sediment porewater were substantially reduced by both the PAC and GAC amendments.
- Among the three amendment conditions, 4% PAC amendment was the most effective, with TEQ reductions in the freely dissolved phase of approximately 79% to 100% after 97 days.
- While the 4% GAC amendment achieved a lower TEQ reduction (TEQ reductions in the freely dissolved phase of approximately 74% to 93% after 97 days—two to nine times less effective than 4% PAC due to larger grain size and lower specific surface area), the GAC amendment performed well enough to be retained for further engineering evaluations.

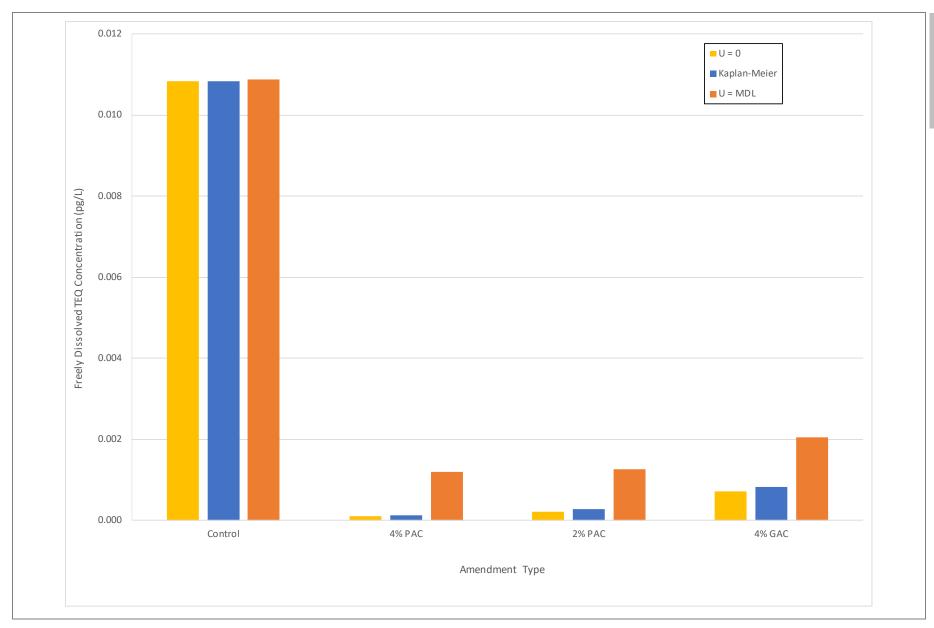
The results of this benchscale treatability study are promising, indicating that different AC amendments and doses (PAC at 2% and 4% dose, and GAC at 4% dose) are likely to be effective at significantly reducing bioavailable concentration of dioxins/furans in Site sediments. Extrapolating the results of this study to assess the short- and long-term effectiveness of different AC amendment application methods requires additional calculations to be conducted in a follow-on engineering phase. Application methods will be retained for further engineering and cost evaluations.

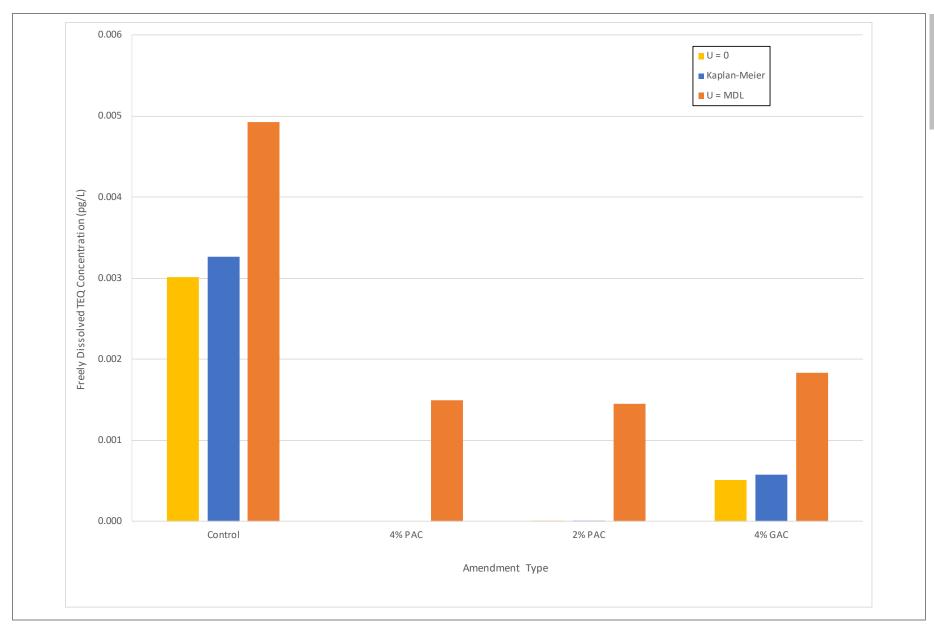

6 References

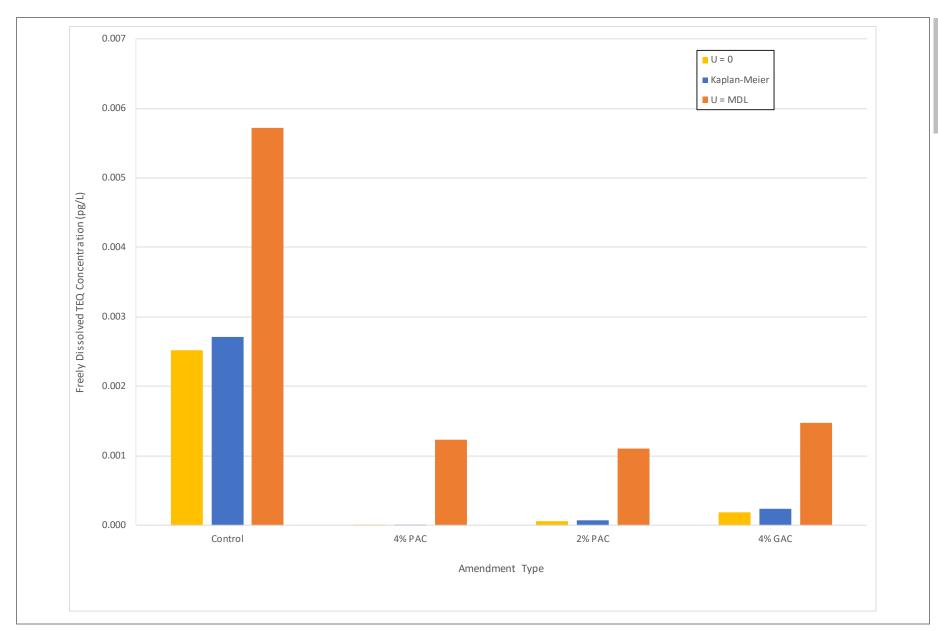
- Adams, R.G., R. Lohmann, L.A. Fernandez, J.K. Macfarlane, and P.M. Gschwend, 2007. "Polyethylene devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments." *Environ. Sci. Technol.* 41(4):1317–1323.
- Apell, J.N., D.H. Shull, A.M. Hoyt, and P.M. Gschwend, 2018. "Investigating the effect of bioirrigation on in situ porewater concentrations and fluxes of polychlorinated biphenyls using passive samplers." 52(8):4565–4573.
- Bay West, 2017. Final Focused Feasibility Study. Scanlon Reservoir, Scanlon, Minnesota. June 2017.
- Booij, K., P. Smedes, and E.M. van Weerlee, 2002. "Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers." *Chemosphere*. 46:1157–1161.
- Chai, Y., R.J. Currie, and U. Ghosh, 2012. "Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils." *Environmental Science and Technology* 46:1035–1043.
- Cornelissen G., K. Amstaetter, A. Hauge, M. Schaanning, B. Beylich, J.S. Gunnarsson, G.D. Breedveld, A.M.P. Oen, and E. Eek, 2012. "Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: Physicochemical Effects." Environmental Science and Technology 46(21):12030–12037.
- EPA (U.S. Environmental Protection Agency), 2010. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. Risk Assessment Forum. EPA/100/R-10/005. December 2010.
- EPA, 2016. *National Functional Guidelines for Superfund Organic Methods Data Review.* EPA-540-R-2016-002. September 2016.
- EPA, SERDP, and ESTCP (U.S. Environmental Protection Agency, U.S. Department of Defense,
 Strategic Environmental Research and Development Program, and Environmental Security
 Technology Certification Program), 2017. Laboratory, Field, and Analytical Procedures for
 Using Passive Sampling in the Evaluation of Contaminated Sediments: User's Manual.
 EPA/600/R-16/357. February 2017.
- Fagervold, S.K., Y. Chai, J.W. Davis, M. Wilken, G. Cornelissen, U. Ghosh, 2010. "Bioaccumulation of polychlorinated dibenzo-p-dioxins/dibenzofurans in *E. fetida* from floodplain soils and the effect of activated carbon amendment." *Environmental Science and Technology* 44(14):5546–5552.

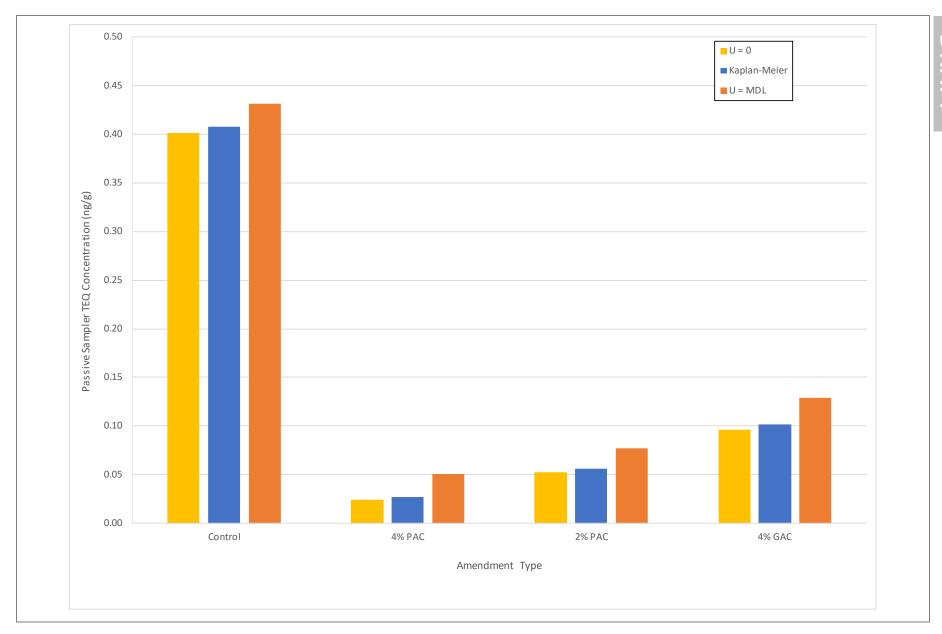

DRAFI

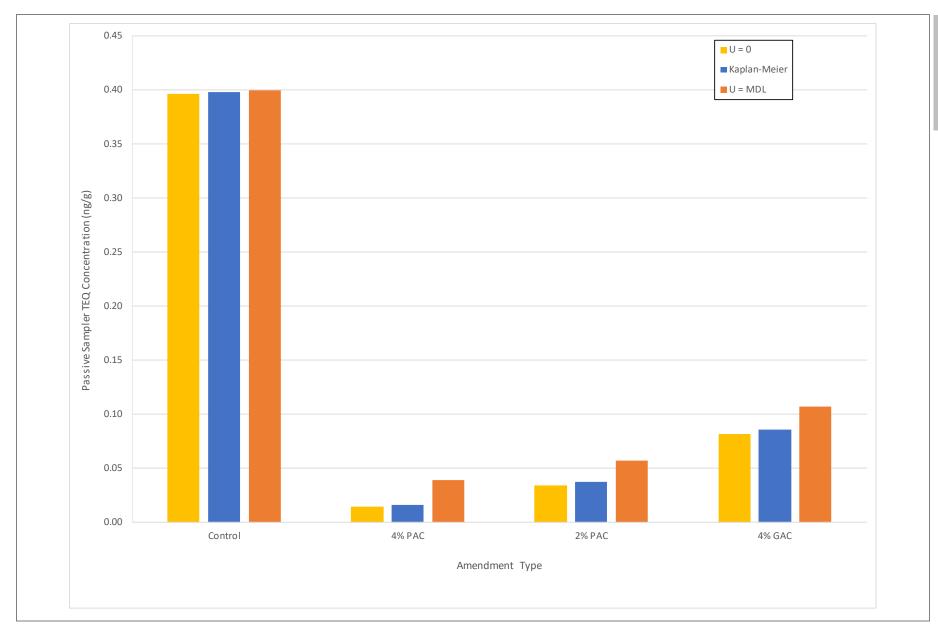
- Ghosh, U., S.K. Driscoll, R.M. Burgess, M.T.O. Jonker, D. Reible, F. Gobas, Y. Choi, S.E. Apitz, K.A. Maruya, W.R. Gala, and M. Mortimer, 2014. "Passive Sampling Methods for Contaminated Sediments: Practical Guidance for Selection, Calibration, and Implementation." *Integrated Environmental Assessment and Management* 10(2):210–223.
- Gomez-Eyles, J.L., C. Yupanqui, B. Beckingham, G. Riedel, C. Gilmour, and U. Ghosh, 2013. "Evaluation of Biochars and Activated Carbons for In Situ Remediation Of Sediments Impacted With Organics, Mercury, and Methylmercury." *Environmental Science and Technology* 23:13721–13729.
- Govers, H.A.J., and H.B. Krop, 1998. "Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins." *Chemosphere* 37:2139–2152.
- Helsel, D.R., 2009. "Summing Nondetects: Incorporating Low-Level Contaminants in Risk Assessment." Integrated Environmental Assessment and Management 6(3):361–366.
- JV (Anchor QEA-Baird Joint Venture), 2019a. Pre-Remedial Design Investigation Workplan. Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota. USACE LRE Contract No. W912P4-16-D-0001. September 2019.
- JV, 2019b. *Pre-Remedial Design Data Summary Report*. Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota. USACE LRE Contract No. W912P4-16-D-0001. December 2019.
- JV, 2019c. *Benchscale Treatability Testing Workplan*. Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota. USACE LRE Contract No. W912P4-16-D-0001. September 2019.
- Lohmann R., 2011. "Critical Review of Low-Density Polyethylene's Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use As a Passive Sampler." *Environmental Science and Technology* 46:606–618.

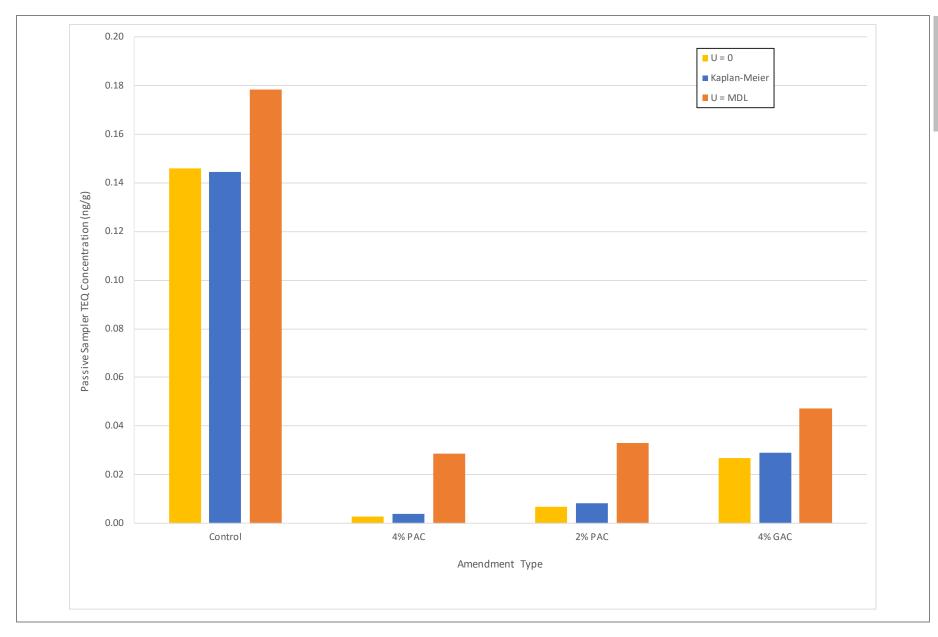

Figures

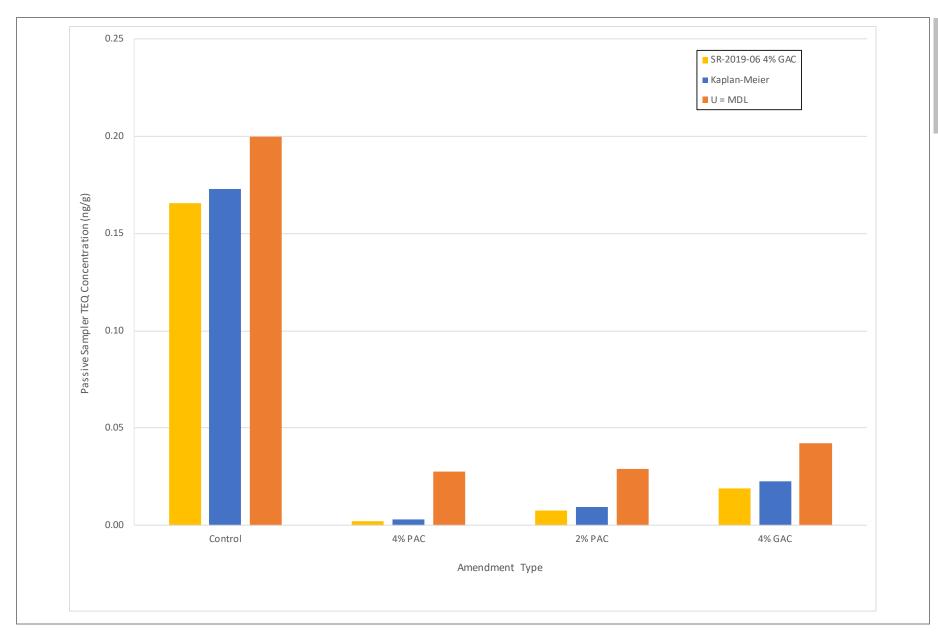


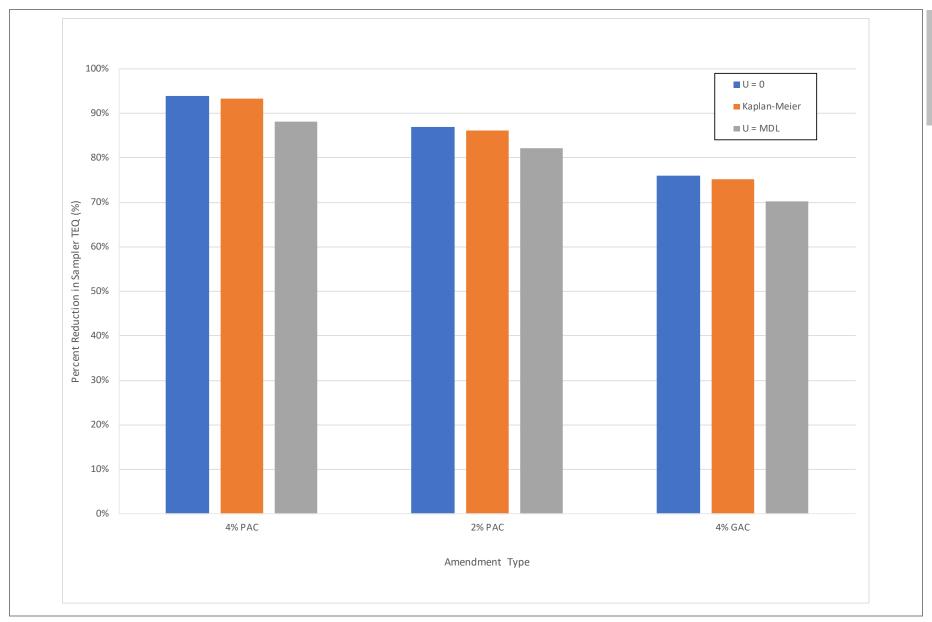


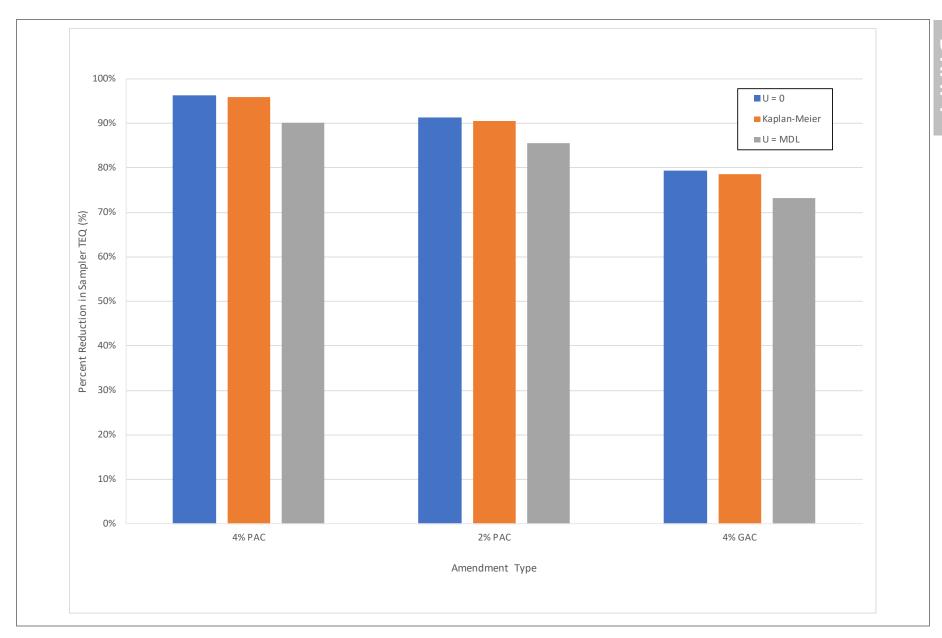


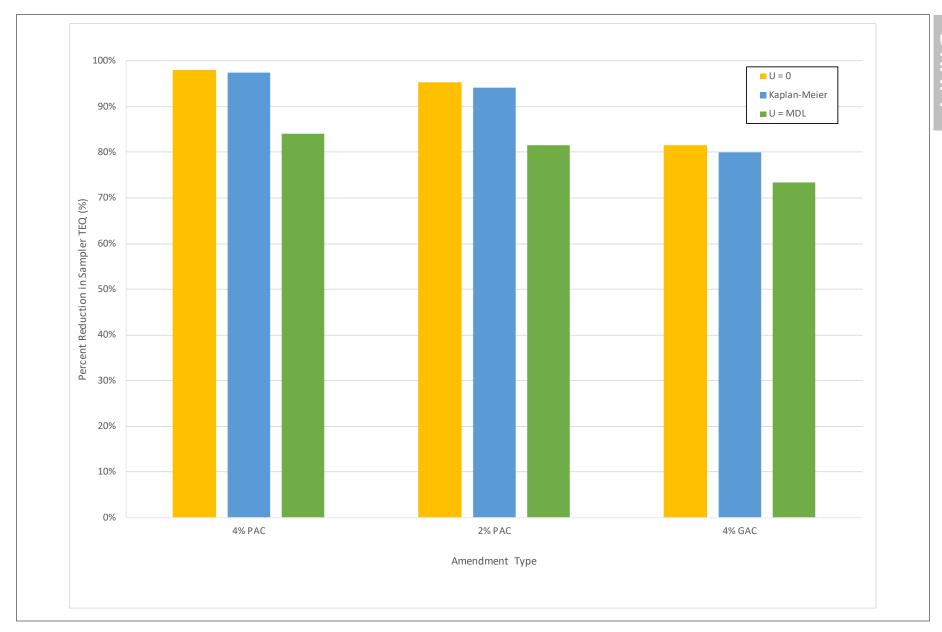


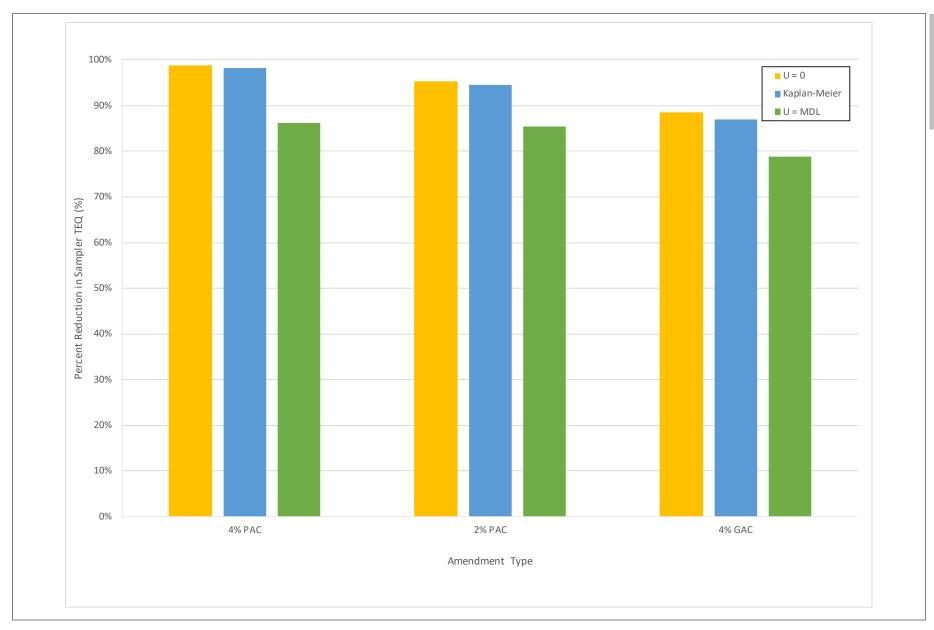


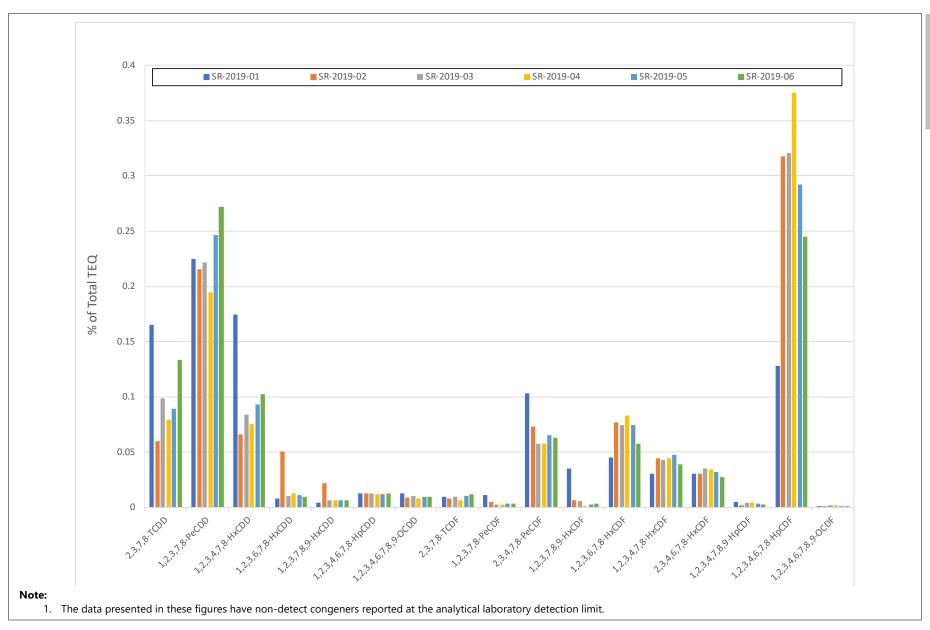


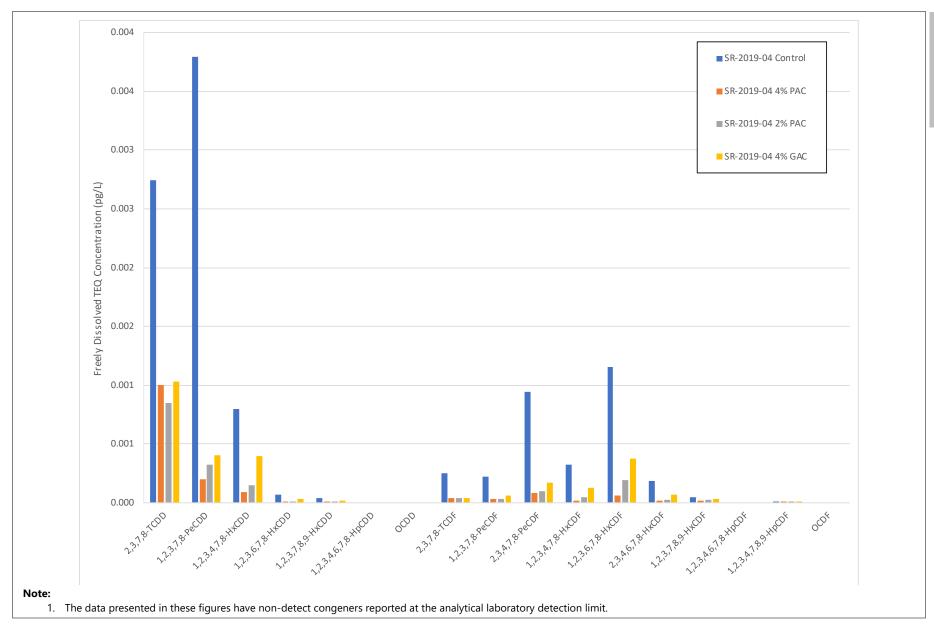


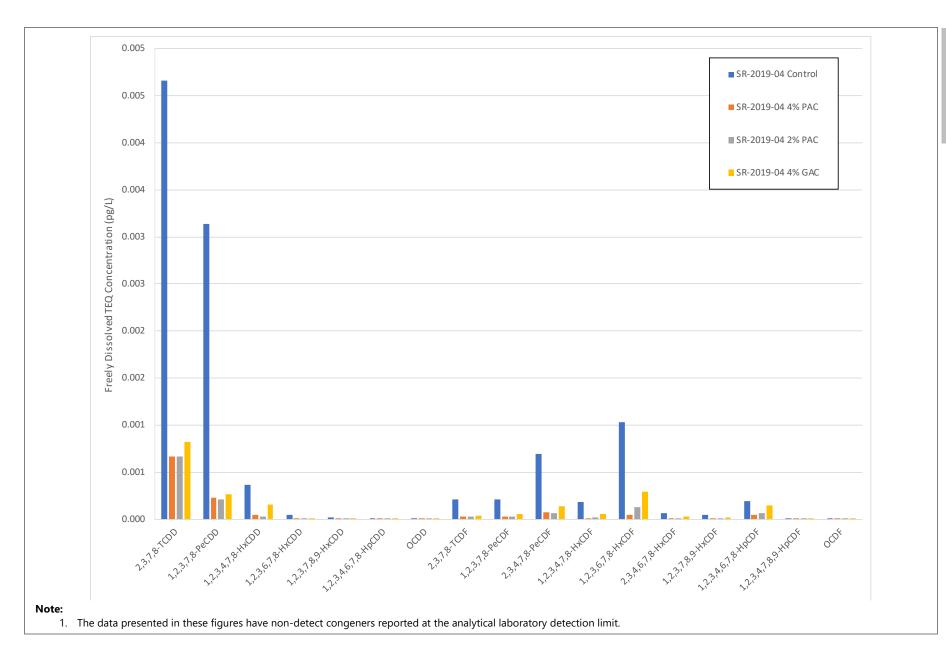


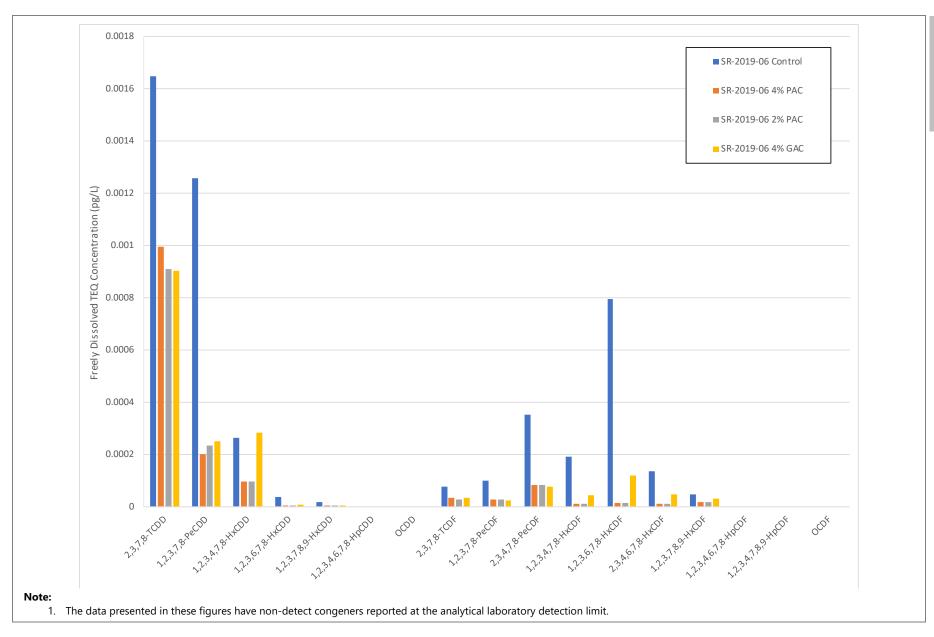


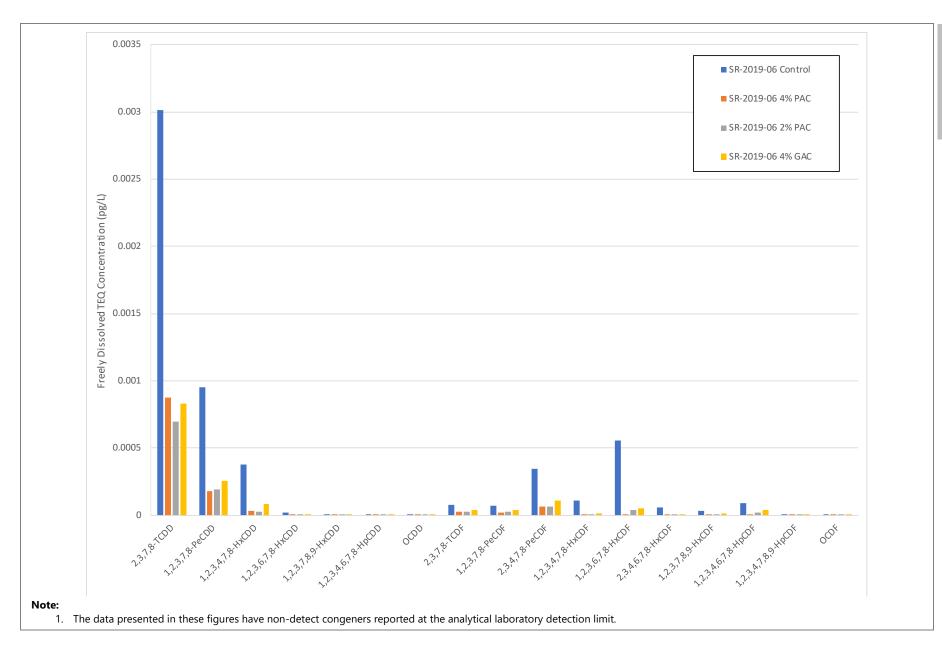


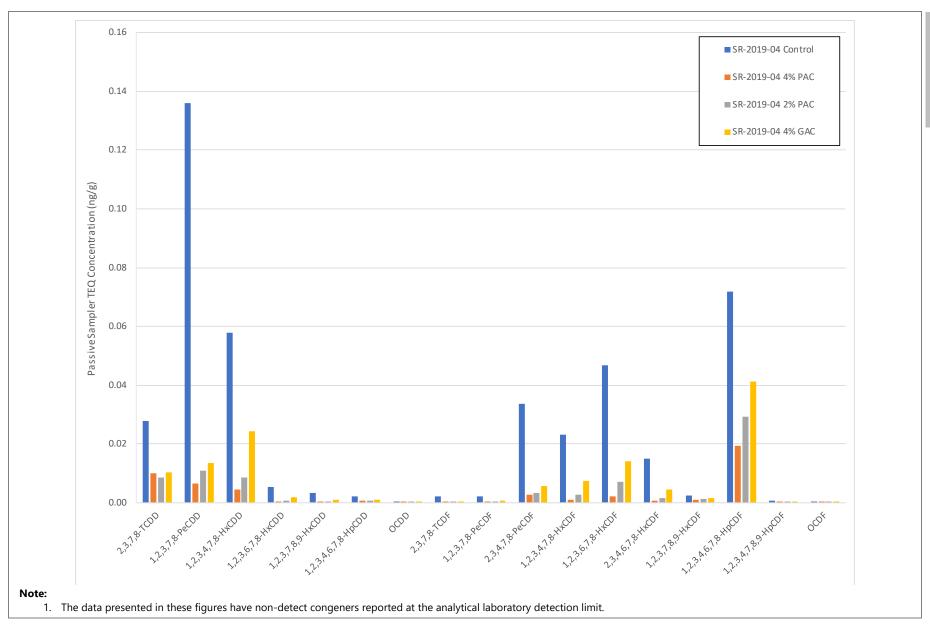


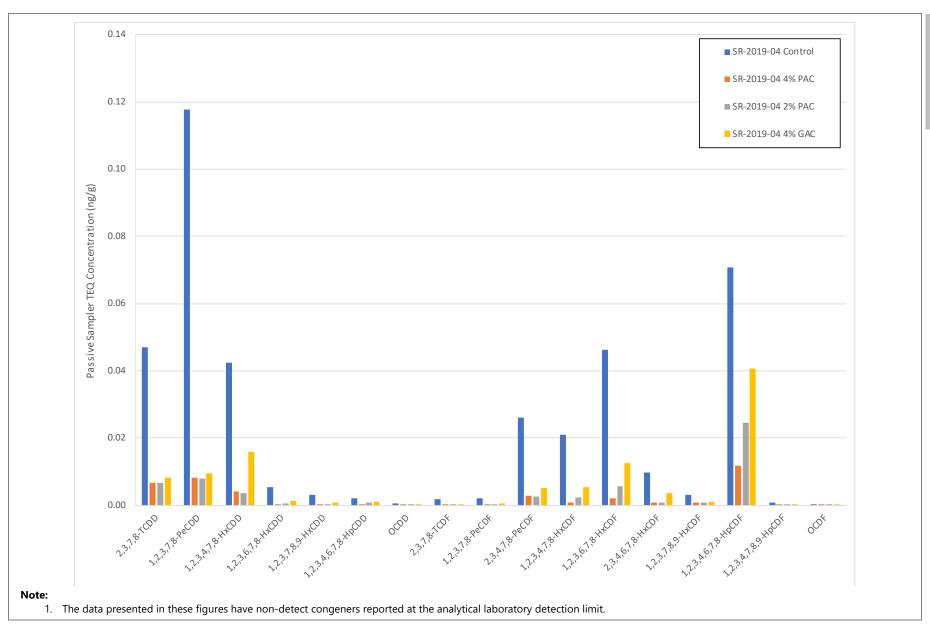


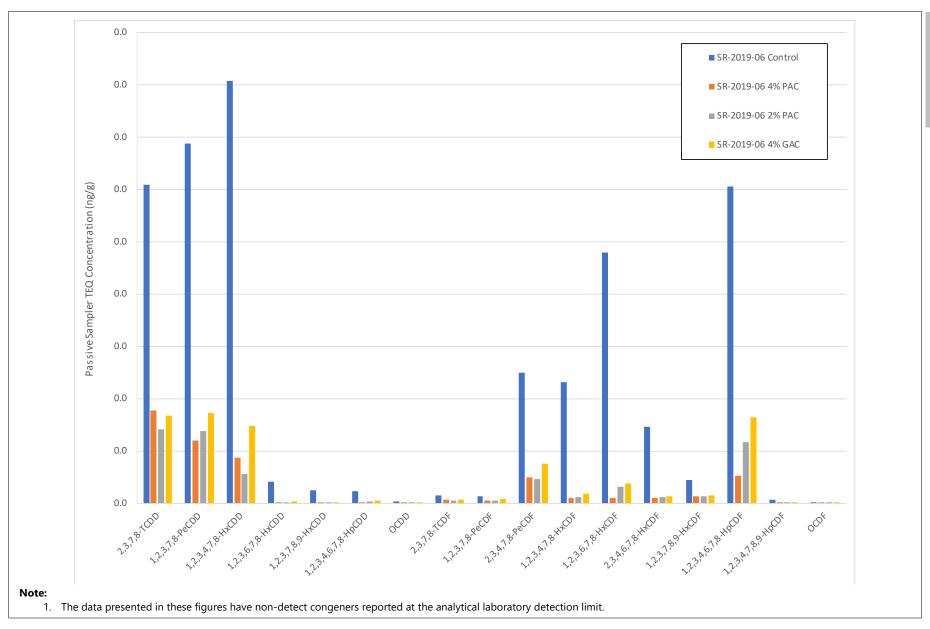

Appendix A Congener Distributions

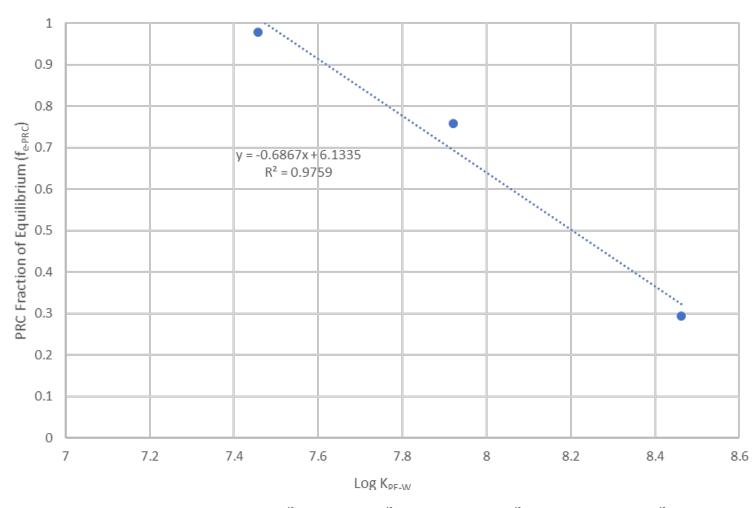


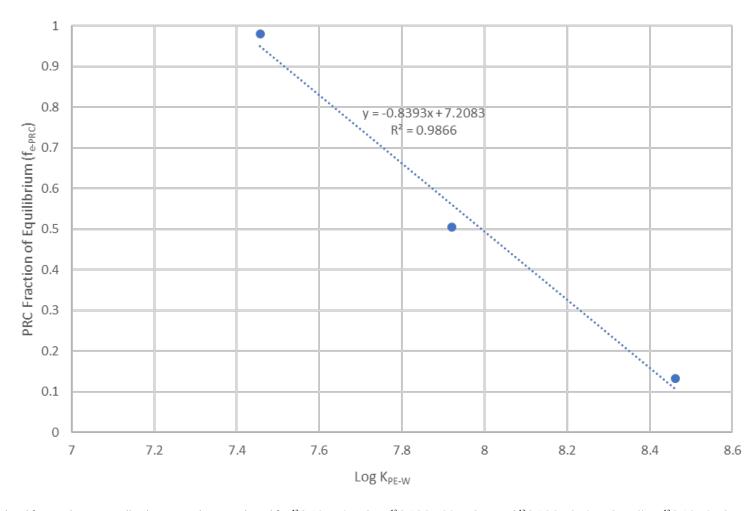




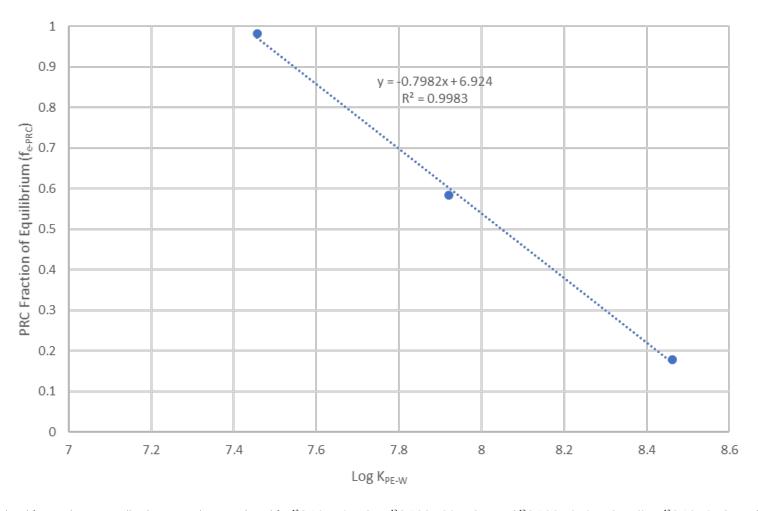


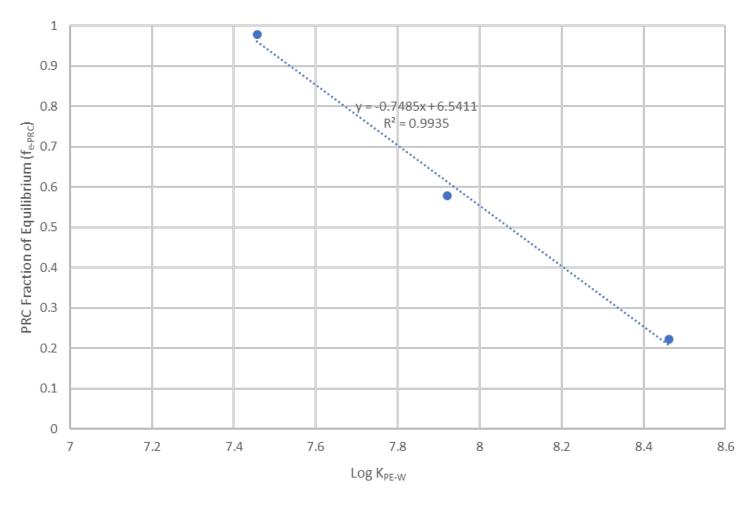


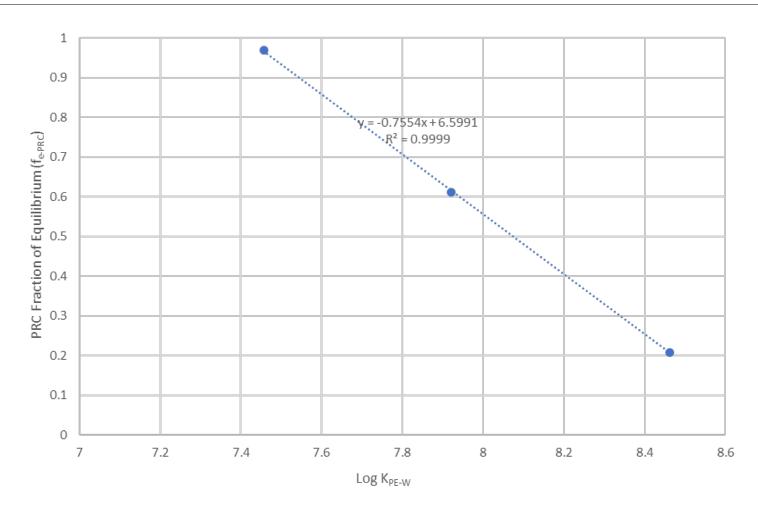


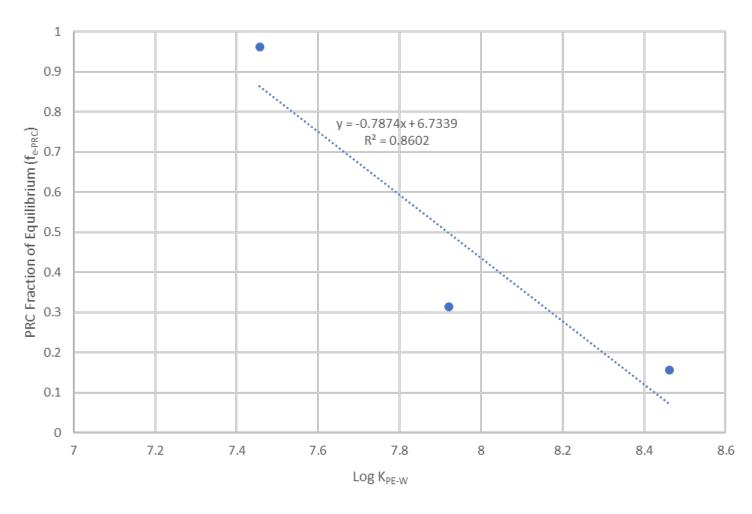


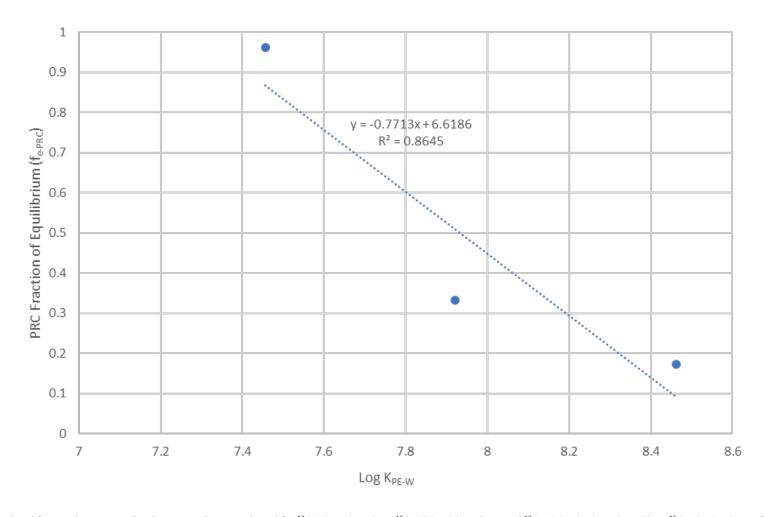
Appendix B Fraction of Equilibrium Regressions

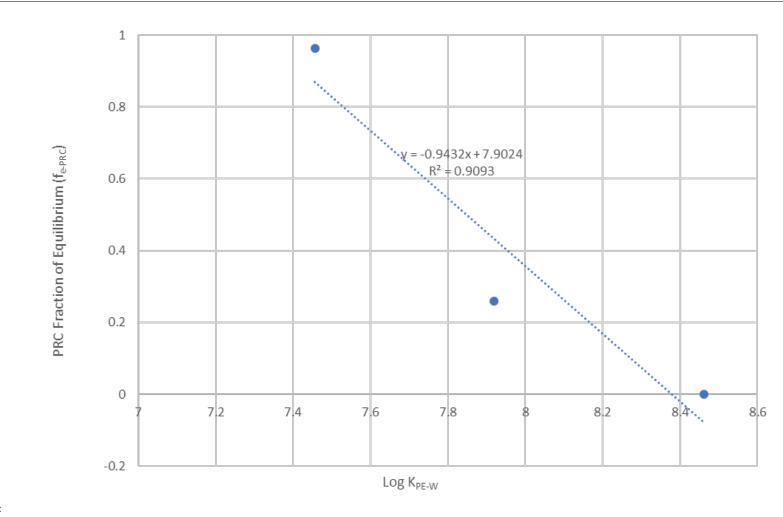

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e, PRC} = a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

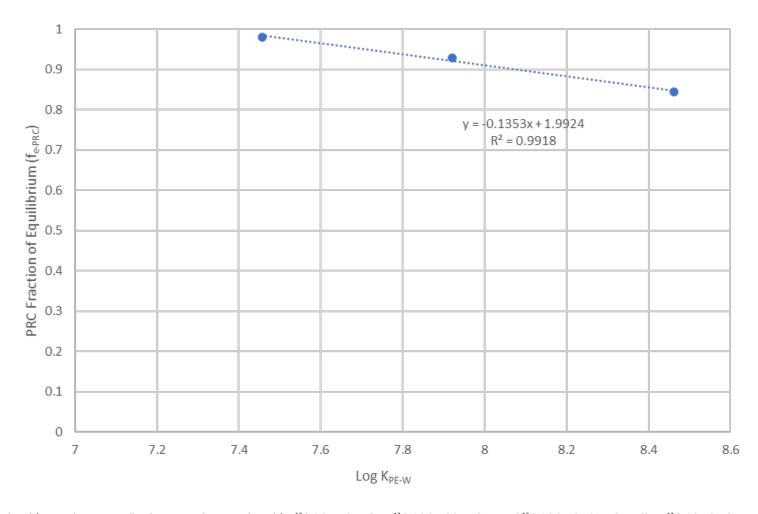

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e, PRC} = a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

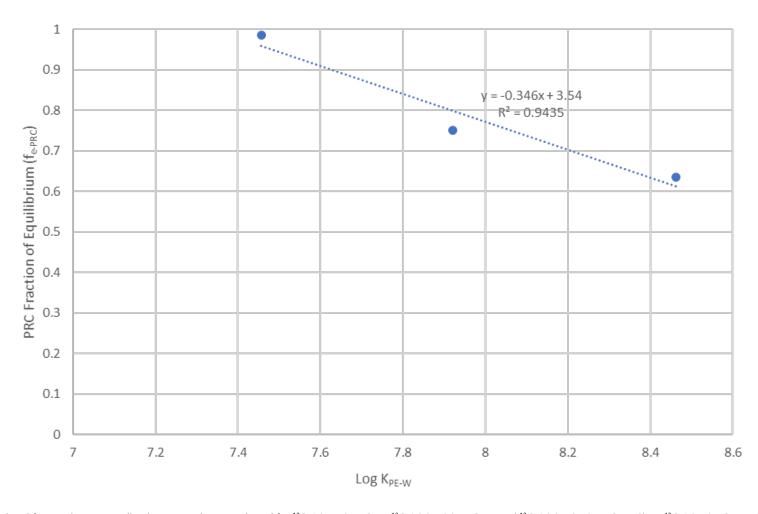

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

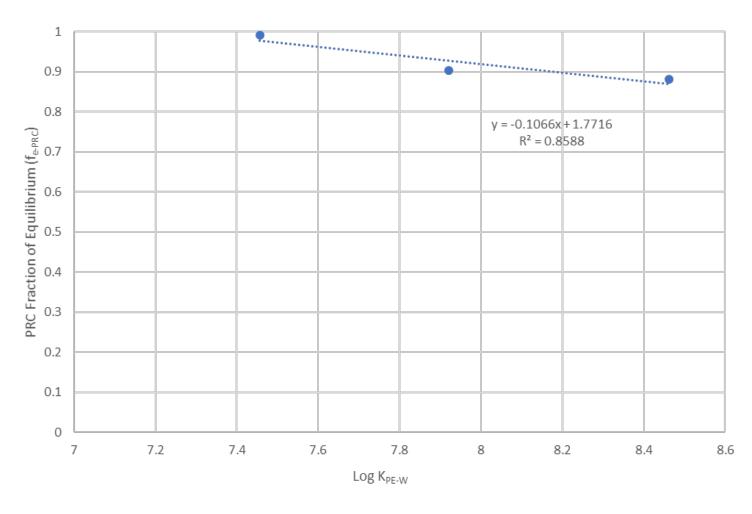

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

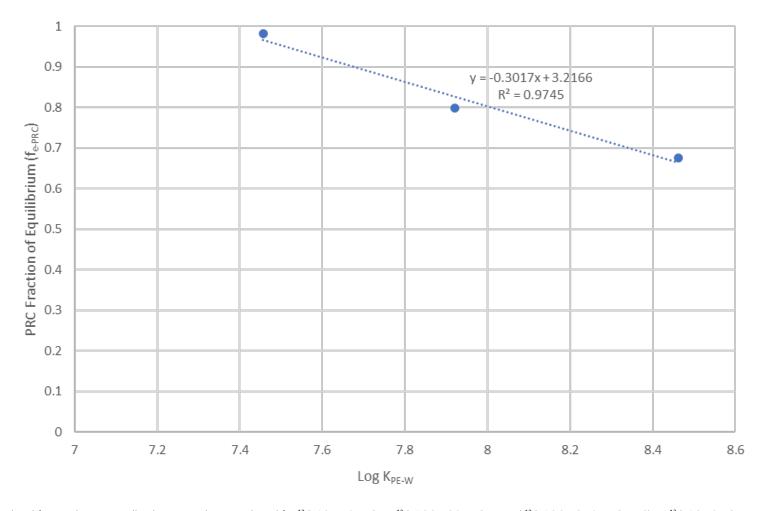

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation fe, PRC = a x log KPE-W + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

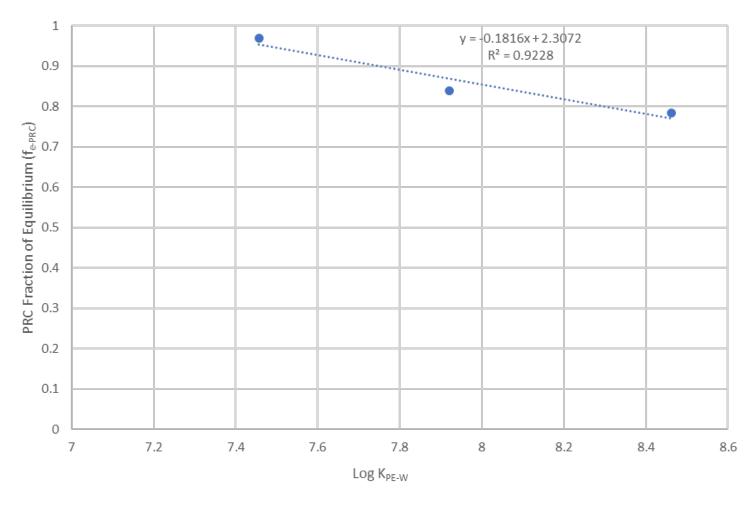

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

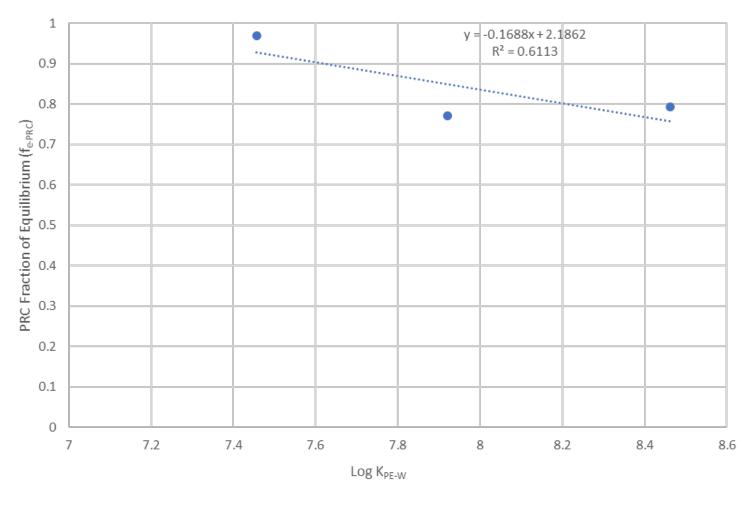

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e,PRC}=a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

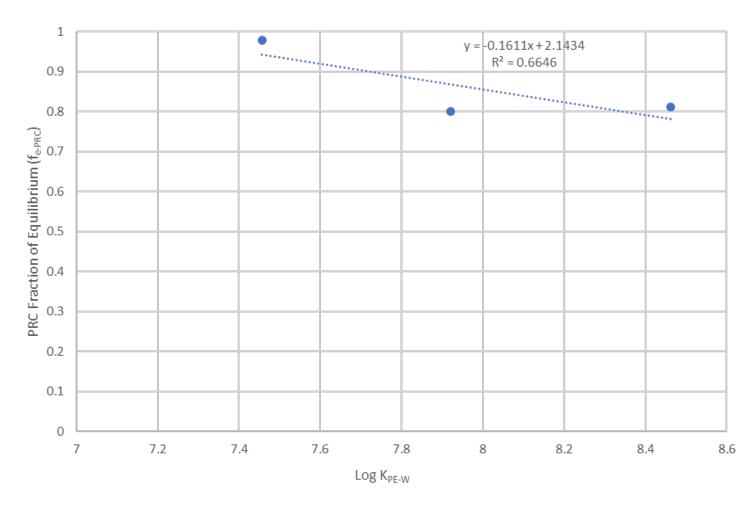

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 31 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

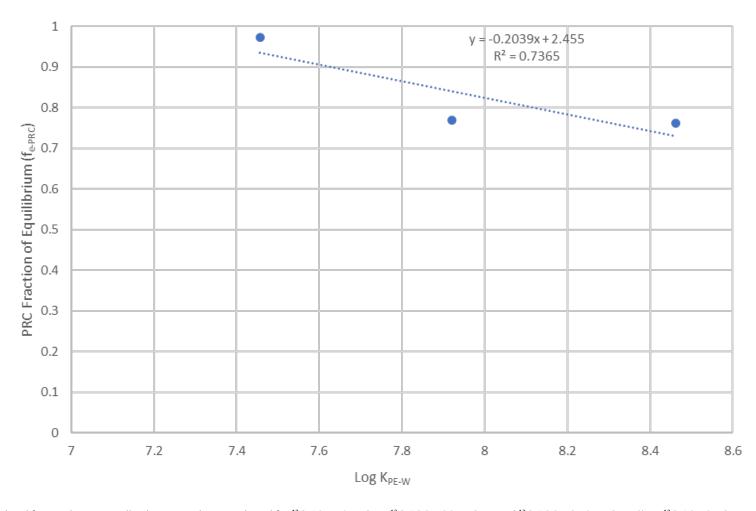

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation fe, PRC=a x log KPE-W + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (fe). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the fe of each target compound.


- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e,PRC}=a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.


- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e,PRC}=a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.


- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e, PRC} = a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.


- 1. Calculated fe,PRC and corresponding log KPE-w values are plotted for 13C-1,2,4,7,8-PeCDD, 13C-1,2,3,4,6,8-HxCDD, and 13C-1,2,3,4,6,7,9-HpCDD. Since 13C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e,PRC}=a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.


- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation f_{e, PRC}=a x log K_{PE-W} + b, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

- 1. Calculated f_{e,PRC} and corresponding log K_{PE-W} values are plotted for ¹³C-1,2,4,7,8-PeCDD, ¹³C-1,2,3,4,6,8-HxCDD, and ¹³C-1,2,3,4,6,7,9-HpCDD. Since ¹³C-1,2,7,8-TCDD achieved approximately 100% depletion from LDPE samplers after 37 days of deployment, it was removed from the plot to improve the fit of the linear regression.
- 2. The linear regression of this plot follows the equation $f_{e, PRC} = a \times log K_{PE-W} + b$, where "a" is the slope and "b" is the y-intercept.
- 3. Isotropic exchange kinetics are assumed (i.e., the depletion rate of a PRC on an LDPE sampler reflects the uptake rate of a target analyte). Therefore, the linear regression line represents the possible fraction of equilibrium of target dioxins/furans (f_e). The slope (i.e., "a") and y-intercept (i.e., "b") from this linear regression are utilized to calculate the f_e of each target compound.

Appendix C Data Validation Reports

Data Validation Report – EPA Stage 2A

December 20, 2019

Project: Scanlon Reservoir

Project Number: 191473-02.01

This report summarizes the review of analytical results for 12 low-density polyethylene (LDPE) samples and one field duplicate sample collected on October 28 and November 25, 2019, in Scanlon Reservoir. The samples were collected by the Anchor QEA-Baird Joint Venture (JV) and submitted to SGS North America Inc. (SGS) in Wilmington, North Carolina. The following analytical parameter results were reviewed in this report:

 Polychlorinated dibenzo dioxin and furan (dioxin/furan or PCD/F) by the U.S. Environmental Protection Agency (EPA) Method 1613B

SGS sample delivery group (SDG) numbers B3820 and B3916 were reviewed in this report. Sample IDs, SDGs, matrices, and analyses are presented in Table 1.

Table 1
Sample IDs, SDGs, Matrices, and Analyses

Sample ID	Laboratory Sample ID	Matrix	Analysis
SR-PE-MB-20191028	B3820_17099_DF_001	LDPE	PCD/F
SR-PE-PRC-C0-1-20191028	B3820_17099_DF_002	LDPE	PCD/F
SR-PE-PRC-C0-2-20191028	B3820_17099_DF_003	LDPE	PCD/F
SR-PE-PRC-C0-3-20191028	B3820_17099_DF_004	LDPE	PCD/F
SR-2019-04-PE-CTRL	B3916_17162_DF_001	LDPE	PCD/F
SR-2019-04-PE-4PAC	B3916_17162_DF_002	LDPE	PCD/F
SR-2019-04-PE-4PAC-D	B3916_17162_DF_003	LDPE	PCD/F
SR-2019-04-PE-2PAC	B3916_17162_DF_004	LDPE	PCD/F
SR-2019-04-PE-4GAC	B3916_17162_DF_005	LDPE	PCD/F
SR-2019-06-PE-CTRL	B3916_17162_DF_006	LDPE	PCD/F
SR-2019-06-PE-4PAC	B3916_17162_DF_007	LDPE	PCD/F
SR-2019-06-PE-2PAC	B3916_17162_DF_008	LDPE	PCD/F
SR-2019-06-PE-4GAC	B3916_17162_DF_009	LDPE	PCD/F

Data Validation and Qualifications

The following comments refer to the laboratory's performance in meeting the quality assurance (QA)/quality control (QC) guidelines outlined in the analytical procedures. Laboratory results were reviewed using the following guidelines:

 Quality Assurance Project Plan (QAPP) for the Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir (JV 2019)

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods (EPA 1986)
- National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA 2016)

Unless noted in this report, laboratory results for the samples listed above were within QC criteria.

Field Documentation

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by SGS at the time of sample receipt. Samples were received in good condition and within the recommended temperature range.

Sample Preservation and Holding Times

Samples were appropriately preserved and analyzed within holding times.

Laboratory Method Blanks

Laboratory method blanks were analyzed at the required frequencies. All blanks were free of target analytes, with the exception of Method Blank B3916_17162, which had detected results for 11 analytes. Associated sample results that were not significantly greater than (greater than five times) the levels found in the blank were qualified as non-detected.

Field Quality Control

Field Duplicate

One field duplicate was collected in association with this sample set. Detected results are summarized in Table 2.

Table 2 Field Duplicate Summary

Analyte	SR-2019-04-PE-4PAC	SR-2019-04-PE-4PAC-D	RPD	Difference	Control Limit
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	185 pg	98.7 pg	-	86.3 pg	100 pg
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	1,080 pg	556 pg	64.1%		
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	484 pg	348 pg	32.7%		
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	141 pg	90.2 pg	-	50.8 pg	50 pg
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	2.52J pg	3.39J EMPC pg	-	0.87 pg	50 pg
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	6.97J pg	6.02J pg	1	0.95 pg	50 pg
Total Heptachlorodibenzofuran (HpCDF)	894 pg	637 pg	33.6%		
Total Heptachlorodibenzo-p-dioxin (HpCDD)	330 pg	207 pg	45.8%		
Total Hexachlorodibenzofuran (HxCDF)	137EMPC pg	138EMPC pg	0.7%		
Total Hexachlorodibenzo-p-dioxin (HxCDD)	65.1EMPC pg	58.7 pg		6.4 pg	50 pg

pg: picogram

RPD: relative percent difference

EMPC: estimated maximum possible concentration

Results less than five times the method reporting limit (RL) may have exaggerated relative percent difference (RPD) values; therefore, if the sample or field duplicate result was less than five times the RL, the sample result is evaluated by the difference between them using $\pm 2x$ the RL as the control limit.

All RPD and/or difference values were within control limits, with the exception of the 1,2,3,4,6,7,8-octachlorodibenzo-p-dioxin (OCDD) RPD value and the 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) difference value for samples SR-2019-04-PE-4PAC and SR-2019-04-PE-4PAC-D, which were above the control limits. These results have been qualified "J" to indicate they are estimated.

Qualified data are summarized in Table 3.

Labeled Standard Recoveries

All labeled standards were recovered within laboratory control limits in the PCD/F analyses.

Laboratory Control or Ongoing Precision and Recovery Samples

Laboratory control samples and ongoing precision and recovery (OPR) samples were analyzed at the required frequency and resulted in recoveries within project-required control limits.

Matrix Spike and Matrix Spike Duplicate Samples

Matrix spike samples were not required to be analyzed with this sample set.

Laboratory Duplicates

Laboratory duplicates were not required to be analyzed with this sample set.

Estimated Maximum Potential Concentration

The laboratory qualified PCD/F results that did not meet ion-abundance ratio requirements as estimated maximum possible concentration (EMPC); these results have been qualified "J" to indicate they are estimated.

Method Reporting Limits

RLs were acceptable as reported. All values were reported using the laboratory RLs. Values were reported as undiluted. Some RLs were slightly elevated above the target limits listed in the QAPP due to sample aliquot size and moisture content. Data quality objectives are not expected to be impacted.

Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical methods, and all requested sample analyses were completed. Accuracy was acceptable as demonstrated by the OPR recovery values. Precision was acceptable as demonstrated by the field duplicate RPD or difference values, with the exceptions noted above. Most data are acceptable as reported, and all other data are acceptable as qualified. Table 3 summarizes the qualifiers applied to the sample results reviewed in this report.

Data Qualifier Definitions

- J Indicates an estimated value.
- U Indicates the compound or analyte was analyzed for but not detected at or above the specified limit.

Table 3 Data Qualification Summary

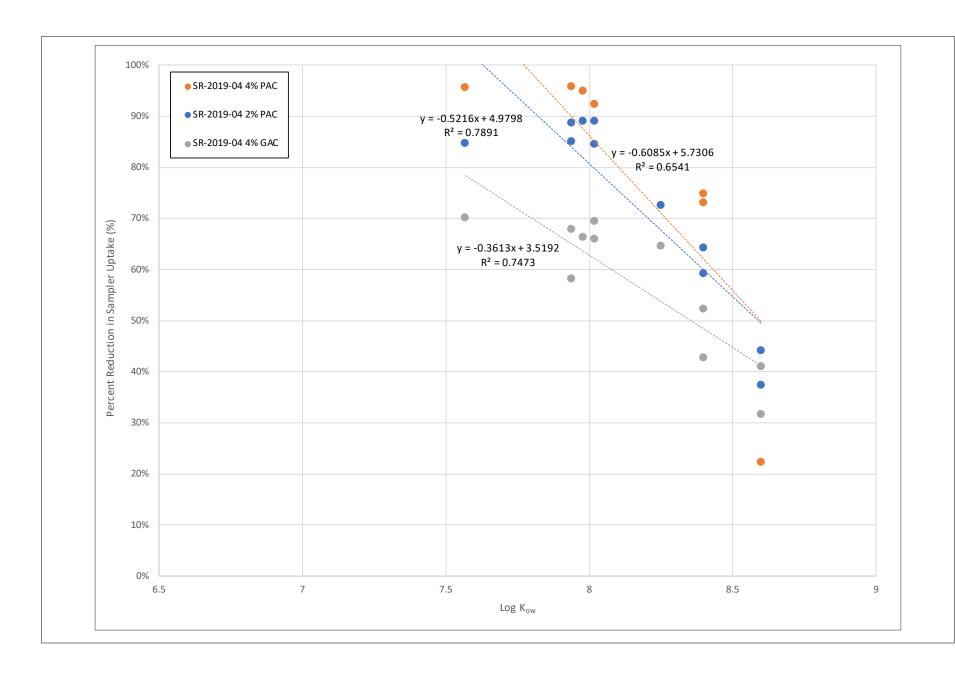
Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason	
SR-2019-04-PE-CTRL		1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	10.3J B pg	10.3U pg	Method blank contamination	
		1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	14.2J EMPC pg	14.2J pg	ЕМРС	
	PCD/F	Total Hexachlorodibenzo-p-dioxin (HxCDD)	612EMPC pg	612J pg		
		Total Pentachlorodibenzofuran (PeCDF)	173EMPC pg	173J pg		
		Total Pentachlorodibenzo-p-dioxin (PeCDD)	181EMPC pg	181J pg		
		Total Tetrachlorodibenzofuran (TCDF)	30EMPC pg	30J pg		
		Total Tetrachlorodibenzo-p-dioxin (TCDD)	28.5EMPC pg	28.5J pg		
SR-2019-04-PE-4PAC	PCD/F	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	1080 pg	1080J pg	Field duplicate RPD above control limit	
		1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	141 pg	141J pg	Field duplicate difference value above control limit	
		1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	5.21J B EMPC pg	5.21U pg	Method blank	
		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	6.19J B pg	6.19U pg	contamination	
		Total Hexachlorodibenzofuran (HxCDF)	137EMPC pg	137J pg	- EMPC	
		Total Hexachlorodibenzo-p-dioxin (HxCDD)	65.1EMPC pg	65.1J pg		
SR-2019-04-PE-4PAC-D	PCD/F	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	556 pg	556J pg	Field duplicate RPD above control limit	
		1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	90.2 pg	90.2J pg	Field duplicate difference value above control limit	
		1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	3.39J EMPC pg	3.39J pg	FMDC	
		Total Hexachlorodibenzofuran (HxCDF)	138EMPC pg	138J pg	EMPC	
		1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	5.36J B pg	5.36U pg	Method blank	
		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	4.51J B pg	4.51U pg		
		2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	1.65J B EMPC pg	1.65U pg	Contamination	

DRAFT

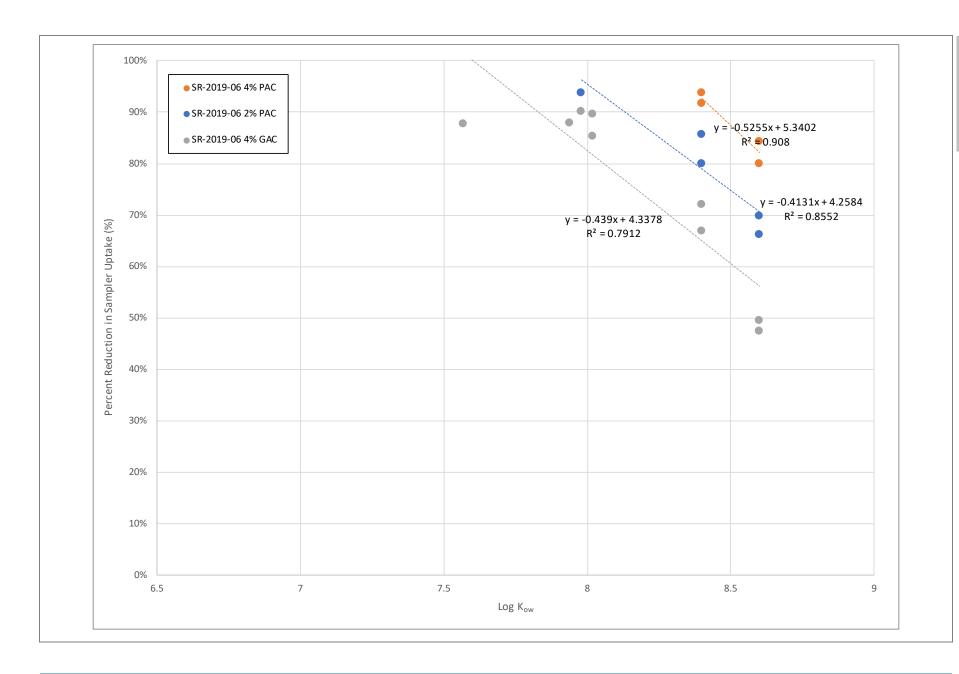
Sample ID	Parameter	Analyte	Reported Result	Qualified Result	Reason	
SR-2019-04-PE-2PAC		1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	5.85J EMPC pg	5.85U pg	Method blank	
		2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	4.21J pg	4.21U pg	contamination	
		1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	6.71J EMPC pg	6.71J pg		
	PCD/F	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	15.1J EMPC pg	15.1J pg		
		Total Heptachlorodibenzofuran (HpCDF)	1410EMPC pg	1410J pg	EMPC	
		Total Hexachlorodibenzofuran (HxCDF)	461EMPC pg	461J pg		
		Total Hexachlorodibenzo-p-dioxin (HxCDD)	213EMPC pg	213J pg		
		1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	7.35J pg	7.35U pg	Method blank contamination	
CD 0040 04 DE 4646	D.CD. (5	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	34.7EMPC pg	34.7J pg		
SR-2019-04-PE-4GAC	PCD/F	Total Hexachlorodibenzofuran (HxCDF)	941EMPC pg	941J pg	FN 4D C	
		Total Pentachlorodibenzofuran (PeCDF)	40.8EMPC pg	40.8J pg	EMPC	
		Total Pentachlorodibenzo-p-dioxin (PeCDD)	32.9EMPC pg	32.9J pg		
		1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	5.71J pg	5.71U pg	Method blank contamination	
		1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	2.57J EMPC pg	2.57J pg	ЕМРС	
CD 2010 OC DE CTDI	PCD/F	1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	5.51J EMPC pg	5.51J pg		
SR-2019-06-PE-CTRL		Total Pentachlorodibenzofuran (PeCDF)	83.7EMPC pg	83.7J pg		
		Total Pentachlorodibenzo-p-dioxin (PeCDD)	81.1EMPC pg	81.1J pg		
		Total Tetrachlorodibenzofuran (TCDF)	4.7EMPC pg	4.7J pg		
		Total Tetrachlorodibenzo-p-dioxin (TCDD)	4.3EMPC pg	4.3J pg		
	PCD/F	1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	14.6J EMPC pg	14.6U pg	Method blank contamination	
SR-2019-06-PE-4PAC		Total Heptachlorodibenzo-p-dioxin (HpCDD)	37.4EMPC pg	37.4J pg	EMPC	
		Total Hexachlorodibenzo-p-dioxin (HxCDD)	9.67EMPC pg	9.67J pg		
SR-2019-06-PE-2PAC	DCD/F	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	3.8J EMPC pg	3.8J pg	EMPC	
	PCD/F	Total Hexachlorodibenzo-p-dioxin (HxCDD)	48.7EMPC pg	48.7J pg		
		1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	3.41J EMPC pg	3.41J pg	EMPC	
SR-2019-06-PE-4GAC	DCD/F	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	5.56J EMPC pg	5.56J pg		
		Total Hexachlorodibenzofuran (HxCDF)	208EMPC pg	208J pg		
	PCD/F	Total Hexachlorodibenzo-p-dioxin (HxCDD)	84.2EMPC pg	84.2J pg		
		1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	3.12J EMPC pg	3.12U pg	Method blank	
		2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	3.09J EMPC pg	3.09U pg	contamination	

Notes:

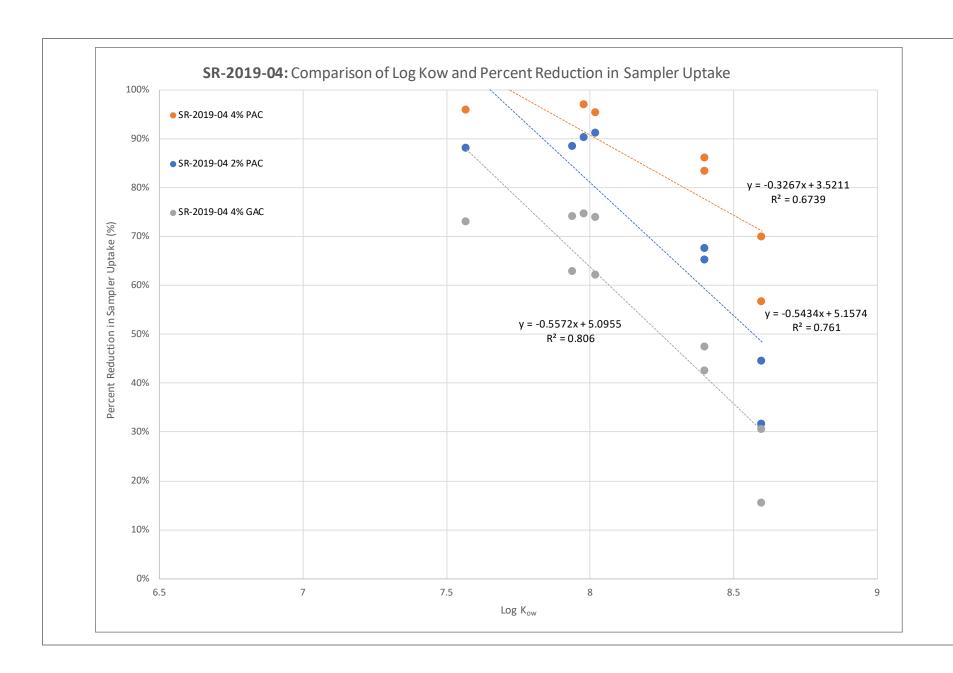
EMPC: estimated maximum possible concentration


pg: picogram RPD: relative percent difference

References


- EPA (U.S. Environmental Protection Agency) 1986. *Test Methods for Evaluating Solid Waste:*Physical/Chemical Methods. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. EPA 530/SW-846.
- EPA 2016. *National Functional Guidelines for High Resolution Superfund Methods Data Review*.

 U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation (OSRTI). EPA 542-B-16-001. April 2016.
- JV (Anchor QEA-Baird Joint Venture), 2019. *Quality Assurance Project Plan*. Research and Development Pilot Project Design for Remediation of Contaminated Sediments at the Scanlon Reservoir, Scanlon, Minnesota. Contract Number W912P4-D-0001. Prepared for U.S. Army Corps of Engineers Detroit District. September 2019.


Appendix D Effect of K_{ow} on Reduction in Sampler Uptake

